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Preface

The phrase zeta potential is frequently used in this book. This concept pervades all the
chapters that follow, which were written by a significant number of outstanding scientists
in the field of colloid and interface science. However, we do not intend to merely add
another text to the (short) list of excellent monographs on zeta potential, some authored
by contributors to this volume. The aim of this book is to provide the reader with as many
tools as he or she might possibly need to solve any problem in the physics and chemistry of
interfaces (mainly, but not only) between solid particles and liquids. The intent is to
demonstrate that electrokinetic phenomena, associated with forces of any origin causing
relative motion of two phases in contact, are extremely interesting from the fundamental
point of view, challenging the application of classical laws of physics to apparently simple
problems. In addition, they are the basis of a number of techniques that have long proved
useful in predicting or explaining many behaviors of systems, in which electrical properties
of interfaces play an essential role. In order to apply a proper methodology to a particular
problem, the reader must be familiarized with the origin of the processes involved and
understand what kind of information can be obtained. For this reason, we have tried to
find a balance between the theory and the experimental methods, or between ‘‘fundamen-
tal’’ and ‘‘applied’’ electrokinetics, by including many examples of various applications.

The book is divided into five parts. The general aspects of electrokinetics of sus-
pended particles (both theoretical and experimental) are included in the first part.
Following an overview of the phenomenology, simple theory, and experimental methods
(Delgado and Arroyo), the contributions of Dukhin, Shilov, and Lyklema address the
fundamental problem of the role of surface conductivity (in particular, behind the slipping
plane) in electrokinetics. Kovačević et al. consider another essential question, i.e., the
definition, meaning, and experimental accessibility of different electric potentials, which
can be defined in the double layer. The theory of electrophoresis for different geometries
or for complex structures is considered in the chapters by Ohshima, Velegol et al., and
Kim and Yoon. Experimental aspects of this widespread technique, with particular
emphasis on the reproducibility of measurements on well-defined samples of the same
nature, and the search for standards of universal validity are the topics dealt with inde-
pendently by Matijević and Furusawa. Mishchuk and Dukhin focus on the so-called
electrokinetic phenomena of the second kind, which appear when electric fields are applied
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iv Preface

to internally conducting particles, such as ion exchangers. A number of chapters are
devoted to the rapidly emerging field of AC electrokinetics, with chapters by Grosse
(analysis of relaxation phenomena in the double layer), Shilov et al. (dielectric dispersion
and particle electrorotation), and Gimsa (providing many details on the latest techniques
based on the application of AC fields to colloid dispersions). Nonspherical particle electro-
orientation, and its implications for optical birefrigence in dispersed systems, is discussed
by Bellini and Mantegazza. Finally, Keh, Ozaki, and Sasaki consider the sedimentation
potential, while the contribution by A. S. Dukhin et al. deals with the promising field of
electroacoustic phenomena.

In the second part, ‘‘Membranes and Porous Plugs,’’ rigorous treatments of electro-
osmosis in porous media of different geometries by Adler et al., and Li, are followed by
applications in the characterization of (mainly inorganic) membranes by Ricq et al.

In the third part, ‘‘Polymers and Particles of Biological Interest,’’ the latter area is
emphasized. Stein gives a review of the electrokinetic properties of polystyrene latex, and
Martı́n-Rodrı́guez et al. use such particles as substrates for protein adsorption. Lee et al.
introduce the modifications of the classical electrokinetic models, required when dealing
with particles of complex or nonrigid surfaces, as is common with biological cells. Next,
Knippel and Budde focus on the use of electrophoresis as an aid in the diagnosis of human
pathologies. Finally, Makino describes a number of methods for significantly modifying
the surface of particles by polymer coating, and the implications of these treatments on the
interactions of colloids with red blood cells.

The fourth part, ‘‘Inorganic Particles,’’ deals mainly with specific inorganic disper-
sions. Sprycha describes technological applications of electrokinetics in the ink and print-
ing industry, Sondi and Pravdić review the electrical surface properties of clays, and Das
discusses electrokinetic properties of a large number of natural and synthetic inorganic
compounds.

The final part, ‘‘Gas/Liquid and Liquid/Liquid Interfaces: Vesicles,’’ is devoted to
dispersed systems of deformable interfaces. The general aspects of gas/liquid electroki-
netics are reviewed by Graciaa et al., and Spasic discusses a general model for the electro-
viscoelastic properties of liquid/liquid interfaces. The chapters by O, Chibowski, and
Wia̧cek deal with emulsions; the last two contributions focus on the electrokinetic proper-
ties of liposomes (De Meulaenaer et al.) and on the effects of applied fields on their
stability (Matsumura and Furusawa).

Because of the wide variety of topics, the book should be useful to readers from both
academia and industry. Scientists dealing with a variety of processes, such as adsorption,
adhesion, corrosion, and many others, will appreciate finding all the information con-
tained in one volume. Graduate students with projects in colloid and interface science will
find this book an excellent source of references. Finally, practitioners will want this book
on their shelves, because electrokinetic techniques are used routinely in many areas of
technology, including paint, food, drugs, oil, detergents, dairy, and many other industries.

I am indebted to the series editor, Professor Arthur T. Hubbard, for suggesting that I
edit this volume, and to the contributors, who have spared no effort in writing their
chapters. The list of authors could be longer, considering the amount and quality of
research on the subject of this book, but as with any other publication, there are limita-
tions in size and also restrictions with respect to deadlines. I would like to take this
opportunity to thank the members of my research group for their support, advice, and
patience. Finally, I am also pleased to acknowledge the efficiency and care of the people in
charge of this project at Marcel Dekker, Inc.

Ángel V. Delgado
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1
Electrokinetic Phenomena and Their
Experimental Determination: An Overview

ÁNGEL V. DELGADO University of Granada, Granada, Spain

FRANCISCO J. ARROYO University of Jaén, Jaén, Spain

I. INTRODUCTION

Consider a spherical solid particle 1 cm in diameter. Its surface S and volume V are,
respectively, 3:14� 10�4 m2 and 5:24� 10�7 m3, and thus its surface/volume ratio will
be S=V � 600m�1. Assume that we divide the particle in a number N of spherical particles
of radius 100 nm such that their total volume equals that of the original 1-cm sphere.
However, their surface would be 15.7m2, and S=V � 3� 107 m�1. This simple and well-
known example explains that an essential contribution to the properties of a system
formed by dispersing the N particles in, say 1L of water will be connected with the
influence of the surfaces and interfaces of the particles. In particular, the electrical state
of the surface of the particles may be determinant: if each of them bears a surface potential
of 100mV (about the order of magnitude typical of colloidal particles in aqueous media),
the repulsive electrostatic force between two such particles dispersed in water and located
at a surface-to-surface distance of 10 nm would be FEL

� 2:12� 10�12 N. This force has to
be compared to the strength of other interactions that must or could exist between them.
Thus, their gravitational attraction at the same distance would be FG

� 6:3� 10�15 N (if
their density is 103 kg=m3); their van der Waals attraction FLW

� 8� 10�13 N (using typi-
cal values of the Hamaker’s constant, see Ref. 1). Again, these examples show that in most
instances the electrostatic interactions are mainly responsible for the macroscopic proper-
ties of the suspensions.

In this context, electrokinetic phenomena and the techniques associated with them
demonstrate their importance. They are manifestations of the electrical properties of the
interface, and hence deserve attention by themselves. Furthermore, however, they are a
valuable (unique, in many cases) source of information on those electrical properties,
because of the possibility of their being experimentally determined.

In this chapter, we describe some of the most widely used electrokinetic phenomena
and techniques. These include classical electrophoresis, streaming potential and current,
and electro-osmosis. Attention will also be paid to other rapidly growing techniques, such
as those based on electroacoustic measurements, electrorotation, dielectrophoresis, or low-
frequency dielectric dispersion, some of which appear to be suitable for the electrokinetic
analysis of suspensions even in the case of very high concentrations of solids, when con-
ventional techniques are inapplicable.
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II. CLASSICAL DESCRIPTION OF THE ELECTRICAL DOUBLE LAYER

We will admit as an experimental fact that most solids acquire an electrical surface charge
when dispersed in a polar solvent, in particular, in an electrolyte solution. The origins of
this charge are diverse [1–4], and include:

1. Preferential adsorption of ions in solution. This is the case of ionic surfactant
adsorption. The charged entities must have a high affinity for the surface in
order to avoid electrostatic repulsion by already adsorbed ions.

2. Adsorption–desorption of lattice ions. Silver iodide particles in Agþ or I� solu-
tions are a typical example: the crystal lattice ions can easily find their way into
crystal sites and become part of the surface. They are called potential-determin-
ing ions (p.d.i.).

3. Direct dissociation or ionization of surface groups. This is the mechanism through
which most polymer latexes obtain their charge. Thus, acid groups as sulfate
and/or carboyxl are responsible for the negative charge of anionic polymer
lattices. When the pH is above the pKa of dissociation of these groups, most
of them will be ionized, rendering the surface negative. In the case of oxides,
zwitterionic MOH surface groups can generate either positive or negative
charge, depending on the pH; Hþ and OH� would hence be p.d.i.’s for oxides.

4. Charge-defective lattice: isomorphous substitution. This is a mechanism typical –
almost exclusive, in fact – of charging in clay minerals: a certain number of Si4þ

and Al3þ cations of the ideal structure are substituted by other ions with lower
charge and of almost the same size. As a consequence, the crystal would be
negatively charged, although this structural charge is compensated for by surface
cations, easily exchangeable in solution [5].

Whatever the mechanism (and there are instances in which more than one of them
participates), the net surface charge must be compensated for by ions around the particle
so as to maintain the electroneutrality of the system. Both the surface charge and its
compensating countercharge in solution form the electrical double layer (EDL in what
follows). In spite of the traditional use of the word ‘‘double,’’ its structure can be very
complex, not fully resolved in many instances, and it may contain three or more layers,
extending over varying distances from the solid surface.

Close to the latter or on the surface itself one can find charges responsible for the
surface charge �0, the so-called titratable charge. In their immediate vicinity, ions capable
of undergoing specific adsorption might be located: their distance to the solid will be of the
order of an ionic radius, since it is assumed that they have lost their hydration shell, at
least in the direction of the solid surface. Let us call �i the surface charge at such a plane of
atoms, located at a distance �i from the solid (see Fig. 1). If, as usual, we assume that the
interface has planar geometry, and x is the outward distance normal to it, then we can say
that the region between x ¼ 0 and x ¼ �i is free of charge, and a capacitor whose plates
are the surface and the �i plane is identified. If Ci is its specific (per unit surface area)
capacitance, then

 0 �  i ¼
�0
Ci

ð1Þ

where  0 is the potential at the solid surface. Let us note that ions responsible for  i will
not only have electrostatic interactions with the surface: in fact they often overcome
electrical repulsions, and are capable, for instance, of increasing the positive charge of

2 Delgado and Arroyo



an already positive surface. It is usual to say that the missing interactions are of a chemical
nature, although this is not, strictly speaking, always the case. There is a large variety of
situations, ranging from the formation of chemical (covalent) bonds, to weaker interac-
tions including van der Waals attraction, hydrogen bonds, hydrophibic–hydrophilic
forces, and so on [3]. Because of the typical lack of information about this inner part of
the ionic atmosphere, the treatment is usually not free from more or less realistic hypoth-
eses and assumptions.

Still further from the surface, at a distance x ¼ �d and beyond, ions undergoing only
electrostatic interactions with the surface are located, and because of their less intense
interactions with the solid, they are also subjected to collisions with solvent molecules, so
that they are in fact distributed over a certain distance to the solid. This third layer in the
ionic distribution is in fact characterized by a volume charge density �ðxÞ, although it is of
practical use to introduce a surface charge density �d, located at x ¼ �d, according to

�d ¼

ð1
�d

�ðxÞ dx ð2Þ

for a plane interface, or

�d ¼
1

ðaþ �dÞ
2

ð1
�d

r2�ðrÞ dr ð3Þ

for a spherical interface of radius of a, r being the radial co-ordinate, with origin at the
particle center.

If  d is the potential at x ¼ �d, another capacitance can be distinguished between �i
and �d:

 i �  d ¼
�0 þ �i
C2

ð4Þ

Electrokinetic Phenomena and Their Determination 3
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Now, because of electroneutrality,

�0 ¼ ��i � �d ð5Þ

and Eq. (4) can also be written:

 i �  d ¼ �
�d
C2

ð6Þ

In order to become familiar with the nomenclature (unfortunately, there are almost
as many criteria as authors, concerning the symbols used for the different potentials), let
us mention:

1. The volume ionic distribution extending from x ¼ �d is called the diffuse layer or
diffuse part of the double layer.

2. The region between x ¼ 0 and x ¼ �d is often named the Stern layer or inner part
of the double layer, or dense part of the double layer.

3. The plane x ¼ �i is the inner Helmholtz plane (IHP) and that at x ¼ �d is called
the outer Helmholtz plane (OHP). That is, the OHP identifies the beginning of
the diffuse layer.

The diffuse layer can be described mathematically in a simple way: the equilibrium
condition for ions in this layer can be written [6]:

�ezir � kBTr ln ni ¼ 0; i ¼ 1; . . . ;N ð7Þ

where the first term corresponds to the electrostatic force on ions of type i (charge ezi,
number concentration ni) and the second is the thermodynamic force. Integration of Eq.
(7) under the condition ni ¼ n

0
i ð1Þ for  ¼ 0 leads to the Boltzmann distribution:

nið~rrÞ ¼ n
0
i ð1Þ exp½�ezi ð~rrÞ=kBT �; i ¼ 1; . . . ;N ð8Þ

where n0i ð1Þ is the number concentration of ions of type i, far from the particle, kB is the
Boltzmann constant, and T is the absolute temperature. Finally, the Poisson equation will
give us the relationship between the potential and ionic concentrations:

r
2 ð~rrÞ ¼ �

1

"rs"0
�ð~rrÞ ¼ �

1

"rs"0

XN
i¼1

ezin
0
i ð1Þ exp �

ezi ð~rrÞ

kBT

� �
; ð9Þ

"rs"0 being the dielectric permittivity of the dispersion medium. Equation (9) (the Poisson–
Boltzmann equation) is the starting point of the Gouy–Chapman description of the diffuse
layer.

It will be clear that there is no general solution to this partial differential equation,
but in certain cases [6, 7]:

1. A flat interface, with low potential. In this case:

 ¼  de
�
x

ð10Þ

where 
�1 is the Debye length, and it is clearly a measure of the diffuse layer
thickness. Its value is
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�1
¼

"rs"0kBTXN
i¼1

e2z2i n
0
i ð1Þ

8>>>><
>>>>:

9>>>>=
>>>>;

1=2

ð11Þ

To get an idea of the typical values of 
�1, the following practical formula for a
1-1 electrolyte ðN ¼ 2; z1 ¼ 1; z2 ¼ �1Þ is useful (water at 258C is the solvent):


�1
¼ 0:308c�1=2 nm

if c is the molar concentration of electrolyte ðn1 ¼ n2 ¼ 103NAc for a 1-1 electro-
lyte).

2. A flat interface, in a symmetrical z-valent electrolyte ðz1 ¼ �z2 ¼ zÞ for arbitrary
 d potential:

yðxÞ ¼ 2 ln
1þ e�
x tanhð yd=4Þ

1� e�
x tanhð yd=4Þ

� �
ð12Þ

where y is the dimensionless potential:

y ¼
ze 

kBT
ð13Þ

and a similar expression can be given for yd.
3. A spherical interface (radius a) at low potentials (the so-called Debye approx-

imation):

 ðrÞ ¼  d

a

r

� 
e�
ðr�aÞ ð14Þ

whereas numerical solutions or approximate analytical expressions have to be applied in
other cases. This is illustrated in Fig. 2, where Eqs (10) and (12) are compared for the flat
interface, and in Fig. 3, where the approximate solution, Eq. (12), is compared to the full
numerical calculation [8].

III. ELECTROKINETIC POTENTIAL AND ELECTROKINETIC PHENOMENA

Let us assume that an electric field is applied parallel to the solid/solution interface in Fig.
1, and that the solid wall is fixed in our co-ordinate system. From the preceding discussion,
it will be clear that the liquid adjacent to the solid has a net electric charge, opposite to that
on the surface. Part of the ions in that liquid will likely be strongly attached to the surface
by short-range attractive forces, and can be considered immobile (however, it is not rare
that their mobility has a value close to that in the bulk solution, see Chapter 2) and the
same will be admitted with respect to the liquid in that region. On the other hand, both
ions and liquid outside it can be moved by the external field: in fact the electric force will
act on the ions (mainly, counterions) and they will drag liquid in their motion. That is, a
relative movement between the solid and the liquid will occur: this is the very essence of
electrokinetic phenomena. The potential existing at the boundary between the mobile and
immobile phases is known as electrokinetic or zeta (�) potential. The exact location (dis-
tance �� in Fig. 1) of that so-called slipping or shear plane is a matter of investigation (see
Chapter 4), and, in fact, even the existence of the latter plane and of the zeta potential itself
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is strictly an abstraction [9], since they are based on the assumption that the viscosity of
the liquid medium jumps discontinuously from infinity in the Stern layer to a finite value in
the diffuse atmosphere. One possible way to overcome, at least formally, this uncertainty
is to assume a gradual variation of the viscosity � from the surface to the beginning of the
diffuse part [7, 9], but the quantitative, experimental verification of such a variation is not
accessible. Since all treatments on electrokinetic phenomena rely in fact on the existence of
the zeta potential, we will not pursue this question any more, and admit the model of
viscosity jump as one that works reasonably well. This means that electrokinetic techni-
ques will give us information on the zeta potential, wherever it is located. Trying to extract
more information is risky and increasingly model dependent. Dukhin [7] gives a clear
physical explanation of the reasons:

1.  d and � can be considered identical only at low electrolyte concentrations, while
at high concentration, when the double-layer thickness is very much reduced,
any attempt to obtain information about  d from electrokinetic measurements
requires knowledge of the exact position of the shear plane.

2. The liquid in the immediate vicinity of the surface (the stagnant layer) may have
(unknown) rheological properties very different to those in the bulk, and the
difference between  d and � could be related to that fact. Furthermore, even if
 d and � can be considered identical, the viscosity and dielectric constant of the
liquid likely differ from those of the bulk, and this might affect the electrokinetic
behavior.

3. It is possible (and likely) that the surface is far from being molecularly flat: if the
typical dimension of the roughness is smaller than the double-layer thickness,

�1, the standard treatment is not affected by this lack of homogeneity. If, on the
contrary, 
�1 and the characteristic depth of valleys on the surface are compar-
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FIG. 2 Potential distribution at a flat interface, calculated by using the Debye–Hückel approximate

formula [Eq. (10), dashed lines] and the full calculation [Eq. (12), solid lines], for the values of �d

indicated. Monovalent electrolytes.



able, the discussion of the distinction between  d and � (and, for that matter, the
interpretation of  d and � themselves) can be somewhat meaningless.

In spite of these difficulties, (few) experimental works have indeed approached this
core problem of electrokinetics from an experimental point of view. Thus, using a Gouy–
Chapman description of the double layer (that is, ignoring the existence of the Stern layer
or, in other words, identifying  d and  0), Eversole and coworkers [10, 11] proposed to
rewrite Eq. (12) as

ln tanh
y�
4

� 
¼ ln tanh

y0
4

� 
� 
�� ð15Þ

so that measuring the zeta potential as a function of the concentration of an indifferent
electrolyte, �� would be the slope of the linear plot of the left-hand side term of Eq. (15)
versus 
. In that way, they obtained �� values ranging from 8 to 63 A

�

. Smith [12] obtained
�� < 5 A

�

for rutile and silica, and indistinguishable from zero in AgI suspensions.
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FIG. 3 Dimensionless potential around a spherical particle as a function of the reduced distance to

the surface, for monovalent electrolytes. DH: Debye–Hückel approximation; NM: full numerical
calculation. In (a), yd ¼ 4, and in (b), yd ¼ 8. (From Ref. 8, with permission of Academic Press.)



Similarly, Lyklema [9] concluded that the identification of  d and � in the latter systems is
plausible within experimental error.

Furthermore, advances in the theory of electrokinetic phenomena [13–18] have
allowed us to relate the observed electrokinetic effects not only to the zeta potential,
but also to other parameters of the double layer and to the existence of a Stern layer
with ions capable of moving under the action of external fields. This increased number of
parameters to be determined require for their estimation a well-planned experimental
investigation and often experiments with different electrokinetic techniques.

Coming back to the main topic of the present section, and having discussed the
notion of the electrokinetic potential, we will now focus on the different electrokinetic
phenomena that can be distinguished by the mobile–immobile phases, the nature of the
applied field, and the quantity that must be experimentally determined. In the following
sections we will describe them individually in a more thorough way but a brief list of
definitions seem to be in order here.

1. Electrophoresis. It is the translation of a colloidal particle relative to the liquid
under the action of an externally applied field, ~EE1, constant in time and position
independent. Under certain conditions, a linear relationship exists between the
steady electrophoretic velocity, ~��e (attained by the particle just a few micro-
seconds after application of the field), and the applied field:

~��e ¼ �e
~EE1 ð16Þ

where �e is the quantity of interest, known as the electrophoretic mobility.
2. Sedimentation potential. It is the potential difference, Vs, sensed by two elect-

rodes placed at a known vertical distance in the suspension, subjected to a
gravitational (or equivalently, centrifugal) field, ~gg. Clearly, the potential will
only be generated if the density of the particle �p, and of the dispersion medium,
�s, are different.

3. Electrorotation. It is the rotational motion of colloidal particles. It is provoked
by an applied rotating field, and the quantity of interest is the angular velocity of
the particle, ~��. It depends on the frequency of the field, !, and can be zero,
positive (i.e., cofield rotation), or negative (counterfield rotation).

4. Dielectrophoresis. A nonhomogeneous (spatially varying) electric and harmoni-
cally time-alternating field is applied in this case to the particles. They undergo a
translational motion towards or away from the high-field region, depending on
the value of their induced dipole moment. This translation is known as dielec-
trophoresis.

5. Diffusiophoresis. It is the motion of the suspended particles under the action of
an externally applied concentration gradient of the electrolyte solution (or a
gradient of solvent composition in nonelectrolyte solution) that constitutes the
dispersion medium. The presence of this macroscopic concentration gradient
induces a local gradient of electrical potential in the vicinity of the particle,
thus provoking a sort of electrophoretic motion. Its reciprocal phenomenon is
termed capillary osmosis: the concentration gradient-induced electric field sets
the liquid in the vicinity of the double layer into motion.

6. Electro-osmosis. It is the motion of the liquid adjacent to a charged surface due
to an externally imposed electric field. The phenomenon may occur in, for
example, flat or cylindrical capillaries, membranes, porous plugs, etc.
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7. Streaming potential and streaming current. In these phenomena, the motion of
the liquid is forced by an applied pressure gradient. The motion of the charged
liquid gives rise to an electric current (streaming current) if there is a return path
for the charges, or an electrical potential (streaming potential) if the sensing
electrodes are connected to a high-input impedance voltmeter (open circuit).

8. Dielectric dispersion. The polarization of the EDL, a phenomenon that consti-
tutes a very important contribution to electrokinetic phenomena, determines
also the dielectric dispersion of a suspension, i.e., the change with the frequency
of an applied AC field of the dielectric permittivity of a suspension of colloidal
particles. The phenomenon is dependent on the concentration of particles, their
zeta potential, and the ionic composition of the medium, and appears to be very
sensitive to most of these quantities.

9. Electroacoustic phenomena. They include: ESA (electrokinetic sonic amplitude),
which consists in the generation of sound waves under the action of an alter-
nating electric field applied to the suspension, and its reciprocal, CVP (colloid
vibration potential), in which a mechanical (ultrasonic) wave is forced to pro-
pagate in the system. Electroacoustic phenomena have been very recently stu-
died on a rigorous basis, both experimentally and theoretically.

The list could be made longer, taking the idea of electrokinetics in a wide sense
(response of the colloidal system to an external field that reacts differently to particles
and liquid). Thus, we could include:

. Electroviscous effects: the viscosity of a suspension in its Newtonian range is
different from that of the dispersion liquid, and depends on the surface potential
of the particles, and on the ionic characteristics of the medium.

. DC conductivity: the DC conductivity of the suspension is also dependent on the
properties of the solid/liquid interfaces.

. Electric birefringence: the torque exerted by an external field on anisotropic
particles will provoke their orientation. This affects the refractive index of the
suspension. The variation of the refractive index with the frequency of the field, if
it is alternating, is related to the double-layer characteristics.

We will now give some ideas about the simplest theoretical explanation for the
observed phenomena, as well as on the experimental techniques available. The treatment
will not be excessively detailed, to avoid overlapping with the other chapters of this book.
In the following sections we will proceed with such an overview.

IV. ELECTROPHORESIS

A. Simple Theory

Assume that we have a spherical particle of radius a in the presence of an electric field that,
far from the particle, equals ~EE1. The particle is considered to be nonconducting and with a
dielectric permittivity much smaller than that of the dispersion medium. For the moment,
we will also assume that the electrolyte concentration is very low and that a is also very
small, so that the following inequality holds between the double-layer thickness [Eq. (11)]
and the radius:


�1
 a or 
a� 1 ð17Þ
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that is, we are in the thick double layer (or Hückel) approximation. Because the ionic
atmosphere extends over such long distances, the volume charge density inside it will be
very small, and the applied field will hence provoke almost no liquid motion around the
particle. As a consequence, the only forces acting on the latter are Stokes’ drag ð ~FFsÞ and
electrostatic ð ~FFEÞ. Since the particle moves with constant velocity (the electrophoretic
velocity, ~��e), the net force must vanish:

~FFs ¼ �6��a~��e

~FFE ¼ Q ~EE1

~FFs þ ~FFE ¼ 0

ð18Þ

In these equations, � is the viscosity of the dispersion medium, and Q is the total
surface charge on the particle. From Eq. (18):

~��e ¼
Q

6��a
~EE1 ð19Þ

Now, remembering [19] that the potential on the surface, under condition (17), is

VðaÞ ¼
1

4�"rs"0

Q

a
ð20Þ

the identification of VðaÞ with the zeta potential, �, leads to

~��e ¼
2

3

"rs"0
�
� ~EE1 ð21Þ

or the electrophoretic mobility, �e:

�e ¼
2

3

"rs"0
�
� ð22Þ

which is the well-known Hückel formula.
Let us now consider the opposite situation, for which an analytical solution exists,

i.e., a thin double-layer approximation:


�1
� a or 
a 1 ð23Þ

In this case, the surface charge is screened by double layer ions in a short distance,
what means that, as described in Section III, electroneutrality is lost in that region. The
field will hence provoke motions of the charged liquid that affect the particle motion itself:
the solution is in this case somewhat more complicated, but still achievable.

For the moment, we still assume a spherical particle with a constant surface poten-
tial, �; another important assumption is that the surface conductivity of the EDL is small
enough to have negligible influence on the field-induced potential distribution. The pro-
blem is better solved if a reference system is used that is centered in the sphere. Since in the
laboratory system the liquid does not move far from the particle, the use of the co-ordinate
system fixed to the particle will yield a liquid velocity equal to �~��e at long distances.

Figure 4 is a scheme of the situation described. Under the assumption that the
double layer is everywhere thin, the tangential velocity of liquid at a distance r from the
particle’s surface, which is large enough when compared to the EDL thickness but, simul-
taneously, is small when compared to the particle radius ða r� a 
�1

Þ, can be esti-
mated if it is known for a flat interface, and thus it is much easier than the general
problem. In fact, the tangential velocity distribution of the liquid with respect to a solid
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flat interface with a potential equal to �, under the action of a tangential field Et [2, 4, 13]
(see also Section IX below) is

�tðxÞ ¼ �
"r"0
�

½� �  ðxÞ�Et ð24Þ

where x is the distance taken outwards of the interface, and  ðxÞ is the equilibrium
potential distribution in the double layer (in the framework of the linear approximation
with respect to an external field, it is assumed that the double layer retains its equilibrium
configuration in the presence of a field that is weak enough). Equation (24) describes in
fact the x-distribution of electro-osmotic velocity, and for distances exceeding the double-
layer thickness, when  ðxÞ ! 0, the velocity is called the electro-osmotic slipping velocity,
~��s:

~��s ¼ �
"rs"0
�
� ~EEt ð25Þ

Using Eq. (25) outside any portion of the quasiflat double layer of our spherical
particle, would allow us to write:

~��sð�Þ ¼ �
"rs"0
�
� ~EEtð�Þ ð26Þ

where ~��sð�Þ is the tangential velocity of the liquid near the particle’s surface outside a thin
double layer in a position characterized by the angle � with the field direction, where the
tangential field is ~EEtð�Þ.

Now, the potential � ð~rrÞ due to the external field around a nonconducting sphere in
a conducting medium is given by [19, 20]

� ð~rrÞ ¼ �E1r cos � �
E1a

3

2r2
cos � ð27Þ

(recall that it is assumed that there is no double-layer deformation or relaxation effect) and
hence the tangential field:
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FIG. 4 Scheme of the liquid flow around a negatively charged spherical particle. Far from the
interface, the liquid moves with constant velocity �~��e.



Etð�Þ ¼ �
1

r

@� 

@�

�����
r¼a

¼ �
3

2
E1 sin � ð28Þ

Since the net force on the liquid is zero, and no pressure gradient is applied, the
liquid flow must have a potential nature [21]:

~��ð~rrÞ ¼ �r�ð~rrÞ ð29Þ

where � is the velocity potential. Note that Eq. (29) is a solution of Navier–Stokes
equation:

�r � r � ~��ð~rrÞ � rpþ ~ff ¼ 0 ð30Þ

for the case rp ¼ 0 (no pressure gradient) and ~ff ¼ 0 (no external body force on the fluid).
Furthermore, Eq. (29), together with the condition of incompressibility of the liquid,
div ~�� ¼ 0, leads us to a Laplace equation for the velocity potential:

r
2� ¼ 0 ð31Þ

The normal velocity of the liquid (i.e., the radial component of r�) must be zero at the
surface of the particle:

rr�jr¼a ¼ 0 ð32Þ

Equations (31) and (32) have their equivalent, formally identical versions, for the electric
potential:

r
2� ¼ 0

rr� jr¼a ¼ 0
ð33Þ

hence, the velocity potential outside the double layer must have a position dependence
similar to that of � [Eq. (27)]:

� ¼ �~��1 � ~rr�
1

2

a3

r3
~��1 � ~rr ð34Þ

where ~��1 is the uniform velocity of the liquid far from the particle (like ~EE1 was the
uniform external field). Now, using Eqs (26), (28), and (34):

�
1

r

@�

@�

�����
r¼a

¼ �
3

2
�1 sin � ¼ �s ¼ �

"rs"0
�
� �

3

2
E1 sin �

� �
ð35Þ

Equations (27), (34), and (35) reflect the geometrical similarity of the distributions of
electrical potential and velocity potential with a coefficient of similarity equal to
ð�"r"0=�Þ� and hence the velocity of liquid far from the particle would be

~��1 ¼ �
"rs"0
�
� ~EE1 ð36Þ

Equation (36) is known as the Smoluchowski equation for electro-osmosis.
Returning to the laboratory system, the electrophoretic velocity of the particle would

be ~��e ¼ �~��1:

~��e ¼
"rs"0
�
� ~EE1 ð37aÞ

and from here follows the Smoluchowski formula for the electrophoretic mobility [2]:
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�e ¼
"rs"0
�
� ð37bÞ

From our deduction above, it will be clear that Eq. (37b) is valid whatever its
geometry provided that [22, 23]:

1. The disperse particle acquires some surface charge, compensated for by an
excess of charge of the opposite sign in the medium.

2. The particle is rigid and of arbitrary shape with uniform surface electrical poten-
tial, �, with respect to the liquid far from the interface.

3. The particle dimensions are such that the curvature radius of the interfce at any
position is much larger than the double-layer thickness.

4. The particle is nonconducting.
5. No surface conductance effects are essential.
6. The dielectric constant and viscosity of the medium are everywhere the same

(see, however, Refs 23–26).
7. The applied field, although distorted by the presence of the particle, is vectorially

added to the local, equilibrium double-layer field.

B. More Elaborate Treatments

Henry [27] was the first author that eliminated the restriction 3 above, and solved the
problem for spheres (also for infinite cylinders) of any radius, a, i.e., of any 
a value,
although for small zeta potentials, since it is assumed that Eq. (14) holds for the potential
distribution in the equilibrium double layer. Restricting ourselves to the case of spheres,
Henry’s equation for nonconducting particles reads:

�e ¼
2

3

"rs"0
�
� f ð
aÞ ð38Þ

where

f ð
aÞ ¼ 1þ
ð
aÞ2

16
� 5

ð
aÞ3

48
þ � � � ð39Þ

and an approximate formula for f ð
aÞ has been given by Ohshima [20].
Another key contribution to the understanding and evaluation of electrophoretic

mobility and, in general, of the physics underlying electrokinetic phenomena is due to
Overbeek [23, 28]; Booth [29–31] also produced a theory that followed similar lines – for
spheres in both cases. These authors first considered that during the electrophoretic migra-
tion the double layer loses its original symmetry, and becomes polarized: the nonequili-
brium potential distribution is no longer the simple addition of that created by the external
field around the nonconducting sphere and that of the equilibrium EDL [32]. The math-
ematical problem in hand is now much more involved, and until the advent of computers
only approximate theories (low �, large 
a: see Refs 23, 28, and 29–31) were available. The
first (numerical) treatments of the problem, valid for arbitrary values of the radius, the
zeta potential, or the ionic concentrations, were elaborated by Wiersema et al. [33] and
O’Brien and White [34].

This is not the proper place to describe these treatments, so we simply show some
results in Fig. 5. The validity of Smoluchowski formula for large 
a and low to moderate
zeta potentials is clearly observed; it is also evident that Henry’s treatment is valid for low
� irrespective of the double-layer thickness.

Electrokinetic Phenomena and Their Determination 13



C. Experimental Determinations

1. Moving Boundary

Nowadays it is a seldom used method, but we would like to mention it here, mainly
because it is very intuitive and also because of its historical role in �e determinations
[35]. Figure 6 is a simple view of the design proposed in Ref. 36. In essence, electrophoretic
mobility determinations involve placing the suspension in a U-shaped tube and on top of
it, a liquid without particles with the same electrolyte concentration as the suspension. If a
DC field is applied between both ends of the tube, electrophoretic migration provokes a
movement of both boundaries towards the electrode with polarity opposite to that of the
particles. The method presents certain drawbacks [36]:

. The motion of both boundaries might be different, mainly if the system has low
ionic strength or if the suspension is concentrated.

. It is difficult to apply to suspensions with low concentration of particles.

. The limits between the solution and the suspension may become blurred, because
of the mixing of electrolyte and particles in the boundaries.

These are some of the reasons why the method ceased to attract the attention of
colloid researchers in recent years.

2. Mass Transport Electrophoresis

Since the mass/charge ratio of a colloidal particle is normally much larger than for an ion,
a method in which the mass transported by electrophoresis can be measured appears to be

14 Delgado and Arroyo

FIG. 5 Electrophoretic mobility vs. zeta potential for spherical particles of radius a ¼ 100 nm and

for 
a ¼ 1, 25, and 100 in KCl solutions. Dashed line: Smoluchowski equation; dashed–dotted lines:
Henry formula [27]; solid lines: O’Brien and White’s theory [34].



very suitable for supensions. This is the so-called mass-transport method (Fig. 7), in which
interest was lost after the 1980s; but it reached some popularity in the 1960s and 1970s,
even at the commercial level, since there were some commercially available devices [37–39].
Some problems can also be mentioned with this method [39]:

. Particles can deposit on the electrodes, and affect the current flow through
suspensions.

. Sedimentation of the dispersed phase may prevent its transport from the storage
to the measuring chambers (Fig. 7).

. The density of the particles should be as large as possible, compared to that of
the medium.

Furthermore, the method works best with concentrated suspensions, for which the
electrophoretic mobility may differ from that of dilute systems. The treatment of the
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FIG. 6 A moving boundary electrophoresis setup. (From Ref. 36, with permission of Academic
Press.)



mobility of concentrated suspensions is out of the scope of this chapter, but some models
have been elaborated, mainly under simplifying assumptions such as a thin double layer or
low zeta potentials [40–45]. In any case, no simple equations are available for the mobility–
zeta relationship in this case.

3. Microelectrophoresis

This is probably the most widespread method: it is based on the direct observation, with
suitable magnifying optics, of individual particles in their electrophoretic motion. In fact,
it is not the particle that is seen but its scattering pattern when illuminated in a dark
background field, as illustrated in Fig. 8. The method has some advantages, including [24,
46]:

1. The particles are directly observed in their medium.
2. The suspensions to be studied can be (actually, they should be) dilute: if they are

not, the view through the microscope would be a sort of fog, where individual
particles cannot be identified. However, with dilute systems, the aggregation
times are very large, even in the worst conditions, so that velocities can be
measured.

3. If the suspension is polydisperse, the observer can identify a (somewhat wide)
size range of particle sizes to track.

Its main disadvantage, however, is precisely related to the bias and subjectivity of the
observer, who can easily select only a narrow range of velocities, which might be poorly
representative of the true average value of the suspension. Hence, some manufacturers (see
a few websites in Ref. 47) have modified their designs to include automatic tracking by
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FIG. 7 Mass transport electrophoresis cell, according to Homola and Robertson. (From Ref. 39,
with permission of Academic Press.)



digital image processing: the observer’s eye is substituted by a video camera and a
computer.

Another source of error is the location of the so-called stationary level: if the elec-
trophoresis channel is cylindrical, electro-osmotic flow in the channel walls will provoke a
velocity distribution in the hydrodynamically closed cylinder [2] given by

�L ¼ �eo 2
r2

R2
� 1

" #
ð40Þ

where �eo is the electro-osmotic liquid velocity close to the wall, R is the capillary radius,
and r is the radial distance from the cylinder axis. From Eq. (40), it is clear that �L ¼ 0 if
r ¼ R=

ffiffiffi
2

p
, so that the true electrophoretic velocity will be displayed only by particles

moving in a cylindrical shell placed at 0.292R from the channel wall. It is easy to estimate
the uncertainties associated with errors in the measuring position: if R � 2mm and the
microscope has a focus depth of � 50 mm, then an uncertainty � 2% in the velocity will
always be present.

These arguments apply also to electrophoresis cells with rectangular or squared cross
sections. The electro-osmotic flow profile is in this case more involved, but it can be
approximated by [48, 49]

�LðzÞ ¼ A�eoðz=bÞ
2
þ��eoðz=bÞ þ ð1� AÞ�eo ð41aÞ
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FIG. 8 Typical components of a microelectrophoresis setup. (Courtesy of Zeta-Meter, Inc., USA.)



where z is the vertical position of the observation point ðz ¼ 0 at the channel center), 2b is
the vertical dimension of the channel, �eo is the average electro-osmotic velocity of the
upper and lower cell walls, ��eo is the difference between the electro-osmotic velocities at
the upper and lower cell walls, and

A ¼
2

3
�
0:420166

K

� ��1

; K ¼ a=b ð41bÞ

a being the horizontal dimension of the channel. Note that Eqs (41) and (42) can be
simplified if a b, and ��eo ¼ 0. A parabolic velocity profile can be obtained:

�LðzÞ ¼
�eo
2

3
z

b

� 2
�1

� �
ð42Þ

so that the stationary levels are situated at z ¼ �0:577b.
Some authors have suggested (see Chap. 9 for details) that a procedure to avoid this

problem would be to cover the cell walls, whatever the geometry, with a layer of uncharged
chemical species, for instance, polyacrylamide. However, it is possible that the layer
becomes detached from the walls after some usage, and this would mask the electrophore-
tic velocity, measured at an arbitrary depth with an electro-osmotic contribution, the
absence of which can only be ascertained by measuring �e of standard, stable particles,
which in turn remains an open problem in electrokinetics.

Recently, Minor et al. [50] analyzed the time dependence of both the electro-osmotic
flow and electrophoretic mobility (see also Ref. 51) in an electrophoresis cell. They con-
cluded that, for most experimental conditions, the colloidal particle reaches its steady
motion after the application of an external field in a much shorter time than electro-
osmotic flow does. Hence, if electrophoresis measurements are performed in an alternating
field with a frequency much larger than the reciprocal of the characteristic time for steady
electro-osmosis ð� � 100 sÞ, but smaller than that of steady, electrophoresis � � 10�4s, the
electro-osmotic flow cannot develop. In such conditions, electro-osmosis is suppressed,
and the velocity of the particle is independent of the position in the cell (Fig. 9 is an
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FIG. 9 Electrophoretic mobility of particles as a function of the frequency of the applied field.
(From Ref. 50, with permission of Academic Press.)



example). Another way to overcome the electro-osmosis problem is to place both electro-
des, providing the external field, inside the cell, completely surrounded by electroneutral
solution; since no net external field acts on the charged layer close to the cell walls, the
associated electro-osmotic flow will not exist [52].

4. Electrophoretic Light Scattering (ELS)

Since the 1970s, visual microelectrophoresis techniques have been increasingly replaced by
automated methods based on the analysis of the (laser) light scattered by electrophoresing
particles [53–56]. These are known as electrophoretic light scattering (ELS) methods [57]
and have different principles of operation. In some cases, heterodyne optics is used: the
light scattered by the moving particles is mixed with a reference beam, and due to the
Doppler shift of the scattered light, a beat pattern is produced, the frequency of which, fe,
can be related to the electrophoretic velocity. Such a frequency can be measured by means
of a spectrum analyzer or by analysis of the correlation function of the scattered light.
Knowledge of fe leads immediately to that of the velocity since

�e ¼
2�fe

E1k cos�
ð43Þ

where k is the modulus of the scattering vector ~kk (the difference between the wave vectors
of scattered and incident light) and � is the angle between ~kk and the direction of electro-
phoretic migration.

Other instruments are based on the formation of optical fringes in a properly
selected (according to the location of the stationary level) volume of the cell: the laser
beam is divided into two beams that interfere in that volume, provoking a fringe
pattern oriented perpendicular to the direction of electrophoretic motion. When the
particles move through the fringes, they will go alternatively through light and dark-
ness, and thus the scattered intensity will fluctuate at a rate depending on the electro-
phoretic velocity.

More recently, a new technique has become available, also commercially: it is called
phase analysis light scattering or PALS [58–60]. It is especially suited for particles moving
with very low electrophoretic velocities, i.e., close to the isoelectric point, or in nonpolar
solvents, where very low mobilities are attained by the particles. The key of the method is
the use of moving fringes of the interference pattern of the laser beams mentioned above:
thus, if one of the laser beams is frequency shifted by a well-defined frequency, !s, and a
colloidal particle is stationary at the probed volume, the scattered light will be a sinusoidal
wave with frequency !s [58]. The phase difference between scattered and reference beams
will be constant in that case. However, if the particle undergoes electrophoretic motion,
that phase difference will change with time in such a way that the mean phase change
includes information about the electrophoretic motion. Note that if the particle traverses
only half a fringe separation (typically below 1 mm), the phase shift would be � radians,
and since it is possible to measure much smaller phase differences (well below 0.1 rad), the
precision of the method is much higher than in standard laser Doppler velocimetry. Figure
10 is a scheme of the experimental device (a commercial version is available, see Ref. 57).
As observed, the frequency shift is produced by Bragg cells driven by a single-side band
modulator to produce beams with frequencies of 80MHz and 80MHz þ fs ( fs is the shift
frequency, between 1 and 10 kHz). The method is capable of detecting electrophoretic
mobilities as low as 10�12 m2 V�1 s�1, that is, 10�4 mms�1=Vcm�1 in practical mobility
units.
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V. SEDIMENTATION POTENTIAL (DORN EFFECT)

A. Physical Principles

When a colloidal particle has a density different from that of the surrounding liquid,
sedimentation (or buoyancy) will take place. The presence of the double layer gives
further rise to the generation of an electric field that, summed over all the particles (if
their average separation is larger than their size), generates the sedimentation (or flota-
tion) potential. This is the Dorn effect, a simplified theory of which will be described
below [7, 61]; the detailed description of these phenomena can be found in Chapter 16 of
this volume.

When the particle is falling, the flow of liquid around it will alter the spatial dis-
tribution of double-layer charges (Fig. 11): the normal fluxes of counterions (cations) and
coions (anions) carried upwards by the liquid are roughly identical, as they are due to the
convective motion of electroneutral solution. However, the double layer is enriched in
cations (we assume a negative surface charge); hence, their tangential flux will be much
larger than that of anions, so the lower pole of the particle will be enriched in anions,
which are in very low amounts around the particle surface. By the same token, positive
ions will accumulate at the upper end, thus originating a dipole oriented against the
gravitational field ~gg (the orientation would be in the same direction as ~gg for a positive
particle). The electric field generated by this dipole will extend beyond the limits of the
double layer, since the potential generated will be

 d
¼ �

1

4�"rs"0

~dd � ~rr

r3
ð44Þ
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FIG. 10 The PALS (phase analysis light scattering) electrophoresis technique. (From Ref. 58, with
permission of Academic Press.)



~dd being the dipole moment induced by the sedimentation of the charged particle. If n is the
number of particles per unit volume, and they are considered identical, the total field, ~EEsed
can be calculated as [13]

~EEsed ¼ �
n ~dd

"rs"0
ð45Þ

Thus, obtaining ~dd will suffice to calculate the sedimentation potential. This can be
done [13] by a continuity equation for the current density on the double-layer limit (which
can be assumed to coincide with the solid surface r ¼ a for a thin double layer). At any
point (any � value) of the surface r ¼ a, the normal current is given by

Jnð�Þ ¼ �K1 @ 
d
ðr; �Þ

@r

�����
r¼a

ð46Þ

whereas the corresponding convective surface current Is will be:

Is ¼

ð1
0

�ðxÞ��ðxÞdx ð47Þ

where ��ðxÞ is the tangential component of the fluid velocity [13]:

�� ¼ �
3

2

Usedx

a
sin � ð48Þ

with x ¼ r� a. Used is the limiting sedimentation velocity of a sphere of radius a, and
density �p in a liquid of density �m:

Used ¼
2

9

a2ð�p � �mÞ

�
g ð49Þ

In Eq. (47), �ðxÞ is the charge density in the thin double layer, at distance x from the
slipping plane; using Poisson’s equation for a flat interface:

�ðxÞ ¼ �"rs"0
d2�

dx2
ð50Þ
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FIG. 11 Diagrammatic illustration of the charge fluxes (normal, ~JJ�n , and tangential ~JJ�s ) around a
sedimenting particle.



Integration of Eq. (47) after substitution of Eqs (48)–(50) leads to

Is ¼
3"rs"0� sin �

2a
ð51Þ

where use has been made of the equality �ðx ¼ 0Þ ¼ �.
In steady state, the change in the charge convectively transported from � to � þ��

must equal the normal charge flow. This boundary condition is equivalent [13] to

rSðISÞ ¼ K
1 @ 

d

@r

�����
a

ð52Þ

where rs is the surface divergence operator:

rsð�Þ ¼
1

a sin �

@

@�
ðsin ��Þ

Substitution of Eqs (44) and (51) into Eq. (52) yields the following expression for the
induced dipole moment:

~dd ¼ 6�
"2rs"

2
0� ~UUseda

K1
ð53aÞ

and hence, using Eq. (48):

~dd ¼
4

3

�"2rs"
2
0�a

3 ~gg

K1�
ð�p � �mÞ ð53bÞ

The final expression for the sedimentation potential according to Smoluchowski is
obtained by using Eqs (45) and (53b), and taking into account that the volume fraction of
solids is � ¼ 4�a3n=3:

~EEsed ¼ �
"rs"0�~gg

K1�
ð�p � �mÞ� ð54Þ

Using reasonable values for the quantities involved (� ¼ 100mV, �p � �m ¼ 103 kgm�3,
K1

¼ 150 mS cm�1, � ¼ 0:8904� 10�3 Pa � s, � ¼ 0:1), j ~EEsedj would be of the order of
� 5mVm�1. This means that the best signal-to-noise ratio in a sedimentation potential
measurement is obtained when the sensing electrodes are sufficiently far apart and the
particle concentration is rather large.

Furthemore, the Smoluchowski equation is only valid for particles with thin double
layers and negligible surface conductance (low zeta potentials). Hence, the theory was later
generalized to arbitrary 
a values by Booth [62] for low zeta potentials and was developed
for arbitrary � by Stigter [63] and Ohshima et al. [64]. Considering the fact that rather
concentrated suspensions are often used in sedimentation potential determinations [65],
theories have also been generalized to this situation [66]. Finally, Carrique et al. [67] have
also analyzed the effect of the presence of a dynamic Stern layer on the sedimentation
potential.

Figure 12 shows some examples in which full numerical results are compared to the
Smoluchowski equation, Eq. (54). Note that, as expected, the Smoluchowski approach is
less valid the higher the zeta potential and the thicker the double layer.
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B. Experimental Determinations

The reader is referred to Chapter 16 in this book for the latest methods of sedimentation
and flotation potential determinations. Here, we will illustrate the principles of measure-
ment with reference to the device used in our laboratory [68], schematically shown in Fig.
13. In the upper tube (A) the suspension to be sedimented is stored, and (B) is the
sedimentation cell itself. The sedimentation potential is determined when the optical sys-
tem (lenses L, and photocells C) detects a uniform particle concentration between both
electrodes. The same system is used to determine the particle concentration, n: to that end,
the massM of particles collected in flask F is weighed, and the total sedimentation time, ts,
is recorded. The mass m of particles between the electrodes during measurements of Esed is
given by m ¼ ðM=tsÞtf , where tf , the time of flow, is the time needed for the particles to
move between the electrodes.

VI. ELECTROROTATION

As shown below, the dielectric behavior of suspensions, associated with the polarizability
of the individual particles and their double layers, can be determined by impedance spec-
troscopy. The change with frequency of the impedance of the suspension can be related to
the real and imaginary parts of the dipole moments induced in the colloidal units by the
external field: as the frequency of the latter is increased, some of the polarization mechan-
isms can follow the external field, but others relax and disperse. If data are acquired over a
sufficiently wide frequency range, a rich information can be obtained on the internal
structure of the particles, and on their double layers.
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FIG. 12 Full calculation of the sedimentation field (Esed) of spherical particles of 100 nm radius, as
compared to Smoluchowski formula [EsedðSm)], as a function of zeta potential, for the 
a values
indicated.



An alternative way of performing this analysis is by electrorotation [69–71], consist-
ing in the rotation of the particles under the action of a rotating external field. A classical
explanation of the phenomenon can be given as follows: the applied field induces a dipole
moment in the particle, which rotates at the same frequency as the field rotates; the
dispersion processes provoke a phase shift between the field and the induced dipole
and, as a consequence, a torque ~MM acts on the particle, given by

M ¼ �4�"rs"0E
2
0ImC

�
0 ð55Þ

where E0 is the applied field strength, and C�
0 is the (complex) dipole coefficient, related to

the dipole moment ~dd� induced by the external field ~EE as follows:

~dd� ¼ 4�"rs"0a
3C�

0
~EE ð56Þ

From Eq. (55) it can be shown that the angular velocity of the particle rotation is given by
[72, 73]

� ¼ �
"rs"0E

2
0

2�
ImðC�

0Þ ð57Þ
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FIG. 13 Experimental setup for sedimentation potential measurements.



where � is the viscosity of the dispersion medium and a is the particle radius.
This simple model is, however, incomplete: while a good agreement between theory

and experiment was found by Arnold et al. [74] for a frequency of the applied field above
� 100 kHz, in the range of interest from the electrokinetic point of view (the �-dispersion
range, typically between 100Hz and 10 kHz) a significant disagreement was found: the
particle should rotate in the opposite direction to that of the field rotation, contrary to
experimental findings, systematically demonstrating cofield rotation. Grosse and Shilov
[72] and later Zimmerman et al. [73] first explained the discrepancy. They used an inter-
esting parallelism with the theory of electrophoresis: in the presence of a static field, the
particle experiences electrophoretic motion in spite of the fact that the total force on the
particle plus its double layer is zero because of the electroneutrality of the whole. The
motion occurs in fact by the electro-osmotic slipping of the liquid with respect to the
particle surface. The same idea is applied to obtaining an electro-osmotic component of
the electrorotation of the particle. The authors apply these ideas to two different models of
EDL polarization: the Schwarz or surface diffusion model (which assumes that counter-
ions can redistribute on the particle surface, but cannot exchange with the bulk electrolyte
solution) and the standard model, in which double-layer polarization involves diffuse-
layer deformation and subsequent formation of a gradient of electrolyte concentration
(concentration polarization) that extends over distances comparable to the particle radius.
Figure 14 is a proof of the good agreement between theoretical results and the experi-
mental data of Ref. 74.

The experimental determination of electrorotation velocity is not easy, hence its
scarce (but increasing) application in colloid science. Since the frequency of electrorotation
depends on the applied field strength [Eq. (57)] and the hydrodynamical resistance, it is
possible to select E0 such that the angular velocity is around or below 1 s�1: this allows one
to observe the rotation directly with a video-microscope system [75]. The rotating field is
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FIG. 14 Electrorotation speed of a 2.65-mm particle in a rotating field of 9580Vm�1, as a function
of the frequency of the field. The experimental data are compared to the Schwarz model and the
standard electrokinetic theory. The crosses and asterisks correspond to the contribution of the

electro-osmotic torque, calculated by means of the two models cited. (From Ref. 72, Copyright
1998, with permission of Elsevier Science.)



produced by four needle electrodes driven by square-wave signals with 908 phase shift.
Figure 15 is an example of the experimental data obtained in Ref. 75 on red blood cells:
note that using a microscopic technique requires particles to be large enough (several
micrometers in diameter) and nonspherical.

Recently, the so-called electrorotational light scattering (ERLS) techniques have been
introduced (see, e.g., Refs. 76, 77): in this case, electrorotation is combined with dynamic
light scattering. By analyzing the autocorrelation function of the light scattered by an ensem-
ble of particles undergoing electrorotation, it is possible to gain information on their rotation
frequency. Figure 16 is an example of the modifications, introduced by Gimsa et al. [76], in
the optical chamber of a commercial dynamic light-scattering device (N4-MD, Beckman/
Coulter) to accommodate the four electrodes producing the electric field.

Let us finally mention that electrorotation has found wide application in the field of
biology [78–80], since it has been demonstrated that this phenomenon is very sensitive for
monitoring the viability of biological cells [81]. A very interesting example is shown in Fig.
17, where a group of oocysts of cryptosporidium parvum (responsible for human infection
when present in drinking water) is shown during electrorotation: viable oocysts rotated
counterclockwise whereas nonviable ones rotated clockwise.

VII. DIELECTROPHORESIS

In this electrokinetic phenomenon, the applied electric field is spatially nonhomogeneous,
and this causes the translation (dielectrophoresis) of the polarized particle [69, 82].
Measurements involve microscopically analyzing the motion of the particles as a function
of the frequency of the applied field. The particles will move towards or away from the
high-field region, depending on the relative directions of their induced dipole moment and
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FIG. 15 Electrorotation speed of red blood cells as a function of the frequency of the applied field.

1: Native cells in dilute PBS and sucrose with a conductivity of 2.6mS cm�1 and a voltage of 7.5V
between the electrodes; 2: fixed red blood cells in a solution with conductivity 2.9mS cm�1 and 15V
applied. (From Ref. 75, Copyright 1998, with permission of Elsevier Science.)



the field. The change in the velocity of motion with the frequency of the alternating field is
thus due to the different frequency dependencies (dispersions) of the dielectric constants of
the particles (with their double layers) and the medium. This can be made explicit by
writing the expression for the dielectrophoretic force ~FFDP acting on the particles [70, 73]
in terms of the induced dipole coefficient:

~FFDP ¼ 2�"rs"0a
3 ReðC�

0ÞrE
2
rms ð58Þ

where Erms is the root-mean-square amplitude of the applied field. From Eq. (58), it is clear
that the main quantities describing the dielectrophoretic phenomena are the induced
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FIG. 16 Cuvette for electrorotational light scattering. The rotating field is perpendicular to the
laser beam. (From Ref. 76, Copyright 1995, with permission of Elsevier Science.)

FIG. 17 Picture of oocysts of Cryptosporidium parvum undergoing electrorotation. (From Ref. 81,
with permission of the Institute of Physics Publishing.)



dipole moment of the particles and the spatial variation of the field. The classical electro-
kinetic theory was applied to the calculation of C�

0 by Baygents [83]. It must be pointed out
that, as in the case of electrorotation, calculation of the particle velocity does not only
involve knowledge of the induced dipole moment: a generalized theory [84] should also
take into account that the external force acts on both the particle and the surrounding
liquid, and that part of the force acting on the latter is transmitted to the former.

Wang and coworkers [85, 86] considered also the related AC electrokinetic phenom-
enon of travelling wave dielectrophoresis. In this, the particle linear motion is induced by a
travelling field that is made to displace along the measuring chamber by a periodical set of
appropriately phased electrodes.

Experimental determinations of the dielectrophoretic motion in conventional dielec-
trophoresis have often been based on the changes in the light scattered by the suspensions
because of the dielectrophoretic aggregation of the particles. In fact, Khusid and Acrivos
[87] have examined the conditions upon which dielectrophoresis is accompanied by for-
mation of chain-like aggregates parallel to the field, or disk-like aggregates with perpen-
dicular orientation. Allsopp et al. [88] have recently proposed impedance measurements
for detecting dielectrophoresis.

A precise optical technique (based on PALS and called DPALS by the authors) has
been set up by Gimsa’s group [70, 89] and is schematically shown in Fig. 18 [70]. A
nonhomogeneous electric field is generated in the measuring cell by two peaked electrodes,
and the scattered light is phase analyzed in a very similar way to that described for
electrophoresis and electrorotation. As observed in Fig. 19 [70], the particle velocity can
be measured with an accuracy of the order of 1 mms�1, and the effect of the frequency of
the applied field (above � 1 kHz, to avoid unwanted electrode effects) on the translational
velocity is clearly appreciable.

Let us mention that dielectrophoresis has also found wide application in manipula-
tion and sorting of particles and biological cells. Together with standard electrophoresis, it
is perhaps the electrokinetic phenomenon that is most often used with practical applica-
tions in mind. There is a huge variety of experimental methods in order to produce the
inhomogeneous field and to visualize or separate the particles. Thus, Green and Morgan
[90] use a set of four hyperbolic polynomial electrodes (Fig. 20), with a low field in the
central region and high-field zones along the electrode edges. Using fluorescent latex
spheres, they could obtain some beautiful results, as shown in Fig. 21.

Particle separation experiments are often performed with interdigitated microelec-
trode arrays in two [91] or three [92] dimensions. Based on the dielectrophoresis phenom-
enon, a technique has recently become available for particle or cell separation, namely,
dielectrophoresis/gravitational field-flow fractionation (DEP/G-FFF). As is well known,
FFF is a technique in which separation is achieved by the relative positions of different
particles in a fluid flow. In DEP/G-FFF, the relative positions and velocities of unequal
particles or cells are also controlled by the dielectric properties of the colloid and the
frequency of the applied field. The method has been applied of course to model polysty-
rene beads, but, most interestingly, to suspensions of different biological cells [92–96].

VIII. DIFFUSIOPHORESIS

In the previous section we have briefly described a kind of particle motion associated with
a nonuniform electric field. More examples can be given of phenomena in which the
particles move due to nonhomogeneous fields of different nature (for instance, a tempera-

28 Delgado and Arroyo



ture gradient or a solute concentration gradient). These kinds of particle locomotions were
called phoretic motions by Anderson [97], and one of them is diffusiophoresis, i.e., the
migration of colloidal particles due to a gradient of solute concentration in the dispersion
medium. Derjaguin and his group were the first investigators that described the phenom-
enon and performed experimental verifications [32, 98].

Let us note that the solute can be either nonionic or ionic, and hence diffusiophoresis
can occur even in the absence of an EDL: the particle moves toward or away from the
high-concentration region, depending on its long-range interactions with the solute mole-
cules [99–102].

The differential equations of the phenomenon are, in the case of an electrolyte
concentration gradient, identical to those of electrophoresis, with the only difference
being the appropriate boundary conditions far from the particle surface [103]. Also, as
in electrophoresis, the simplest mathematical treatments concern the case of low � and flat
geometry [98] that were then generalized to spherical particles with low � and thin double
layer, or low � and finite double layer thickness [100]. Prieve and Roman [103], using a
methodology similar to that of O’Brien and White [34], found a numerical solution to the
problem for arbitrary values of � and 
a, assuming a symmetrical electrolyte solution. The
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FIG. 18 Experimental setup for dielectrophoretic phase analysis light scattering (DPALS). A:

optical setup; B: electrode chamber; C: block diagram of the electronics. (From Ref. 70,
Copyright 1999, with permission of Elsevier Science.)



thin double layer ð
a 1Þ expression for the diffusiophoretic velocity, ~vvdp, is to first order
in 1=
a given by [100, 103]

~vvdp ¼ ~vvCD 1þ
GCD


a

� �
þ ~vvEO 1þ

GED


a

� �
ð59Þ
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FIG. 19 Dielectrophoretic velocity of latex particles in an external conductivity of 0.75mS cm�1, as

a function of the frequency of the field, for different driving voltages (*: 16V; &: 8 V; ^: 4V).
(From Ref. 70, Copyright 1999, with permission of Elsevier Science.)

FIG. 20 Electric field strength 100 nm above the surface of a polynomial electrode, with 10V peak-
to-peak applied between adjacent electrodes. The highest fields are located on the electrode edges

(brightest regions). (From Ref. 90. Copyright 1999, reprinted with permission of the American
Chemical Society.)
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FIG. 21 Video images of latex particles collecting on the polynomial electrodes shown in Fig. 20.

(a): Particles on the electrode edges, for an applied field of frequency 500 kHz; (b–d): pictures
obtained at 3 s intervals after switching the field frequency to 5MHz—note how the particles are
forced to go toward the low-field region. (From Ref. 90. Copyright 1999, reprinted with permission

of the American Chemical Society.)



where

~vvCD ¼
2"rs"0
�

kBT

ze

� �2

½� lnð1� �2Þ�r ln n1 ð60Þ

is called the ‘‘chemophoretic’’ contribution to diffusiophoresis. Here, z is the common
valency of the ions ðzþ ¼ �z� ¼ zÞ, � ¼ tanhðze�=4kBTÞ, and rn1 is the constant electro-
lyte concentration gradient that is imposed in the solution. In Eq. (59), GCD is

GCD ¼ �
21

2
þOð ~��Þ ð61Þ

The second term needed to calculate ~vvdp is called the ‘‘electrophoretic’’ contribution to
diffusiophoresis, since it is given by

~vvEO ¼
"rs"0�

�

�kBT

ze
r ln n1 ð62Þ

with

� ¼
m� �mþ

m� þmþ

ð63Þ

and mþðm�Þ is the dimensionless mobility of cations (anions). Note that in an electrolyte
like KCl ðmþ � m�Þ this term is irrelevant for the calculation of ~vvdp. Let us also point out
that, for typical values of the quantities involved, the diffusiophoretic velocity of a sphe-
rical particle is comparable to the average diffusion velocity of the ions [103], so that for
having a measurable j~vvdpj ð� 1 mms�1

Þ, jr ln n1j must be � 30 cm�1.
Let us finally recall that a gradient of mixed solvent composition can also lead to

diffusiophoresis. Kosmulski and Matijević [104] proposed calling the phenomenon solvo-
phoresis in this case. In their experimental set up, the gradient of solvent composition was
created by carefully placing a layer of alcohol on water: although they have complete
miscibility, a stable boundary layer with spatially varying composition could be observed.
Aqueous polystyrene latexes were used as the aqueous phase, and ethanol was the light
phase placed on it. The shift of the turbid/clear boundary with time was recorded, and an
example is shown in Fig. 22.

IX. ELECTRO-OSMOSIS

A. Theory

We now return, so to speak, to more classical electrokinetic phenomena. If a flat piece of
solid is placed in contact with an aqueous solution, the formation of the double layer will
lead to the appearance of a diffuse region, enriched in counterions and depleted in coions,
so that a nonzero charge density �ðxÞ will exist along the double layer extension. Here, x is
the dimension perpendicular to the solid/liquid interface. If an external field ~EE1 is now
applied parallel to the latter, the electrical force on the charge region will set the ions into
motion, and they will drag liquid with them: this liquid flow is called electro-osmotic and
the electrokinetic phenomenon is electro-osmosis.

The velocity of the liquid at sufficiently large (see below) distance from the interface,
~��eo, is easy to find for a flat double layer [2, 13]; with reference to Fig. 23: since a steady
velocity distribution is reached soon after the application of the external field, the net force
(electric and viscous) on any double layer volume element of thickness dx should be zero:
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�ðxÞE1 dxþ �
d�

dx

� �
xþdx

� �
d�

dx

� �
x

� �
¼ 0 ð64Þ

or

�ðxÞE1 þ �
d2�

dx2
¼ 0 ð65Þ

Furthermore, the charge density can be related to the equilibrium potential distribu-
tion,  ðxÞ, by Eq. (9) and consideration that in our problem r

2
� d2=dx2. Hence:
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FIG. 22 Solvophoresis of latex particles in 10�3 M KCl against ethanol for two different cross-
sectional areas of the experimental cell. (From Ref. 104, with permission of Academic Press.)

FIG. 23 Scheme of the electro-osmotic flow of the charged liquid in the double layer at a plane
interface.



1

"rs"0

d2 ðxÞ

dx2
¼ �

d2�

dx2
ð66Þ

which easily integrates to

�ðxÞ ¼ �
"rs"0
�
E1½� �  ðxÞ� ð67Þ

with the conditions:

 ðx ¼ 0Þ ¼ �

d 

dx

�����
x!1

¼ 0

d�ðxÞ

dx

�����
x!1

¼ 0

ð68Þ

Far from the particle,  ! 0, and �ðxÞ is the electro-osmotic velocity:

~��eo ¼ �
"rs"0
�
� ~EE1 ð69Þ

which is the Smoluchowski formula for electro-osmosis [identical to Eq. (36), or Eq. (37a)
for the electrophoretic mobility except for the obvious change of sign].

According to Dukhin and Derjaguin [13], Eq. (69) is also applicable to electro-
osmotic flow through systems closer to the actual laboratory situation, for instance to
flat capillaries (formed between identical plane-parallel surfaces) or to cylindrical capil-
laries, provided that:

1. The separation between opposite walls (or the cylindrical capillary radius) R is
much smaller than the linear dimension L of the capillary.

2. The double-layer thickness at any point of the walls is small as compared to R.

In the case of cylindrical capillaries of radius R, the correction to the Smoluchowski
equation if point 2 is not fulfilled is exactly solvable for the case of low � potentials
(Debye–Hückel approximation), as shown in, e.g., Refs 105 and 106:

h~��eoi ¼
2

R2

ðR
0

�ðrÞrdr ¼ �
2"rs"0 ~EE1�

�R2
F1ð
RÞ ð70Þ

where h~��eoi is the average velocity of the electro-osmotic flow, and

F1ð
RÞ ¼

ðR
0

r 1�
I0ð
rÞ

I0ð
RÞ

� �
dr ¼ R2 1

2
�
I1ð
RÞ


RI0ð
RÞ

� �
ð71Þ

Here, I0 and I1 are, respectively, the zeroth-order and first-order modified Bessel functions
of the first kind [107], and r is the cylindrical radial co-ordinate.

Although ~��eo (or h~��eoiÞ can sometimes be measured, experimental determinations
refer mainly to the fluid flow rate:

Q ¼ �R2
h~��eoi ð72Þ

However, particularly in the case of porous plugs, where electro-osmosis (and streaming
potential/current) find larger applicability, it is preferred to use a measurable quantity, the
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current I transported by the charged liquid. The total current consists of two contributions
[106], namely: (1) that due to the bulk conductivity of the electrolyte, and (2) the surface
conductivity, due to current through the double layer, including the convective current due
to the electro-osmotic flow itself. Thus, one can write:

I ¼ �R2K1E1 þ 2�RksE1 ð73Þ

where ks is the specific surface conductivity.
Using Eqs (72) and (73):

Q

I
¼

"rs"0�

�½K1 þ 2ks=R�
F1ð
RÞ ð74aÞ

so that by simultaneously measuring Q and I , an estimation of � and ks can be reached
[106].

We can now consider how these equations can be applied to porous plugs.
Smoluchowski himself [35] demonstrated that, in the absence of surface conductance,
and with thin double layers everywhere in the pores, Eq. (74a) can be applied in the form:

Q

I
¼
"rs"0�

�K1
ð74bÞ

However, if surface conductance is not negligible, its correction in the case of com-
plex systems such as porous plugs is not rigorously possible, although some approaches
are available. The reader is referred to Refs 2, 3, 13, and 108 for details about different
approaches, which usually involve simulating the plug as a number of parallel capillaries
or spherical cells with dimensions such that the hydrodynamic behavior of the plug is
equivalent to that of the proposed association of capillaries.

B. Electro-osmotic Measurements

There exists a variety of procedures for the measurement of electro-osmosis either in
capillaries or in porous plugs [2, 13]; in the authors’ laboratory the design shown in
Fig. 24 [109] was used for porous plugs of crushed materials. As observed, the plug is
contained between perforated platinum electrodes. Since the electro-osmotic flow rate is
typically quite low (� 10�2 cm3 s�1), a more precise determination can be achieved if to the
electro-osmotic flow a Poisseuille flow provoked by a solution pressure head is super-
imposed. The experiment is run for both directions of the current, and the flow is deter-
mined by the time dependence of the position of a bubble created in the horizontal
calibrated capillary: the electro-osmotic flow will be one-half the difference between the
total flows measured in both directions of the current.

X. STREAMING POTENTIAL AND STREAMING CURRENT

A. Physical Principles

Assume that we have a cylindrical capillary of radius R and length L filled with an
electrolyte solution. For the moment, we will also suppose that the concentration of
electrolyte and the radius are such that 
R 1, that is, the double layer is thin. If the
surface charge on the capillary is negative, an excess of positive counterions will exist in
the vicinity of the walls (see Fig. 25).
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Let us further assume that a hydrostatic pressure gradient rp ¼ �ð�p=LÞẑz is applied
to the system. This will tend to accumulate ions (and hence also the positive counterions)
at the low-pressure side of the capillary. If the circuit is not electrically closed (like in Fig.
25, where a high-input impedance voltmeter is connected to the electrodes E and E 0), a
potential difference will be produced that will prevent further transport of positive charge.
In this stationary situation, the potential measured, Vs, is the streaming potential. We will
follow Hunter’s derivation of Vs [2]. The liquid velocity distribution in the cylinder is well
known:

�zðrÞ ¼ �p
R2

� r2

4�L
ð75Þ

and since the liquid bears a net charge density �ðrÞ, its motion brings about an electric
current:

Istr ¼

ðR
0

2�r�zðrÞ�ðrÞ dr ð76Þ
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FIG. 24 Setup for electro-osmotic flow measurements. The porous plug is contained in between

the perforated electrodes. The horizontal calibrated capillary is used for flow rate measurements.
(From Ref. 109, with permission of Academic Press.)



However, by the thin-double-layer hypothesis, �ðrÞ is zero except in a very narrow cylind-
rical shell close to the wall, so that the liquid velocity profile can be considered linear (not
parabolic) without error:

�zðrÞ ffi
�pR

2�L
ðR� rÞ ¼

�pR

2�L
x ð77Þ

with x � R� r. Hence [2]

Istr ¼ �
�R2�p

�L

ð0
R

x�ðxÞ dx ð78Þ

and �ðxÞ can be calculated from  ðxÞ by Eq. (9). Integrating, one easily obtains:

Istr ¼ �
"rs"0�R

2

�

�p

L
� ð79Þ

In steady state, this current (the streaming current) must be compensated for by a con-
duction current, produced by the streaming potential Vs:

Ic ¼ K
1�R2Vs

L
ð80Þ

and the condition Istr þ Ic ¼ 0 leads to

Vs

�p
¼
"rs"0
�K1

� ð81Þ

an expression due to Smoluchowski. As in the case of electro-osmosis, if surface conduc-
tance is appreciable, the surface conductivity ks must also enter the calculation:

Vs

�p
¼

"rs"0
�ðK1 þ 2ks=RÞ

� ð82Þ

We can now ask ourselves how do we know that surface conductance exists, and how
to correct for it. If streaming potential measurements are performed on a given capillary or
porous plug for increasing electrolyte concentrations, then if the electrolyte ions are indif-
ferent to the interface at hand (i.e., they do not undergo specific, nonelectrostatic inter-
actions with the surface), Vs should decrease with concentration. This must be so because �
must decrease (double-layer compression) and K1 clearly increases. If this is the observed
behavior, then most likely ks in Eq. (82) can be neglected. However, most often the case is
that a maximum in the �-concentration plot is observed: at low ionic strengths, the
denominator on the right-hand side of Eq. (82) is underestimated if ks is not considered,
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FIG. 25 Scheme of the generation of the streaming potential Vs between the electrodes E–E 0 in a
cylindrical capillary with negatively charged walls.



and so is �. Only when the concentration is high enough (K1
 2ks=RÞ, is the normal

decreasing trend recovered.
Alternatively, experiments may be performed on capillaries of different radii, or on

plugs of different compactions (i.e., porosities): if the apparent zeta potentials [obtained
from Eq. (82) under the assumption ks ¼ 0] change with the capillary or (equivalent) pore
radius, again surface conductance corrections will be necessary.

The correction eventually needed for surface conduction may be done in several
ways. One of them is to measure the conductivity K� of the liquid in the capillary or
plug, by connecting the electrodes directly to a conductivity bridge. The measured con-
ductivity approximately accounts for K1 and ks:

Vs

�p
ffi
"rs"0
�K�

� ð83Þ

This is equivalent to measuring the resistance Rplug of the plug or capillary immersed in the
working solution, and also the resistance R1 when a solution of high electrolyte concen-
tration is used. In this case [2]:

Vs

�p
ffi
"rs"0
�K1

�
Rplug

R1

ð84Þ

The corrections needed to account for the effect of capillary radius are the same as
mentioned above for electro-osmosis. Thus, according to Rice and Whitehead [105], if � is
low:

Vs

�p
¼
"rs"0
�K1

� f ð
R; �Þ ð85aÞ

where

f ð
R; �Þ ¼

1�
2I1ð
RÞ


RI0ð
RÞ

1� � 1�
2I1ð
RÞ


RI0ð
RÞ
�
I21 ð
RÞ

I20 ð
RÞ

" # ð85bÞ

� ¼
ð"rs"0
�Þ

2

�K1
ð85cÞ

Note that in Eq. (85a) the zeta potential must be low, and the surface conductance is
neglected: the conductivity in the capillary is considered to be equal to K1 throughout its
whole section. This may be corrected by using K� instead of K1 in Eqs (85a)–(85c) (see
also Ref. 110 for a treatment of the problem, valid for any zeta potential or double-layer
thickness).

Also, similarly to the case of electro-osmosis, the previous equations are applicable
not only to single capillaries but also to bundles of capillaries and to plugs formed with
colloidal particles. The latter can be simulated as a set of parallel capillaries, with dimen-
sions related to the porosity experimentally determined for the plug [111], but, as men-
tioned above, rigorous treatments have also been proposed [65, 108, 112] in which the
electrokinetic effects in membranes or concentrated arrays of colloidal particles are ana-
lyzed using different hydrodynamic cell models. It must be stressed that the treatment
mentioned requires that the liquid flow be characterized by a low Reynolds number
(creeping flow) and that the plug is homogeneous, conditions that usually apply in most
experimental situations.
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As above mentioned, an alternative determination to streaming potential is stream-
ing current: in this case the probing electrodes are connected to a current meter, and Eq.
(79) is used to obtain �. Since no conduction currents are now needed to be considered,
corrections for surface conductance are not necessary either. Let us mention, however,
that measured currents are rather low, so that some experimental difficulties must be
overcome [2, 113].

B. Measurements

There are presently some commercial instruments for Vs determinations [114], mainly
based on similar procedures. Figure 26 is a drawing of the system used in our laboratory
until recently: it is designed for measurements on porous plugs, and in fact the same cell
and perforated electrodes described for electro-osmosis are used. Nitrogen is used to drive
the liquid through the plug in both directions (so the homogeneity and isotropy of the plug
is demonstrated), and the streaming voltage is measured directly in a voltmeter (values of
even hundreds of millivolts are typical). A different system was described by van der
Hoven and Bijsterbosch [115], as schematically shown in Fig. 27, and a computer-con-
trolled version of the latter is described in Ref. 116.

XI. LOW-FREQUENCY DIELECTRIC DISPERSION OF SUSPENSIONS

A. Mechanisms of Dielectric Relaxation in Colloidal Particles

We have previously mentioned two groups of electrokinetic phenomena (electrorotation
and dielectrophoresis), whereby the dipole moment induced in a colloidal particle by an
external field is probed by determining the motion of individual particles in the presence of
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FIG. 26 Experimental setup for streaming potential measurements. The nitrogen gas in E forces the
solution through the porous plug A, contained between the perforated electrodes M. (From Ref. 68.)



rotating or inhomogeneous fields. The dipole moment and its relaxations can also be
observed if a collective response of the suspension to an external AC field is determined,
namely, the dielectric constant or the conductivity of the system, as a function of the
frequency of the field. Our aim in this section is to derive expressions for either of the
two macroscopic quantities in terms of the microscopic individual dipole moments of the
particles, which we consider to be identical and spherical (radius a).

Let us for the moment think in terms of the time domain and then we will shift to the
more familiar frequency domain. Assume (Fig. 28) that a step electric field ~EE1 is applied,
at t ¼ 0, to a colloidal particle, negatively charged, suspended in a large volume of elec-
trolyte solution of dielectric permittivity " 0rs"0

� and conductivity K1. As is most often the
case, the particle dielectric permittivity " 0rp"0 is much smaller than that of the liquid.

A very short time after the field is applied, ionic motions toward and around the
particle have not started, and only orientation of dipoles in both the particle and the liquid
medium can occur (Fig. 28a): because " 0rp � " 0rs, a dipole ~dd ð1Þ is formed, which is oriented
opposite to the field [51]:

~dd ð1Þ ¼ 4�" 0rs"0a
3 "

0
rp � "

0
rs

" 0rp þ 2" 0rs
~EE1 ð86Þ

When the time after switching on the field is of the order of the Maxwell–Wagner
relaxation time, �MW, which for the case of a nonconducting sphere with low surface
conductivity (low �) is

�MW ffi
" 0rs"0
K1

ð87Þ

ionic migrations in both the solution and the double layer begin. A new dipole, ~dd ð2Þ (Fig.
28b), is now formed that superimposes to ~dd ð1Þ:

~dd ð2Þ ¼ 4�" 0rs"0a
3 2Du� 1

2Duþ 2
~EE1 ð88Þ

where Du is the Dukhin number [4], relating surface and bulk conductivities:

Du ¼
Ks

K1a
ð89Þ

If Du � 1, normal fluxes brought about by the field (accumulation of cations at the left
pole and depletion at the right) cannot be compensated for by the double-layer conduc-
tance, so ~ddð2Þ is opposed to the field. On the contrary, for Du  1, the cations brought
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FIG. 27 Four-electrode streaming potential setup according to Van den Hoven and Bijsterbosch.
(From Ref. 115, Copyright 1987, with permission of Elsevier Science.)

�We use hereafter a prime ( 0) in the real part of the dielectric constant of any of the phases involved.



normally to the particle are transported at a faster rate tangentially to it (high surface
conductivity), and they accumulate at the right and are depleted at the left; ~ddð2Þ is in this
case parallel to the field.

The last fundamental time scale is related to the fact that, on the right side of the
particle, normal outward fluxes of cations from the double layer find inward fluxes of
anions brought normally from the bulk by the field. As a consequence, an increase in
neutral electrolyte concentration (Fig. 28c) is produced, and, by the same reasoning, a
decrease will occur at the left side. A gradient of neutral electrolyte concentration is thus
produced around the particle, with a characteristic time:

�VD ffi
a2

2Deff

ð90Þ

where Deff is the effective diffusion coefficient:

Deff ¼
2DþD�

Dþ þD�
ð91Þ
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FIG. 28 Schematic representation of the dipoles induced in the double layer by the action of an
external field. (a) Dipoles associated with bound charges at the solid/liquid interface; (b) dipoles

originated by charge fluxes for low (left) and high (right) surface conductance; (c) concentration
polarization of the double layer. (From Ref. 51, with permission from Academic Press.)



As a consequence, the double layer will be compressed at the right side (higher
electrolyte concentration) of the negative particle, and expanded at the left, so a third
dipole ~dd ð3Þ is formed that points against the field. Also, the concentration gradient gives
rise to diffusion fluxes ~JJD (Fig. 28c) from right to left, which oppose the tangential fluxes
provoked by the field.

When these processes are reinterpreted in the frequency domain, an electric field ~EE ¼
~EE0e

�i!t is assumed to be acting on the particle, and the phase difference between the
induced dipole moment and the field can be interpreted by considering that the latter is
a complex quantity, ~dd�:

~dd� ¼ 4�"rs"0a
3
ðc1 þ ic2Þ ~EE ð92Þ

where c1 and c2 are, respectively, the real and imaginary parts of the induced dipole
coefficient [cf. Eq. (56)]. Figure 29 shows some calculations of c1 and c2 as a function
of ! for different � values and 
a ¼ 10.

The current density, ~JJ, through a suspension with volume fraction � (with � small
enough for any double-layer overlapping to be negligible) will have two components in the
presence of the AC field, namely, the conductive, ~JJDC, and the displacement ~JJD ¼ @ ~DD=@t
currents:

~JJ ¼ ~JJDC � i!"�r "0 ~EE ð93Þ

where "�r "0 is the complex dielectric permittivity of the suspension. The corresponding
complex conductivity will be

K�
¼ KDC � i!"�r "0 ð94Þ

KDC being the constant field (DC) conductivity. Based on the condition of low �, a linear
dependence between suspension quantities and volume fraction can be assumed:

K�
¼ K�

s þ ��K�
ð95Þ

KDC ¼ K1 þ ��KDC ð96Þ

"�r ¼ " 0rs þ ��"
�
r ð97Þ

Here �K�,�KDC, and�"�r are the so-called increments of complex conductivity, DC
conductivity, and complex dielectric constant, respectively. They represent the role of the
particles and their double layers on the overall conductive and dielectric properties of the
suspension. Thus,

�"�r ¼ �" 0r þ i�"
00
r ð98Þ

�K�
¼ �KDC � i!"0�"

�
r ¼ �KDC þ !"0�"

00
r � i!"0�"

0
r ð99Þ

where the double prime ( 00) denotes the imaginary part of any complex quantity, and K�
s is

the complex conductivity of the solution:

K�
s ¼ K1 � i!" 0rs"0 ð100Þ

Note that if a finite current out of phase with the field is measured at low frequencies,
Eq. (99) indicates that this can be interpreted macroscopically as a large real part of the
dielectric constant of the suspension. In our problem, the largest out-of-phase currents
must come for the slowest processes, i.e., the diffusion fluxes originated by concentration
polarization. At low frequencies, a high dielectric constant is thus expected for the suspen-
sion. As the frequency increases, the slow processes cannot follow the field: as a conse-
quence, they are frozen and the dielectric constant decreases. This is the � (or volume
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diffusion) relaxation of the suspension, which will occur for ! � 1=�VD. At still higher
frequencies (typically in the megahertz range), the Maxwell–Wagner relaxation ð! � 1=
�MWÞ will be observable: for those frequencies, ions cannot rearrange back and forth
around the particle as fast as required by the field.

It only remains to relate the dielectric constant "�r to the complex dipole moment.
This can be done easily in terms of the complex conductivity [13, 117–121]:

K�
¼ K�

s ð1þ 3�C�
0Þ ð101Þ

so that

�K�
¼ 3C�

0K
�
s ð102Þ

Hence
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FIG. 29 Real (c1) and imaginary (c2) components of the induced dipole coefficient as a function of
the frequency of the field, for different zeta potentials. The particle radius and 
a values are indicated
in the figure.



Reð�"�r Þ ¼ �" 0r ¼ 3" 0rs c1ð!Þ �
K1

!"0"
0
rs

c2ð!Þ

� �
ð103Þ

Imð�"�r Þ ¼ �" 00r ¼ 3" 0rs
K1

!"0"
0
rs

½c1ð!Þ � c1ð0Þ� þ c2ð!Þ

� �
ð104Þ

where use has been made of the identity �KDC ¼ 3c1ð0ÞK
1, c1ð0Þ being the !! 0 limit of

c1ð!Þ.
Summarizing, the main experimentally accessible quantities, " 0r (real part of the

dielectric constant of the suspension) and K (real part of the electrical conductivity of
the suspension), are given by

" 0r ¼ " 0rs þ 3�" 0rs c1 �
K1

!"0"
0
rs

c2

� �

K ¼ K1
þ 3�K1 c1 þ

!"0"
0
rs

K1
c2

� � ð105Þ

The key to the solution of the problem lies in the calculation of c1ð!Þ and c2ð!Þ.
There is no simple expression for these quantities that are extremely sensitive to the
structure and dynamics of the double layer (this, in turn, points to the merit of low-
frequency dielectric dispersion – LFDD – as an electrokinetic technique). Probably, the
first theoretical treatment is the one due to Schwarz [122], which considered only surface
diffusion of counterions (it is, as mentioned before, a so-called surface diffusion model)
without exchange with diffuse layer ions. An extensive treatment of the subject, with an
account of diffuse atmospheric polarization, was first given by Dukhin and Shilov [117],
although their treatment was limited to particles with thin double layers. A full numerical
treatment of LFDD in suspensions is due to DeLacey and White [121], and comparison
with this numerical model allowed one to show that the thin-double-layer approximations
[117, 123, 124] worked reasonably well in a wider than expected range of values of both �
and 
a [125]. Figure 30 is an example of the calculations of �" 0r following the DeLacey and
White procedure. Note that: (1) �" 0r is very sensitive to the zeta potential, (2) at low
frequencies �" 0r can be very high, and (3) the relaxation of the dielectric constant takes
place in the low-kilohertz frequency range, in accordance with Eq. (90).

The significant differences found between theory and experiment for this and other
electrokinetic phenomena prompted a number of authors to reconsider one of the main
hypotheses of the so-called standard electrokinetic model: the assumption that ions in the
Stern layer are absolute immobile. Zukoski and Saville [126] were among the first in
modifying, in a quantitative manner, the electrokinetic theories to account for the possi-
bility of lateral transport of ions in the inner part of the double layer [the so-called
dynamic stern layer (DSL) model]. The improvements achieved were checked against
DC conductivity and electrophoretic mobility data. Later, the theory was also elaborated
for the analysis of the dielectric constant of suspensions in the DSL scenario [127–129].
Mangelsdorf and White [15–17] performed a slightly different study of the problem, and
the ability of this theory to reach a better similarity between theory and experiment has
also been demonstrated [130, 131]. Let us finally mention that Kijlstra and coworkers
[132–134] also were successful in modifying Fixman’s equations [123, 124] to include
ionic motions in the stagnant (immobile fluid) layer adjacent to the solid.
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B. Measurement of the Dielectric Constant of Suspensions

One of the most usual techniques for measuring the dielectric constant (or, recall its
equivalence, the conductivity) of suspensions as a function of the frequency of the applied
field is based on the use of a conductivity cell connected to an impedance analyzer. This
technique has been widely employed since it was first proposed by Fricke and Curtis [135],
and in all cases, the distance between electrodes can be changed (see, e.g., Refs 130, 131,
and 136–138). Figure 31 is, for example, a scheme of the one used in our laboratory;
experimental details of the method followed are given in Ref. 139. The need for variable
electrode separation comes from the problem of electrode polarization at low frequencies,
since it can be shown that the electrode impedance dominates over that of the sample at
sufficiently low frequencies. The use of different electrode separations stems from the idea
that the effects of electrode polarization do not depend on the distance. Grosse and Tirado
[140] have recently introduced a method (the quadrupole method) in which the correction
for electrode polarization is optimized by measuring the cell impedance in four situations
(for the whole frequency range of interest, and for each electrode separation): (1) with the
cables coming from the impedance analyzer in short circuit (short correction), (2) with the
cables disconnected from the cell (open), (3) with the cell filled with an electrolyte solution
of known conductivity and dielectric constant, and (4) with the cell filled with the suspen-
sion to be analyzed. Figure 32 shows data obtained in our laboratory with a suspension of
polystyrene particles, using their method; the improvement is such that in many cases
measurements can be performed down to one order of magnitude lower in frequency than
achieved by the classical separation method.
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FIG. 30 Real part of the dielectric increment for suspensions of spherical particles as a function of
the frequency of the external field. Different zeta potentials as indicated.
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FIG. 31 Schematic representation of the conductivity cell used for LFDD measurements. The
electrodes e are supported by Teflon pieces f, and their position is varied by means of the micrometer
screws b–h.

FIG. 32 Dielectric increment of a suspension of latex spheres in 5� 10�4 M NaCl solution as a

function of frequency. *: quadrupole technique for correction of electrode effects; &: standard
correction method.



This is not, however, the only possible design. The four-electrode method has also
been employed with success [132–134, 141]: in this case, since the electrode functions are
separated (the sensors and current supplying electrodes are different), the polarization is
not the main problem, but the electronics of the measurements are rather more compli-
cated.

XII. ELECTROACOUSTIC PHENOMENA

Recall from Section V that when an external field (such as gravity) produces the deforma-
tion (polarization) of the EDL, a dipole is generated in each particle of the suspension. The
superposition of the fields of individual particles is sensed as a macroscopic dipolar field in
the system (Dorn effect). Let us now assume that, instead of a constant field, it is a sound
wave that passes through the suspension: a relative motion between the particles and the
surrounding liquid (which are assumed to have different densities) is hence produced. This
relative motion provokes again a distortion of the ionic atmosphere, and as a consequence,
an alternating electric field. This simple idea is the core of the group of electrokinetic
phenomena known as electroacoustic phenomena [142–147]. The one described above, in
which a pressure wave produces an AC field, is called the colloid vibration potential (CVP);
the reciprocal phenomenon also occurs: a sound wave is produced by application of an AC
electric field to the suspension. The latter electrokinetic phenomenon and technique are
called ESA (electrokinetic sonic amplitude).

Enderby [148] and Booth and Enderby [149] first obtained an expression for the CVP
of colloidal spheres under the following assumptions:

1. The suspension is dilute, i.e., no hydrodynamic or electrical interactions exist
between the particles.

2. Particles are nonconducting.
3. The oscillatory boundary layer thickness is much larger than the EDL thickness.
4. The zeta potential is low.
5. The double layer is thin.

Their expression for CVP (see Ref. 143 for a summary of the derivation) can be
written (the sensing electrodes are assumed to be at a distance equal to half the wavelength
of sound in the liquid):

CVP ¼
2�p�

K1

�p � �m
�m

"rs"0
�
� ð106Þ

where�p is the pressure amplitude, �p ð�mÞ is the density of the particle (medium), and the
other symbols have already been defined in this chapter.

It must be mentioned here that one of the most promising potential applications of
these methods is their usefulness with concentrated systems (high-volume fractions of
solids, �), since the effect to be measured is also in this case a collective one. The general-
ization of the theory to concentrated suspensions requires the use of a cell model to
account for particle–particle interactions. After some approaches using different cell mod-
els [65, 150], recent results seem to suggest that the Shilov–Zharkikh cell model [44] gives
the best description of the phenomenon (Ref. 147; see also Chapter 17 in this volume).

In the case of the ESA phenomenon, O’Brien [146] showed that the ESA signal in the
presence of an AC field of frequency ! can be found from
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ESAð!Þ ¼ Að!Þ�
�p � �m
�m

h��
di ð107Þ

where A is an instrument factor, and h��
di is the particle-averaged dynamic mobility, a

complex quantity defined as the factor of proportionality between the electrophoretic
velocity and the AC field:

~��e ¼ ��
d
~EE0e
i!t

��
d ¼ �ei�

ð108Þ

The magnitude, �, of ��
d is the particle velocity amplitude per unit field strength, and its

phase � measures the lag between the particle motion and the applied field, due to the
inertia of the particle: as shown in Fig. 33, both � and � are functions of the frequency and
the zeta potential (they also depend on the particle size). For a spherical particle with a
thin double layer [145]:

��
d ¼

2

3

"rs"0�

�
Gð!a2=�Þ½1þ f � ð109Þ

where � ¼ �=�m is the kinematic viscosity of the liquid, and the function G reads [145, 151]:
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FIG. 33 Modulus (top) and phase (bottom) of the dynamic mobility of spherical particles of radius
100 nm as a function of the frequency of the field and the zeta potential. In all cases, 
a ¼ 10.



GðxÞ ¼ 1�
ix½3þ 2��=�m�

9 1þ ð1� iÞ
ffiffiffiffiffiffiffiffi
x=2

p� �
( )�1

ð110Þ

with �� � �p � �m. The function f depends on the Dukhin number (Du) as follows:

f ¼
1� i! 0

� ð2Du� i! 0"p="rsÞ

2ð1� i! 0Þ þ ð2Du � i! 0"p="rsÞ
ð111Þ

where ! 0
¼ !=!MW ¼ !�MW [see Eq. (87)].

The link between CVP and ESA comes from the flux–force relationships of non-
equilibrium thermodynamics. Thus, the macroscopic (average) current, ~JJ, and particle
velocity, ~��, are related to the pressure gradient rp and external field ~EE by [151]

~JJ ¼ �rpþ K� ~EE

~�� ¼ �rpþ ��
d
~EE

ð112Þ

where �, �, K�, and ��
d are the transport coefficients that satisfy the relationship:

� ¼ �
��

�m
��
d ð113Þ

Equation (113) may be considered as a generalization of Onsager’s reciprocity relation
(originally derived for stationary processes) to dynamic (time-varying) processes. When
measuring CVP we are in open-circuit conditions ½ ~JJ ¼ 0 in Eq. (112)]; hence, the voltage
drop per unit pressure drop will equal:

CVP ¼
�V

�p
¼
�

K�
¼ �

��

�m

��
d

K�
ð114Þ

and [151]:

ESA / CVP� K�
ð115Þ

where K� is the complex conductivity of the suspension.
Experimental measurements have increased during the last 10 years, mainly because

there are commercial instruments devised for both kinds of determinations [152]. The ESA
effect is determined with the device schematically shown in Fig. 34 [153, 154]. A radio-
frequency voltage pulse is sent through the sample across two parallel-plate electrodes
attached to a pair of glass blocks (delay lines). The sound wave travels along the glass
blocks and is sensed by a piezoelectric transducer placed at the right delay rod. Figure 34
also shows the signal produced by the transducer as a function of time: the first signal is
not of ESA origin, but is called ‘‘cross-talk’’ [154], as it is an electrical signal radiated from
the voltage pulse and detected by the transducer. The second and third oscillations, on the
contrary, are actual ESA pulses coming from the right and left electrodes, respectively.
The first of them is the one that the system uses to measure the dynamic mobility and zeta
potential.

We will not go into the details of the CVP (or CVI, colloid vibration intensity)
experimental device, as this is fully described in Chapter 17 of this volume.
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XIII. CONCLUSION

We have tried to give a (necessarily brief) overview of the electrokinetic phenomena and
their associated techniques: some are classical and are among the oldest experimental
determinations in our science. Others are more recently discovered, explained, and imple-
mented. In any case, we hope that the reader will have found the starting information
needed to choose a technique suitable for any particular problem. A much more detailed
description of most of the phenomena described above will be found in the chapters that
follow.
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FIG. 34 (a) Schematic diagram of the ESA setup; (b) the signal from the ESA transducer. (From
Ref. 153, copyright 1998, with permission of Elsevier Science.)
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32. BV Derjaguin, SS Dukhin. In: E Matijević, ed. Surface and Colloid Science. New York:

Wiley, 1974, vol. 7, ch. 3.
33. PH Wiersema, AL Loeb, JTG Overbeek. J Colloid Interface Sci 22: 78, 1966.
34. RW O’Brien, LR White. J Chem Soc, Faraday Trans 2 74: 1607, 1978.

35. JTG Overbeek. In: HR Kruyt, ed. Colloid Science. Amsterdam: Elsevier, 1952, vol. 1.
36. RP Tison. J Colloid Interface Sci 60: 519, 1977.
37. RP Long, S Ross. J Colloid Interface Sci 20: 438, 1965.

38. RP Tison. J Colloid Interface Sci 52: 611, 1975.
39. A Homola, AA Robertson. J Colloid Interface Sci 51: 202, 1975.
40. S Levine, GH Neale. J Colloid Interface Sci 47: 520, 1974.
41. S Levine, GH Neale. J Colloid Interface Sci 49: 330, 1974.

Electrokinetic Phenomena and Their Determination 51



42. LD Reed, FA Morrison. J Colloid Interface Sci 54: 117, 1976.
43. JL Anderson. J Colloid Interface Sci 82: 248, 1981.

44. NI Zharkikh, VN Shilov. Colloid J 43: 865, 1981.
45. AS Dukhin, VN Shilov, Yu Borkovskaya. Langmuir 15: 3452, 1999.
46. AL Smith. In: GD Parfitt, ed. Dispersions of Powders in Liquids. London: Applied Science,

1981.
47. www.cad-inst.com; www.lavallab.com; www.zeta-meter.com; www.webzero.co.uk
48. K Oka, K Furusawa. In: H Ohshima, K Furusawa, eds. Electrical Phenomena at Interfaces.

New York: Marcel Dekker, 1998, ch. 8.
49. S Komagata. Res Electrotech Lab (Jpn) 348: March, 1933.
50. M Minor, AJ van der Linde, HP Leeuwen, J Lyklema. J Colloid Interface Sci 189: 370, 1997.
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I. INTRODUCTION

Three branches of colloid science—the theory of the electrical double layer, electrokinetic
phenomena, and the electric surface forces—have always been developed in close connec-
tion with each other and traditionally on the basis of the concept of complete equilibrium
(thermodynamic concept) of the double layer (DL). However, the DL transforms from its
equilibrium state into a nonequilibrium one under any effect causing internal ion flow [1,
2], e.g., under the influence of an external electric field. The transition from the thermo-
dynamic concept to the electrochemical macrokinetics concept [3, 4] not only causes these
three branches of colloid science to be transformed, but also to be supplemented by new
branches.

The theory of the nonequilibrium DL [1, 5–7] has developed in parallel with that of
the equilibrium DL, and, in fact, during the last decades many colloid electrochemical
phenomena, which are caused by the nonequilibrium state of the DL, have been identified.
They can be called nonequilibrium electric surface phenomena (NESP) [8]. In addition to
the theory of equilibrium surface forces, a theory of nonequilibrium surface forces is also
being developed [9], together with the dynamics of DL interaction [10–13].

Experimental studies of NESP contribute much more than electrokinetic measure-
ments to surface characterization. The new information that is obtained is richer and more
precise when a set of electric surface phenomena is studied [2–4]. For a long time, the
particle charge was characterized by the electrokinetic charge ��, i.e., the charge calculated
from the measured value of the electrokinetic potential �. This procedure was subject to
fair criticism [2] because �� is frequently one order less than the charge of the DL measured
by other methods. The DL disequilibration enables the surface conductivity and mobile
charge �m to be measured [2], demonstrating that �m can be significantly larger than ��.
Values of �m close to the titratable charge, �t, have very often been obtained in experi-
mental researches [8, 14]. This is the reason for using �m to characterize the surface charge.

In Refs 2 and 4, the theory of DL disequilibration was incorporated into the models
of NESP and electrokinetic phenomena. In particular, a method, known as ‘‘thin DL
approximation’’ [15], was elaborated [5–7], and, on the basis of such approximation, the
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mobile charge of a particle could be calculated, and its surface charge characterized. A
variety of integrated electrokinetic investigations were furthermore described in Ref. 8 and
their usefulness for particle characterization was discussed. It became clear that the inter-
pretation of experimental data should be based on their comparison with the various
existing static and dynamic DL models [14, 16].

The fundamental concept of the surface conductivity on solids was elaborated in
detail by Lyklema [17] including a broad review of the preceding investigations. We shall
follow this key work using similar terms in equations as well as a similar nomenclature.

Recent developments in the application of NESP to the extended electrokinetic
characterization of colloids will be considered in this chapter.

II. GENERAL

A. General Characteristics of the Nonequilibrium DL of Colloid Particles

1. Induced Dipole Moment

The DL changes its equilibrium state into a nonequilibrium one under any effect causing
ion flow inside it, since lateral ion flows disturb its equilibrium structure. If these effects are
steady, the resulting flow of ions will also reach a steady state, and instead of the condi-
tions of equality of flows to zero, which are valid for the equilibrium layer ð~jj� ¼ 0Þ, it is the
condition of equality of the divergence of flows to zero that is satisfied [18]:

r � ~jj� ¼ 0 ð1Þ

where ~jjþð~jj�Þ is the flux of coions (counterions) at any point of the ionic atmosphere. In
order to illustrate the qualitative distinction between the equilibrium and nonequilibrium
DL, we will consider a special case of the polarization, provoked by an external stationary
electric field, of the DL of a spherical particle with homogeneously charged surface. The
equilibrium DL is spherically symmetric and this implies the absence of a dipole moment
(Fig. 1). Under the external electric field, a tangential flow of the ions appears, which
redistributes them over the surface: the DL is deformed and polarized, diverting from its
original spherically symmetrical structure. The tangential flows in the DL are locked
through the electrolyte volume, and the stationary ion exchange between the DL and
the adjacent electrolyte volume is developed only by the occurrence of a spatial current
distribution and an electric field which is beyond the limits of the DL and attains high
values in a region with linear dimensions close to the particle size.

The electric field beyond the limits of the DL is called a long-range field, as distinct
from the short-range field of the equilibrium DL; the latter is localized in its interior if its
thickness ��1 is much smaller than the particle size a, i.e., when the condition:

�a 	 1 ð2Þ

is satisfied. The stationary tangential current of ions of the DL is maintained owing to the
charge supply from the volume to the left hemisphere of the particle (see Fig. 1).
Correspondingly, the field lines of the long-range electric field arising near one hemisphe-
rical surface run into the volume and approach the other hemisphere from the volume
where the electric field outlets are distributed. Therefore, the long-range field is set up by a
dipole characterizing the polarization of the DL. Thus, the nonequilibrium DL of a
spherical particle may be described as a superposition of the symmetrical DL and the
induced dipole (Fig. 1) [1, 2, 6].
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2. Concentration Polarization of the DL of Colloid Particles

Surface flows of ions within the DL carry mainly counterions, while electromigration flows
within the electrolyte volume consist of carriers of both signs in equivalent amounts. The
difference between the electromigration flows of anions (coions, jþ) and cations (counter-
ions, j�) in the dispersion medium and at the particle surface gives rise to a polarization
gradient of electrolyte concentration along with the polarization field [2, 4, 6, 19]. The
electrolyte concentration outside the DL changes within a distance of the order of the
particle size and, in accordance with the principle of local equilibrium, the structure of the
regions of a much smaller size is considered to be at equilibrium. Thus, the DL can be
taken to be in a state of local equilibrium with the electrolyte concentration beyond its
limits if the inequality given by Eq. (2) is satisfied. This means that the normal components
of diffusion and electromigration flows are almost completely mutually canceled out and
the Boltzmann distribution of ion concentrations, which exactly holds in equilibrium DL,
holds approximately in the thin polarized DL. Let us note that the increase of electrolyte
concentration along the particle surface provokes a compression of the diffuse part of the
DL, thus resulting in a decrease of the Stern potential at a constant value of the surface
charge; then, however, the potential jump in the DL will vary along the particle surface.

Overbeek [1] and Booth [20] first formulated the problem of polarization of the
diffuse part of the DL of spherical colloid particles in an external electric field using a
series expansion in the zeta potential, �. The method of Overbeek and Booth is too
cumbersome to be applied to more complex models such as DL polarization of nonsphe-
rical particles and of spherical ones in an alternating field. In Ref. 6, the same results were
obtained in a more appropriate analytical form. The theory was then generalized to
alternating electric fields [7], which made it possible to predict the effect known as low-
frequency dielectric dispersion or LFDD [4, 21]. The next step was the generalization of the
theory to the case of LFDD of polyelectrolyte solutions with macroions of linear struc-
ture, and also to the analysis of the electro-orientation effect [19, 22–24].
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B. General Characteristics of NESP

During the last few decades, the use of the ideas of electrochemical macrokinetics has
ensured a qualitatively new level of development in colloid electrochemistry: the electro-
chemical macrokinetics of colloids, which included a number of advances (Fig. 2) justify-
ing that NESP have become an essential part of many major branches of modern colloid
science:
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1. A number of new phenomena were discovered.
2. DL disequilibration was incorporated into the theory of classical electrokinetic

phenomena.
3. Based on the theory of the nonequilibrium DL, the dynamics of particle inter-

actions became the subject of study to incorporate substantial refinements into
the theory of slow coagulation.

Some fields where these advances were particularly noticeable are:

. Membrane phenomena. The thermodynamics of irreversible processes enables the
interrelation between different NESP to be established. In this way, the relation-
ship between reverse osmosis on charged membranes, with pore size commensur-
able with the diffuse layer thickness, and capillary osmosis can be determined.
Therefore, it is possible to apply the methods of the theory of NESP to the
theory of reverse osmosis and to substantiate its newer version, namely, low-
pressure reverse osmosis [25].

. Transport phenomena and separation. NESP cause the transport of disperse par-
ticles under the influence of solution concentration gradients (diffusiophoresis
[26, 27] and electrodiffusiophoresis [28]), and the inhomogeneity of alternating
electric and concentration fields within the diffusion layer arising on passing
alternating electric current (aperiodical electrodiffusiophoresis). These phenom-
ena offer new opportunities for the control of coating processes [28] and for
separation processes. Typical examples of baromembrane processes are reverse
osmosis, ultrafiltration, and microfiltration. Among electromembrane processes,
electrodialysis is especially well known. However, with the help of an electric
field one can certainly perform more than just a demineralization process.
Electromembrane separation processes of colloid and semicolloid systems and
of macromolecular solutions may naturally be referred to as electrofiltration.
Electrofiltration of a colloid is an electromembrane analog of microfiltration,
and electrofiltration of macromolecular solutions and semicolloids is the analog
of ultrafiltration. Also, the whole variety of NESP and equilibrium electric sur-
face phenomena manifests itself in the electrofiltration processes [29].

. Nonequilibrium surface forces. Nonequilibrium surface forces relate to the non-
equilibrium DL in the same way as equilibrium surface forces (described by the
DLVO theory) relate to the equilibrium DL. These forces are conditioned by the
nonequilibrium DL, caused by electric current [30], liquid flow [31] and phase
development [32]. The theory of reversible and irreversible electrocoagulation
[29, 30] is based on the nonequilibrium surface forces. The DL, polarized by the
liquid flow, can influence the particle deposition during flotation [33, 34] and
filtration. Here, electrokinetic phenomena – diffusiophoresis and dipolophor-
esis – are important. Similar conditions are brought about by phase transitions
(dissolution; crystallization in electrolyte) and exchange processes which allow
vital activity of the cell [32].

. Disequilibration of the inner part of the DL and its manifestation in electrokinetic
phenomena and particle interaction. Most investigations have been concerned
with the effects caused by the concentration polarization of the diffuse part of
the DL. During the last few years, interest in the Stern layer disequilibration has
grown [11, 12, 16, 35–37]. The effects of the Stern layer conductance on electro-
kinetic transport and on the low-frequency dielectric properties are being inves-
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tigated. The problem of Stern-layer disequilibration is also important in connec-
tion with its manifestation in the dynamics of colloid particle interaction.

C. Electrokinetic Phenomena

Electrokinetic phenomena arise as a DL response to different external forces, which cause
ion fluxes and liquid flux within it. Since these fluxes extend outside the DL and conse-
quently become measurable, electrokinetic phenomena are a valuable source of informa-
tion about charge and potential in the vicinity of a surface. Electrokinetic phenomena are
typically second-order phenomena – from the point of view of the thermodynamics of
irreversible processes, they are described by nondiagonal terms of the matrix of kinetic
coefficients – thermodynamic forces of a certain kind create fluxes of another type. For
example, in electro-osmosis and electrophoresis an electric force leads to a mechanical
motion, and in streaming current (potential) an applied mechanical force produces an
electric current (potential).

There is an essential difference in the definitions of NESP and electrokinetic phe-
nomena: Some NESP are not second-order phenomena, and consequently cannot be qua-
lified as electrokinetic phenomena. Furthermore, the DL disequilibration is often
negligible, for instance, in the case of electrokinetic phenomena in straight capillaries of
arbitrary radius, and also for weakly charged surfaces of large radius of curvature (this
means large electrokinetic radius, �a 	 1, and small Du number, see below). Thus, at least
in these important regimes of electrokinetic phenomena, they cannot be qualified as
NESP.

D. Coupling and Decoupling Electrokinetic Phenomena and Surface
Conduction

The DL response to external electric fields causes also surface conduction (a first-order
phenomenon). In this case, the force (electric field) and the flux (surface current) are
conjugate. In addition, when the applied field is alternating, the surface current will also
be alternating, and its out-of-phase component causes another interesting phenomenon
known as dielectric dispersion. Obviously, both surface conduction and dielectric disper-
sion are related to electrokinetic phenomena [17], but being first order they cannot be
strictly considered as electrokinetic phenomena themselves.

Let us consider another example: the electro-osmotic slip or streaming current can
occur independently of surface conduction in straight capillaries. However, the coupling of
streaming current and surface conduction manifests itself in streaming potential. On the
other hand, there is usually no surface conduction independent of electro-osmotic trans-
port. Correspondingly, the Bikerman equation [38, 39] for the specific surface conductivity
of the diffuse layer, K�d, consists of two terms. The first one, K�

m takes into account the
transfer of diffuse-layer ions relative to the liquid due to migration in the electric field,
whereas the second term K�

eo covers the convective charge transfer by electro-osmotic flow.
When the dimensionless electrokinetic potential ~�� is high enough, i.e., z ~�� 	 1, only one
ionic species, the counterion, has to be considered. The Bikerman equation thus reduces to

K�d
¼

K

�
expð ~��=2Þ 1þ

3m

z2

� �
ð3Þ

where K is the bulk conductivity, ~�� ¼ e�=kT is the dimensionless zeta potential, z is the
counterion valence, and m is the dimensionless ionic mobility. Here, the second term
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represents the electro-osmotic role in the charge transport in the diffuse layer. Very often,
m ¼ 0:15 [1, 2].

Decoupling of electrokinetic phenomena and surface current is easy in the case of
straight capillaries, because it is then possible to determine independently the streaming
current (and calculate � from it) and the surface conduction (from which K� can be
calculated). These are two independent measurements that yield independent information
about the DL, namely � and K�. This is the necessary condition for the quantitative
characterization of a particle surface. Such a decoupling is more difficult for other elec-
trokinetic systems, including the simplest model system, namely, a dilute suspension of
monodisperse spherical particles. Actually, the surface conductivity can be measured with
sufficient accuracy only if its role is commensurate with the bulk conductivity K [2]:

K�

Ka

 1 ð4Þ

This dimensionless ratio has been assigned the name of ‘‘Du’’ [17]. Since the surface
current is sufficiently strong it influences the tangential electric field distribution within the
DL and correspondingly the electro-osmotic slip. In other words, the stream of charge
influences the stream of matter [2] and their coupling has not been disregarded by the
condition (4). This influence leads to DL polarization [1–4], which cannot be ignored
under the condition (4).

The rigorous theories of Overbeek and Booth [1, 20] for DL polarization and its
influences on electrophoresis may be compared with Henry’s theory [40], which accounts
for the surface current influence, while disregarding DL polarization. The former theories
are more exact and general. This leads to the conclusion that, whenever the surface con-
duction must be taken into consideration, DL polarization is also an essential factor. The
decoupling is possible [2] in the limiting case:

Du ¼
K�

Ka
� 1 ð5Þ

which is the second necessary condition for applicability of the Smoluchowski theory. This
leads us to distinguish two approaches to the theory of electrokinetic phenomena [2]:

1. Equilibrium DL and electrokinetic phenomena (Du � 1).
2. Nonequilibrium DL and NESP (Du � 1).

Under the condition (4), an electrokinetic phenomenon is at the same time a non-
equilibrium electric surface phenomenon. Hence the term NESP can be used, as it is done
above to specify the second approach. Although the latter yields a more exact and pro-
found understanding of electrokinetic phenomena, the first approach completely retains its
independent significance, since under definite conditions DL polarization is very weakly
manifested in electrokinetics. The DL polarization extremely complicates the mechanisms
of electrokinetic phenomena.

In the classical regime of electrokinetic phenomena, when the Smoluchowski theory
is valid, only the � potential can be measured. The nonequilibrium state of the DL pro-
vides an opportunity to measure in parallel � and K�. Both the diffuse and Stern layers can
be characterized with NESP, because both � and K� are measurable. NESP advantages
will be considered with respect to electrokinetic surface characterization in Section V.

It must be mentioned that LFDD, although in Lyklema’s classification, is not strictly
an electrokinetic phenomenon, but presents the characteristic feature of being fully deter-
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mined by the mobile charge in the DL, and thus provides an opportunity of measuring
surface conductivity even in the first interpretation.

III. ELECTROKINETIC SURFACE TRANSPORT MODELS AND THEORIES
OF ELECTROKINETIC PHENOMENA AND NESP

The exact laws of statistical physics, electrodynamics, and hydrodynamics are the founda-
tion of the theories for DL, electrokinetics, and colloid stability. However, model con-
siderations are used in such aspects as space dependence of local parameters like dielectric
constant, solution viscosity, and ionic mobility, and in formulation of the boundary con-
ditions. In electrokinetics, the central notion is that of electrokinetic potential �, introduced
through the use of the slipping plane model. Unfortunately, there is no unambiguous way
of determining the position of the slipping plane. We will consider this issue in the follow-
ing paragraphs.

A. Electrokinetic Potential and Slipping Plane

Tangential liquid flow along an immobile charged surface can be caused by applied
mechanical force or by an external electric field (electro-osmotic slip). Experience and
recent molecular dynamic simulations have shown that in such tangential motion usually
a very thin layer of fluid (with thickness dek) remains adhered to the surface and is called a
hydrodynamically stagnant layer (SL). The space charge for x > dek is electrokinetically
active, and the particle (if spherical) behaves hydrodynamically as it has a radius aþ dek.
Its surfce potential with respect to the bulk is the potential at the slipping plane, and is
known as electrokinetic or � potential. The countercharge part beyond that plane is called
the electrokinetic charge ��. It can be expressed through the measured � with the use of
Gouy–Chapman theory, which yields the space charge distribution within the diffuse part
of the DL. For water, the SL is not more than a few molecular layers thick [17] but it can
no longer be ignored in electrokinetics, because a substantial fraction of countercharge is
located in that layer. The �� computed from � seldom amounts to more than 3–5 mC=cm2,
whereas the surface charge �0 may be 10 times as high, even on nonporous surfaces [17].

B. Standard and Nonstandard Electrokinetic Models

There is no convective ion flux behind the slipping plane, according to its definition.
However, this definition does not exclude the possibility of ion fluxes behind it under
the action of a tangential electric field (ion-migration fluxes). The majority of theories
disregard this possibility, thus implying the absence of tangential ionic transport behind
the slipping plane under any conditions. As a result, a real particle with its liquid SL is
replaced by a virtual solid particle with radius equal to that of the particle radius plus dek

(rigid particle � model [17]).
A single DL characteristic is present in this model, namely, �. If possible, measure-

ments of both electrokinetic phenomena and surface charge by titration will allow one to
evaluate its usefulness, and this has been done for some systems (see Section III.C).
However, the interpretation of integrated electrokinetic measurements for other systems
is impossible using a rigid particle � model, that hence cannot be considered as universal.

All classical electrokinetic theories [1, 18, 41] are based on the assumptions of the
standard electrokinetic model (SEM), in which it is also emphasized that the notions of
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slipping plane and electrokinetic potential are associated with a surface that is smooth at
the molecular level. Consideration of the roughness of the interface in electrokinetics is the
single difference between the SEM and rigid particle � models. However, this difference is
very important because porous or rough surfaces are quite abundant. Hence, a nonstan-
dard electrokinetic model (NSEM) was proposed [14] to discriminate between those sur-
faces that fulfill the assumptions of the SEM, and those that must be described with an
NSEM model.

C. Experimental Verification of the Standard Electrokinetic Model

The SEM is based on a number of untested assumptions. Clearly, it cannot be universal,
i.e., it is not suitable for the description of all systems. The reuqirement that the surface
should be homogeneous, smooth, and impervious can be satisfied by properly selecting the
system. Systems that meet these requirements and have been used for checking the stan-
dard model, are emulsion droplets in water [42], silver iodide crystals [43], partially fused
molecularly smooth quartz [44], mica, etc. The titratable and electrokinetic charges were
measured for these systems. As these investigations were performed in broad ranges of
electrolyte concentrations, the small difference between the charges, originating from
independent phenomena, point to the correctness of the model for the slipping plane
(electrokinetic potential).

D. Dynamic Stern Layer

Smoluchowski and Bikerman paid no attention to the Stern-layer role in electrokinetics.
Later this approach was introduced into the rigid particle � model or SEM. In parallel,
another approach has been developing for many decades. In particular, the notion of
quasiequilibrium between inner and outer parts of the DL and the bulk was introduced
in the first version of the theory [5]. Some additional equations, namely, Eqs (100) and
(101) in Ref. 19, were obtained later on. The estimated moderate Stern-layer polarization
was justified by the intuitive estimation that the surface ion diffusivity is small in compar-
ison with the bulk value. If so, the ionic flux in a Stern layer must be small in comparison
with the tangential ionic flux in the diffuse layer and can be neglected. In this respect, the
Zukoski and Saville estimation [45] of the surface diffusivity of the adsorbed ion as
comparable to the bulk diffusivity was unexpected and attracted attention [46].

E. Conduction Behind the Slipping Plane

On the basis of experimental results, Bikerman [39] arrived at the conclusion that gels
represent a much greater obstacle to the motion of a liquid than to the passage of a
current. The same conclusion is valid for charged surfaces covered with an adsorbed
layer of macromolecules, or even for uncharged (or charged) surfaces with an adsorbed
layer of polyelectrolyte. A charge fixed on the surface of a particle or on segments of an
adsorbed macroion is compensated for by mobile counterions partly distributed inside the
gel and partly in the diffuse layer beyond it.

What we originally called anomalous surface conductivity [2] is caused by ion flow
along that portion of the diffuse layer that is confined between the rough surface of the
particle and the slipping plane. However, this term should now be discarded for a number
of reasons. The term anomalous was proposed a long time ago, when there was a shortage
of experimental data regarding the conductivity of the SL. The term additional surface
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conductivity K�i
r was used later [14]. Subscript ‘‘r’’ denotes the roughness role in the

additional conductivity rise. There is a potential drop across the portion of the diffuse
layer between the rough surface and the slipping plane, corresponding to the difference
between effective values of Stern and electrokinetic potentials ð�ef � �ef Þ (see Section
VIII.B).

Recently, Lyklema [17] gave convincing evidence for the stagnant-layer conductivity
(SLC):

1. The fact that many experimental K� values exceed K�d .
2. The observation that � potentials obtained for a given system and fixed condi-

tions, but by different techniques, may be substantially different, but can be
harmonized if K�i contributions are introduced.

3. For some systems, computed � potentials depend in a bizarre way on the elec-
trolyte concentration unless the interpretation of the experiments is improved to
take account of a nonzero K�i.

Important results regarding SLC were obtained [47, 48], and recently, great attention
has been paid to SLC [49–53].

F. Theories of Electrokinetic Phenomena and NESP

Of the various possibilities, we will only deal with those cases for which the usefulness of
electrokinetic characterization has already been substantiated. Thus, in the megahertz
region, an induced dipole moment (i.d.m.) is produced by Maxwell–Wagner (MW) polar-
ization [54, 55] at the expense of the space charge arising in the electrolyte layer adjacent to
the particle surface whose thickness is of the order of ��1. The time of MW polarization
can be estimated by the Einstein equation, i.e.,

�MW ¼
��2

2D
ð6Þ

where D is the ion diffusion coefficient.
This well-known equation was obtained in the MW theory (see, e.g., Ref. 2), which

expressed the electric conductance of a suspension in terms of the electric conductances of
the particle and of the medium, and volume fraction. O’Konski [56] pointed out that in the
absence of particle conductance, but in the presence of surface conductivity, the MW
polarization mechanism is also operating and showed that the equation for i.d.m. is
also valid in this case if the conductance of the particle is replaced by 2k�=a. Thus, the
surface conductance of spherical particles can be determined from the dependence of the
measured supension conductance on the volume fraction. The contribution of Hunter and
O’Brien and their collaborators [57, 58], who conducted systematic investigations of MW
dispersion as the method of determining specific surface conductivity, was significant.

The process of i.d.m. formation under the effect of direct current is complicated by
the establishment of a gradient of neutral electrolyte concentration at distances of the
order of the particle radius [7] for which the required time �c exceeds �MW under the
condition (2). The value of �c is

�c ¼ a2=2D ð7Þ

While nonequilibrium surface phenomena in the MW relaxation region can be char-
acterized as true electric or electrohydrodynamic phenomena, the stationary or low-fre-
quency nonequilibrium surface phenomena are diffusive–electric or diffusive-
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electrohydrodynamic phenomena. Overbeek [1] was the first to develop the theory of DC
electrophoresis in terms of the diffusive–electrohydrodynamic phenomenon.

The usefulness of the thin DL approximation [5, 59] lies in the fact that it enables us
to obtain expressions for different nonstandard electrokinetic models. The first of such
expressions became known as the Dukhin–Semenikhin equation [60], and it accounts for
the role of the conductivity behind the slipping plane. O’Brien and White [61] later ela-
borated a numerical procedure in order to obtain the electrophoretic mobility as a func-
tion of zeta potential, particle radius, and valences, concentrations, and mobilities of the
ions in solution. In this theory, the authors identified the �ef and � potentials in the
Dukhin–Semenikhin equation and thus have neglected one of its main advantages,
namely, the possibility of describing electrophoresis within the framework of the nonstan-
dard electrokinetic model. A decade later, Midmore et al. [62] extended O’Brien and
White’s theory, and eliminated such simplification.

If the frequency of the alternating field is not too high (smaller than the MW
characteristic frequency), a local equilibrium between the DL and the adjoining volume
of electrolyte has time to set up during a cycle. This allowed [7] generalization of the theory
of thin DL polarization for the case of an alternating field of frequency ! < 2�=�c. The
polarization of a particle turns out to be associated with the concentration gradient along
the outer boundary of the DL, which periodically varies in time with some delay with
respect to the applied field. This phase delay is mathematically expressed by the fact that
the dipole moment d

0 is a complex quantity.
Because of the presence of conduction, the dispersion medium (electrolyte) polarizes

also with a substantial phase delay, so that its permittivity " is also complex:

" ¼ " 0 � i
K

!
ð8Þ

where " 0 is the permittivity of the medium. The real part, �", of the variation �" in the
permittivity of a dispersion medium caused by the introduction of particles with concen-
tration N can be inferred from the MW theory [54, 55] as

�" ¼ Ref�"g ¼ 4�NðRef"gRefC
og � Imf"gImfC

ogÞ ð9Þ

where C
o is the induced dipole moment coefficient, defined, for a spherical particle of

radius a, by

~dd
o ¼ C

oa
3 ~EE ð10Þ

~EE being the applied field.
As a result of multiplying the imaginary parts of the particle dipole coefficient and

", �" substantially grows as ! decreases, because of the unlimited growth of the imagin-
ary part of " according to Eq. (9). Lyklema [17] simplified the equation derived in [4, 7]
for the LFDD of a suspension as follows:

�"ð!Þ

" 0
¼

9

16
’ð�aÞ2

2Dud

1þ 2Dud

 !2
1

ð1þ !�cÞð1þ
ffiffiffiffiffiffiffi
!�c

p
Þ

ð11Þ

where ’ is the volume fraction, and Dud can be obtained by means of Eq. (5) and
Bikerman’s expression for the surface conductivity of the diffuse layer [39].

The theory has been confirmed by other theoretical models [36, 45, 63, 64] and also
by experimental determinations of the dielectric constant of suspensions [36]. It was
extended to disperse systems with arbitrary values of �a [65]. In all these studies, the
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influence of the salt diffusion in the bulk electrolyte solution adjoining the particle on its
DL polarization occurs as the main mechanism of LFDD. Saville called it the volume
diffusion mechanism (VDM).

Recently, the system of equations of the thin-DL approximation was numerically
solved [66]. It was concluded that in many cases the theoretical model [5, 6] provided
LFDD estimations sufficiently good to be used for the interpretation of experimental
results. On the other hand, theoretical predictions for conductivity do not properly repro-
duce numerical results for highly charged particles even under condition (2). The numer-
ical calculation showed that the charged region surrounding the particles extends further
than in equilibrium. This result is in agreement with the first version of the theory [5]:
initially, it was assumed that the deviation from electroneutrality was small. Later, this
was replaced by the approximate condition of complete electroneutrality.

The investigations of Saville’s group [35, 45] attracted attention to the dynamic Stern
layer in electrokinetics and LFDD. Initially, Schwarz [67] proposed lateral transport of
counterions as the main mechanism of LFDD. Counterions were supposed by Schwarz to
be capable of moving due to electromigration and diffusion along the surface, but to be
unable to exchange with the adjacent electrolyte (surface diffusion model, SDM). In
contradistinction, free exchange of ions between the diffuse part of the DL and the
adjacent electrolyte was stated [5, 7] to be a direct consequence of the standard model
since it is precisely that free exchange that determined the local equilibrium between a thin
DL and its adjacent electrolyte. This means that the Schwarz model of counterions’
‘‘displacement without exchange’’ may well apply to the Stern layer only (not to the diffuse
part). More recently, Kijlstra et al. [68], Rosen et al. (69), and Razilov et al. [70, 71]
developed models in which the Stern layer is supposed to be in equilibrium with the
neighboring diffuse layer.

Shilov and Dukhin [21] modified the Schwarz theory by incorporating the necessary
screening by the field-induced diffuse layer, in the absence of an equilibrium DL (i.e., in
the isoelectric point). Lyklema et al. [36] modified the theory for situations of nonzero
Stern potential, still under the restriction of small values of Du, where concentration
polarization is negligible. More recently, Razilov et al. [72, 73] extended this theory for
moderate values of Du [Du ¼ Oð1Þ], by studying the mutual influence of polarization of
the Stern layer and the diffuse layer. It is noteworthy that this case is important for surface
conductivity measurements and for its use in surface characterization.

Hence, a theory describing polarization of the Stern layer is only available for limit-
ing situations. An intermediate situation has been the object of a study by Hinch et al. [74],
who took into account retarded surface-site reactions and showed their effect on LFDD.
However, in their model surface ions were not allowed to displace along the surface.

Minor [75] derived the most general equation. It comprises the equations of all
preceding theories that can be obtained in some extreme cases. However, the use of this
theory for experimental interpretation is difficult because the characteristic times needed
for tangential redistribution of ions in the Stern layer and for establishing equilibrium
between it and the diffuse layer are two additional unknown values used in his theory.

Delgado et al. [76] proved that one can separate the dispersion curves of the SDM
and VDM by varying the concentration of particles in the suspension. it has been found
that VDM is much more strongly dependent than SDM on particle concentration. The
reason is that, when the particle concentration increases, the characteristic length for the
propagation of volume diffusion processes decreases together with the decrease in free
electrolyte volume, whereas the characteristic length for the surface diffusion remains
constant. Correspondingly, when the particle concentration is raised, the relaxation time
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of the VDM effect must decrease, whereas it must remain constant for the SDM mechan-
ism. These authors demonstrated that VDM prevailed in the systems studied. The relative
importance of VDM and SDM must depend on the specific system considered. The results
of Barchini and Saville [77] could be explained [76] as a superposition of surface and
volume diffusion of ions.

The binary-electrolyte approach is employed even in suspensions with essentially
nonbinary media with respect to the LFDD theory. The influence of small concentra-
tions of ‘‘additional’’ ions, i.e., the ions that are present in addition to the binary
electrolyte, on LFDD is considered in Ref. 78. These additional counterions can
undergo significant adsorption oscillations that can increase to a large extent the dielec-
tric increment of a suspension. This phenomenon provides another opportunity for
surface characterization.

G. Effect of Sol Concentration on Electrokinetic Phenomena and on
NESP

When sols are not dilute, particle–particle interaction influences the electrophoretic mobi-
lity. The interaction has a three-fold nature: overlapping of hydrodynamic, electric, and
ion diffusion fields created by neighboring particles. There are several pure hydrodynamic
cell models that are successfully applied for solving complicated hydrodynamic problems
in concentrated systems. Electrokinetic cell models are the results of some generalization
of hydrodynamic cell models. There are many ways to perform this generalization and
(correspondingly) many ways to create different electrokinetic cell models. The well-
known Onsager relationship [79] and Smoluchowski law, both of which are valid no
matter the suspension concentration are two criteria which determine a proper choice of
a cell model. The electrokinetic Levine–Neale cell model [80] for the limiting case corre-
sponding to the conditions (2) and (5) does not agree simultaneously with the exact
Smoluchowski law and the Onsager relationship.

In order to overcome this disagreement, a cell model [81] was formulated from the
very beginning on the basis of the following requirements: fulfillment of the Onsager
relationship; reduction to the Smoluchowski law at small Du, and agreement with the
well-known asymptotic laws available for dilute suspensions. Thus, A. Dukhin et al. [82,
83] have elaborated the vibration potential theory for concentrated systems with use of
the Shilov–Zharkih cell model. An experimental test on silica Ludox Tm (30 nm) and
rutile R-746 Dupont (about 30 nm) confirmed the theory [83] for particle concentrations
up to 45% (v/v).

H. Extended Electrokinetic Characterization of Polydisperse Colloids

The sensitivity of DL polarization to particle size causes a dimension dependence of the
electrophoretic mobility. There are commercial devices for the measurement of distribu-
tions in electrophoretic mobility and in particle radius for a polydisperse suspension.
Mathematical algorithms for calculating the electrokinetic and effective Stern potentials
were developed [84], and their extension to concentrated suspensions has been accom-
plished as well [83]. Thus, there is an opportunity for the extended characterization of
polydisperse systems with respect to electrokinetic potential and surface conductivity by
means of the vibration potential measurements, for instance.
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IV. GENERALIZED STANDARD ELECTROKINETIC MODEL AND
ELECTROKINETIC CONSISTENCY TEST

A. Generalized Standard Electrokinetic Model

Recently, Lyklema et al. [85] proved that ‘‘stagnant layers are general properties of liquids
adajcent to solid walls.’’ This is the result of molecular dynamics (MD) simulation. At the
same time they studied the ionic mobilities in the SL with MD computation and found for
monovalent counter ions a value of 0.96 for the ion mobility ratio between the SL and the
bulk. New experiments on the conductivity and streaming potential of polystyrene latex
plugs [86, 87] illustrated the aforesaid results of MD. It is shown that, for this system,
accounting for the SLC is crucial to converting the streaming potentials into � potentials.
For nonpenetrable surfaces, lateral mobilities of monovalent ions in the Stern layer are not
much lower than those in the bulk.

The collected evidence, comprising the results described in Section IV.D and the
newest results [85–87], strongly suggests that ‘‘at least in a number of systems conduction
behind the shear plane does take place’’ [86]. This understanding of the universal mechan-
ism [85] of mobile SL ions characterizes a new standard for electrokinetic transport
modeling. Correspondingly, a generalized standard electrokinetic model (GSEM) can be
proposed. Because of its more general character, the applicability range of GSEM is wider.
Its main features include: (1) conduction behind the shear plane (contrary to SEM
assumptions), (2) there is no demand on surface smoothness on the molecular level
(another important difference from SEM), and (3) the DL is described by at least two
parameters, namely, � and K�i, the situation K�i

¼ 0 corresponding to SEM.

B. Incorporation of the Generalized Standard Electrokinetic Model into
the Theory

In view of the success of the Gouy–Stern theory in interpreting static DL properties, it is
consistent to do the same for the surface conductivity [17], i.e.,

K�
¼ K�i

þ K�d
ð12Þ

As a first approximation, K�i is determined by the ions in the SL and K�d by the diffuse
part. The assumption is made that the surface charge is immobile. The assumption that the
inner layer contains only one type of ion (counterions, either or not specifically adsorbed)
with mobility ui and surface charge density �i yields:

K�i
¼ �iui ð13Þ

A special notation:

� ¼ K�i=K�d
ð14Þ

is introduced to generalize electrokinetic theories to account for SLC. This generalization
is achieved [17] by means of a more general expression for K�, namely, Eq. (12). This leads
to the generalization of the equation for Du number [17]:

Duð�;�Þ ¼
1þ�þ 3m=z2

�a
expð ~��=2Þ � 1 ð15Þ

This equation with � ¼ 0:

Duð�; 0Þ ffi Duð�Þ ð16Þ
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follows from the Bikerman equation for K�d and corresponds to the rigid particle � model.
The electrophoretic mobility is a function of � and Du. The LFDD depends on Du

according to Eq. (11). The GSEM in electrophoresis and LFDD theories is accounted for
by substituting into Eq. (11) the more general expression, Eq. (15).

C. Reconsideration of Conditions for � Determination with Use of the
Smoluchowski Theory

The majority of published � potential values are determined with the use of one electro-
kinetic technique and the Smoluchowski equation. Measurement of � enables the surface
conductivity K�d

ð�Þ to be calculated according to the Bikerman equation, and the condi-
tion for applicability of the Smoluchowski equation (5) to be specified:

Duð�Þ � 1 ð17Þ

However, the stronger the conduction behind the slipping plane, the narrower is the area
of Smoluchowski theory applicability. Under actual experimental conditions even � ¼

3�5 is possible. Thus, a large quantitative difference between the rigorous condition:

Duð�;�Þ � 1 ð18Þ

and the simplified condition (17), which is not sufficient if so large a � value can exist. This
means that most � values reported in the literature should be revised, especially those
obtained at low salt concentrations, which correspond to larger Du values.

For some systems and for some conditions, Du can be evaluated and the condition
(17) can be examined using the surface charge measured by titration, the Gouy–Chapman
theory, and the Bikerman equation. If Smoluchowski theory applicability is justified in this
way, one electrokinetic technique is sufficient for � measurement. But in the absence of
independent information, the general principle of justification for application of the
Smoluchowski theory is the use of two experimental techniques. However, for some
systems (sufficiently large particles, sufficiently low �, sufficiently high electrolyte concen-
tration) this complication of the experimental procedure can be avoided, because for such
systems and even for � of about 5–10, the difference between Du (�) and Du (�;�) is not
large. A criterion to ensure that only one electrokinetic technique is enough can be given:

Duð�Þ � 1=10 ð19Þ

D. Electrokinetic Consistency Test and Current State of Electrokinetic
Theory

Attempts to interpret the results of integrated electrokinetic investigations leads to for-
mulation of the notion of electrokinetic nonconsistency, because the investigation of the
different phenomena often gives different values for the electrokinetic potential of the
same system. This contradiction is eliminated by proper use of a SLC model.

All electokinetic theories can be classified into two groups with respect to the elec-
trokinetic consistency test:

1. Theories for which the electrokinetic consistency test is possible for systems with
or without SLC:

Monodisperse spherical particles with thin DL. The equations for colloid con-
ductivity, LFDD, and electrophoresis were generalized with the use of Du (�;�)
by Lyklema [17] and were aplied to the interpretation of experimental data for
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(Stober) silica and hematite. This approach provided electrokinetic consistency
and yielded � values. These theories can be recommended for rigorous investiga-
tion with the electrokinetic consistency test for spherical particles. If monodis-
perse isometric particles can be modeled as spherical ones, this is an appropriate
approach as well. A good agreement has been shown to exist between the equa-
tions derived in Refs 17 and 88 for electrophoresis in the presence of SLC.
The results of some modern theories developed for the thin-DL case, account-

ing for DL polarization, have to be refined by means of the substitution in the
final equation of Du (�;�Þ for Du ð�Þ. In electrophoresis, such a refinement will
lead to an increase in �, as compared to published values, calculated without
SLC. On the other hand, in the case of conductivity of suspensions and their
LFDD, this refinement leads to values of � lower than those obtained without
considering SLC. Interestingly, this provides the electrokinetic consistency,
because � determination in the framework of the rigid particle � model causes
zeta potential underevaluation in electrophoresis, and overestimtion in LFDD.

2. Theories that make the electrokinetic consistency test possible only for systems
without SLC. The rigid particle � model is used in these theories. There is no
objection regarding the application of these important theories in the case of
particles with low SLC. However, the electrokinetic consistency test will not be
possible when they are applied to particles with an essentially high SLC. They
are, nevertheless, applicable to spherical particles with thick DL, and to spher-
oidal and cylindrical particles with thin DL. The most basic assumption is that �
potentials are fully defined by the nature of the colloid, particle, or pore size, its
surface charge, the pH and electrolyte concentration in the solution, and the
nature of the electrolyte and the solvent. Stated otherwise, for a colloidal surface
with all these parameters fixed, � is a well-defined characteristic. So, if two
investigators find different values for � of a given system under fixed conditions
there are only two options. Either the systems were different, e.g., because of
minor specific adsorption of impurities, or the conversion of the experimental
signal into � was flawed [17].

V. EXTENDED ELECTROKINETIC SURFACE CHARACTERIZATION

A. Electrokinetic Potential and Stern Potential

The present state of thinking is that the slip-plane position is close, or for practical reasons
identical, to the outer Helmholtz plane (OHP) and correspondingly the difference between
Stern and electrokinetic potential is not large [17]. As the identification of electrokinetic
potential and Stern potential is an approximation, it perhaps cannot be considered as
universal. The subdivision of the solution side of the DL into two parts by the OHP is
rather pragmatic, though somewhat artificial, because all complications regarding finite
ion size, specific adsorption, discrete charge, and surface heterogeneity reside within the
Stern layer. As a result, its thickness d is left unspecified for the moment, and it can only be
said that d is less than 1 nm, with a large uncertainty in its exact value [17, 89].

In addition, there is no unambiguous way of determining the position of the slipping
plane. Apart from the fact that this notion is already an abstraction from reality, the
positioning requires a detailed knowledge of potential–distance distribution and this
requires a model [89]. A priori it is not obvious why the OHP (a static feature) should be
identical to the slipping plane (dynamically determined, see Ref. 89): ‘‘However, for prac-
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tical purposes the outcome might be that the two are close enough to consider them as the
same’’ [89], i.e., �d and � are close. At least, the difference between these potentials cannot
be large at low electrolyte concentration. The diffuse layer is thick at low concentration
and this makes rather unimportant the possible difference between the distances of OHP
and slipping plane to the wall.

B. Generalized Standard Electrokinetic Model and Extended Electrical
Surface Characterization.

The existing trend to evaluate the Stern potential with the use of � deserves attention. A
new opportunity arises with SLC measurement. As a first approximation, �ek characterizes
the diffuse layer, and SLC characterizes the Stern layer (with the correction for difference
in ion mobilities of Stern layer ions with respect to those in the bulk). This correction is
sometimes small and can be neglected. For example, it was found that for Kþ ions on
(Stober) silica, the aforesaid ratio is 0.96, and 0.7 for Cl� [90]. Recent studies [86] on
sulfate–polystyrene lattices yields a value of 0.89 for this ratio for the monovalent ions
studied. An even larger value, namely 0.98, for this ratio follows from the measurements of
streaming potentials and conductivities of latex plugs [87]. Thus, with this ratio value of
near unity, combined measurements, comprising two electrical surface phenomena, enable
us to determine the charge distribution between diffuse and Stern layers, which can be called
the extended electrical surface characterization. This new level in surface characterization is
possible as well, if the difference in mobilities of adsorbed and bulk ions is not negligible.
Three measurements have then to be fulfilled to determine the charge distribution between
Stern and diffuse layers and the adsorbed counterion mobility.

C. Mobile Charge and Surface Charge

In many investigations, the convective transport of the surface charge, i.e., the term Keo in
the Bikerman equation, is disregarded, a hypothesis that is justified due to the small value
of the electrokinetic charge. This simplification leads to the possibility of mobile charge
determination [2] for the diffuse part of the DL:

�md ¼ K�d=ui ð20Þ

The bulk value of counterion mobility ui can be used within the diffuse part of DL. In the
case of monovalent ions, Eq. (20) can be transformed into the equation for the entire
mobile charge:

�m ¼ ðK�d
þ K�i

Þ=ui ¼ K�=ui ð21Þ

because there is little difference in mobility values for adsorbed and free counterions.
Equation (21) is more useful because K� is a measurable quantity, and because the infor-
mation about �m enables us to estimate the surface charge:

�o ¼ ��m ð22Þ

Thus, the recent information [85–87] about the small difference in mobilities for
adsorbed and free monovalent counterions proved the possibility of surface charge deter-
mination by means of surface conductivity measurement. Earlier, this method was pro-
posed [2] with the assumption that the ion mobility change within the DL is not large.
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Recently, Grosse et al. [91] considered a theoretical model that relates both the high-
and the low-frequency relaxation to a single parameter of the particle surface: its surface
conductivity. Correspondingly, the dielectric properties of suspensions of polystyrene
particles were measured within a unique broad-frequency range. This work and the sub-
sequent research [92] are important for the fundamentals of DL investigation.

D. Extended Electrokinetic Surface Characterization of Flat Solid
Surfaces

Probably, the most important systems for electrokinetic investigations with flat surfaces
are polymeric materials. There exists a large variety of materials suitable for the prepara-
tion of flat surfaces. Flat polymer samples can, for example, be prepared as thin, smooth,
and well-defined layers through techniques like spin coating, solution casting, adsorption,
or plasma deposition on top of plane carriers. These flat surfaces are further easily asses-
sible for complementary surface analysis to be compared with the resutls of electrokinetic
studies, e.g., surface spectroscopies, microscopic investigations, contact-angle measure-
ments, and ellipsometry.

An experimental setup has been developed and applied to the combined determina-
tion of the electrokinetic potential and the surface conductivity of flat surfaces [93]. The
key feature of the new device (designated as a microslit electrokinetic setup) is the varia-
bility of the distances between two parallel flat sample surfaces (10mm� 20mmÞ forming
a slit channel. The setup allows one to decrease this distance down to about 1 mm keeping
the surfaces parallel. In consequence, streaming-potential measurements can be performed
at a given solid/liquid interface both under conditions where surface conductivity is neg-
ligible and under conditions where surface conductivity significantly contributes to the
total channel conductivity. The zeta potential is calculated at different channel geometries
based on streaming potential and channel conductivity and, alternatively, based ons
streaming-current measurements and the dimensions of the cross-section of the slit chan-
nel. In a series of measurements, a plasma-deposited fluoropolymer (PDFP) layer on top
of a glass carrier, and an adsorbed layer of the blood protein fibrinogen on top of the
PDFP layer, were characterized by zeta potential and surface conductivity measurements
in different aqueous electrolyte solutions (KCl, KOH, HCl). The contribution of the
diffuse layer to the surface conductivity was calculated from the zeta potential, and com-
pared with the experimentally determined surface conductivity. The hydrodynamically
mobile charge contributes only about 10% or less to K� in all cases although the polymer
surface was found to be smooth on the namometer scale. The resulting high SLC is
attributed to both the high specific mobilities of the ions accumulated in the inner layer
(OH� and H3O

þ) and to the contribution of these surface charge-creating species to the
surface conductivity.

After adsorption of fibrinogen onto the PDFP surface, the SLC increased by about
an order of magnitude. The latter fact is assumed to be caused by the presence of mobile
ions in the interfacial volume of the adsorbed protein layer. In addition to the electro-
chemical characterization of the adsorbed protein layer, its hydrodynamic thickness was
determined by means of liquid flow measurements with the microslit electrokinetic setup.
The obtained value of 48� 5 nm correlates well with the protein dimensions given in the
literature and is of the order of magnitude of the optical layer extension determined by
ellipsometry.
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E. Extended Characterization of Nonspherical Particles Based on
Electro-orientation and Electrorotation Phenomena

The polarizability of nonspherical particles is anisotropic, i.e., polarizabilities along the
long and the short axes differ. The result is that the i.d.m. becomes anisotropic, and the
action of an external field on it generates a torque, which orients the particle. A distribu-
tion in the orientation of particles is established as a result of the orienting effect of the
field and the disorientation effect of the rotational diffusion. Anisotropy of orientations
under the effect of the field results in a change in optical properties of the system (electro-
optical phenomena [94]) and in the anisotropy of electrical conduction. Investigations of
time and field dependence of these effects allow one to determine K� . The theory of the
polarization of nonspherical particles and their electro-orientation was experimentally
confirmed [95] and used to determine K� from data on suspensions of synthetic diamonds
and polygorskite. Good agreement was observed with K� values measured on the basis of
orienting conductimetric effects, which demonstrates the correctness of the theory and the
experiment. An important achievement is a generalization of these methods over poly-
disperse systems. In the latter case it was shown [95] that the effect of polydispersity is
essential and that its neglect results in substantial errors.

Systematic measurements of electrophoretic mobility, dielectric dispersion, and elec-
tric birefringence [96] have been performed as a function of the concentration of nonionic
surfactant and salt added to aqueous suspensions of charged rod-like PTFE (Teflon)
particles. Such an extended characterization provides more reliable information.

The relaxation of the DL polarization in the case of rotating external electric fields
causes a phase lag between the latter and the symmetry axis of the field-induced charge
distribution, giving rise to torques on both the particle and its adjacent liquid, and causing
a slow rotation of the particle (electrorotation effect). It is shown [97] that the main
mechanism determining electrorotation at low frequencies is the rotational component
of electro-osmotic slip velocity. Hence, there is a perspective of electrokinetic potential
measurement with the use of this new NESP.

VI. EXTENDED ELECTROKINETIC CHARACTERIZATION OF NEUTRAL
POLYMER ADSORPTION

When neutral polymer are adosrbed at an interface, they may influence the � potential
through the adsorption characteristics of the ions present and/or by shifting the position of
the plane of shear away from the particle surface [98]. In a more elaborate study [99],
researchers were able to distinguish very clearly the effect of the polymer on ion adsorp-
tion from its effect on the shear plane. The initial effect is to move the isoelectric point to
more positive values with little effect on the maximum value of � [99]. The authors
attribute this to the adsorption of the polymer with a horizontal configuration on the
surfce (called trains). Only at higher levels of adsorbed polymer is there a pronounced
formation of loops, which force the shear plane out from the surface.

By analogy with the hydrodynamic layer thickness, one can define an electrokinetic
thickness dek in terms of the effective shift in the plane of shear. The theory for its
dependence has been worked out for electro-osmosis and electrophoresis [100, 101] and
for streaming current [102]. The effect of poly(ethylene oxide) on the � potentials of quartz,
antimony sulfide, and silver iodide [103] was investigated. The results were interpreted in
terms of the apparent shift in the position of the slipping plane, by neglecting the water
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flow and the ion flux behind it. This corresponds to the extreme case of an impermeable
adsorbed layer. This simple approximation is used in many works, and the conditions of
its applicability are established in Ref. 104.

The electro-osmotic slip along a flat charged surface with an adsorbed neutral poly-
mer was also considered. The change in electro-osmotic velocity is characterized by a
change in the electrokinetic potential. Its dimensionless values after polymer adsorption,
~���, and before adsorption, ~��O, are interconnected by means of the equation [104]:

~��� ¼ ~��O

1þ

ð�LM
0

ð fO= ~��OÞ sinh y � dy

coshð�LMÞ
ð23Þ

where fOð yÞ is the potential distribution in the DL as a function of the distance to the solid
surface, L is the thickness of the adsorbed polymer layer, and

M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
no fg=�

q
� ��2 ð24Þ

where no is the segment concentration, which is considered as independent of y; fg is the
coefficient of the hydrodynamic resistance per segment, approximately given by fg ¼ 6��a,
where a characterizes the linear dimension of a segment.

The exact analytical result of the integration is given in Ref. 104, and it is a rather
complicated equation that simplifies to

~��� ¼ 4 tanhð ~��O=4Þ 1þ
1

M � 1

� 	
e��L ð25Þ

with the condition:

�L > 0:5 ð26Þ

If M is such that

M 	 1 ð27Þ

then Eq. (25) transforms into the well-known equation for the case of an impermeable
adsorbed layer:

~��� ¼ 4 tanhð ~��O=4Þe
��L

ð28Þ

The results of calculations performed with the more general Eq. (23), and its sim-
plified versions Eqs (25) and (28) are given in Fig. 3. Comparison of the curves 1, 2, and 3
at two values of M leads to three conclusions. First, the simple Eq. (25) is valid under
condition (26) because the difference between curves 1 and 2 is negligible in this case.
Second, the condition of adsorbed layer impermeability can be specified as

M > 10 ð29Þ

because under this condition the difference between curves 1, 2, and 3 is almost negligible.
Third, the adsorption layer permeability leads to the essential correction of Eq. (28), which
disregards the permeability, because the difference between the curves for different M
values is large. This difference will be even larger with decreasing M value, which cannot
be shown with the use of Eq. [25], because it is not valid for very small M values. For this
case, the more general Eq. (14) in Ref. 104 has to be used.
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The generalization of Eq. (28) by taking into account [105] the deviation of the
spherical DL from the flat geometry is given by the second term on the right-hand side
(r.h.s.) of the following equation:

~��� ¼ fOðLÞ þ
1

�L1

sinh
fOðLÞ

2
tanh2

~��O
4
� tanh2

fO
4
� 2�L

� 	
ð30Þ

where L1 ¼ aþ L.
The thickness of the adsorbed polymer layer L was calculated [106] without taking

into account the second term on the r.h.s. of Eq. (30). We obtained an electrokinetic
thickness of 5.5 and 11 nm for polymer concentrations of 10�4 and 10�3 M, respectively,
by the application of Eq. (30) to the experimental results of Ref. 107. These values of
thickness are nearly twice as small as those calculated in Ref. 105 by neglecting the second
term in Eq. (30). It is noteworthy that this smaller thickness agrees better with those
measured by other methods [107].

This approach has to be completed by considering changes in the inner part of the
DL [98]. The measurement of polymer adsorption effects on the surface conductivity
offers the opportunity of a more precise characterization of the neutral polymer adsorp-
tion. The sensitivity of the surface conductivity to the latter has been demonstrated [105]:
poly(vinyl alcohol) adsorption leads to a substantial reduction in the dilute suspension
conductivity, measured for polygorskite and antimony sulfide [105]. This effect was
assessed by the changes in the values of the Du number on the basis of Eq. (12), and
the assumption that the adsorbed polymer layer was a SL. Thus, there is a promising
perspective for the investigation of neutral polymer adsorption combining electrokinetic
and surface conductivity measurements. The latter will provide information about the SL
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charge, i.e., about the change in ion adsorption and, correspondingly, in the diffuse part of
the DL. The incorporation of surface conductivity determination in the electrokinetic
characterization of polymer adsorption is simplified owing to the small difference in the
mobilities of adsorbed and free ions, demonstrated for monovalent ions [86]. This enables
us to obtain �i changes by means of the determination of K�i changes caused by polymer
adsorption. Another simplification relates to the K�i dependence on the coverage (the
surface concentration of the adsorbed segments of macromolecule), because this depen-
dence may be linear.

The microslit electrokinetic setup (see Section V.D) offers a unique opportunity for
the investigation of the neutral polymer adsorption layer by means of extended electro-
kinetic investigation. The derivation of the equation for surface conductivity changes due
to polymer adsorption is simplified in this case.

The importance of surface conductivity measurements for the electrokinetic charac-
terization of the polyelectrolyte adsorption is emphasized in Ref. 108 as well: adsorbed
polyelectrolyte modifies essentially the space distribution of mobile ions in the diffuse
layer, simultaneously screening the surface charge and the fixed charge of the polyelec-
trolyte, the latter being distributed over the whole polymer layer. For the characteristic
situation when the adsorbed polymer molecules are charged opposite to the surface, the
conditions determining concentration polarization may essentially (even qualitatively)
change. In particular, it may occur that the surface conductivity K� is large, but the
fractions of ions of both signs contributing to K� are comparable. This is contrary to
the usual case (see Section II.A.2), when surface flows of ions within the DL carry mainly
counterions. The description of the corrections for surface conductivity to the electro-
phoretic mobility of particles with adsorbed polyelectrolyte was made possible by the
theory described in Ref. 108, which was experimentally demonstrated to be valid for
arbitrary contributions of ions of both signs to K�.

VII. INVESTIGATION OF THE DYNAMIC STERN LAYER OF LIPOSOMES
BY UTILIZING THE ISOELECTRIC AND ISOCONDUCTING POINTS

A. Surface Conductivity in Vicinity of Isoelectric Point

The investigation of the conduction behind the slipping plane is complicated because of
the conduction through the diffuse part of the DL. This complication can be eliminated by
working in the vicinity of the isoelectric point (i.e.p.), i.e., at zero conductivity in the
diffuse layer. Such an investigation, recently proposed [17] has been already accomplished
[109, 110]. The surface conductivity of certain divalent metal ions adsorbed on negatively
charged liposomes was determined by combining measurements of both electrophoresis
and conductivity of dilute liposome suspensions with volume fraction ’ 
 0:1. The surface
mobility of adsorbed Be2þ, Ca2þ, and La3þ counterions manifests in a rather large surface
conductivity at the i.e.p. of the liposomes [109, 110]. If the adsorbed counterions in the
Stern layer were immobile, the liposome particles at the i.e.p. would behave like uncharged
particles. Therefore, the conductivity K of the suspensions should be smaller than that of
the pure solution: K=K ¼ 1� 3’=2. However, the experimentally determined data of this
ratio around the i.e.p. is slightly larger than unity for Ca2þ and substantially larger than
unity for La3þ. This means that there exists surface current around the liposome particles
that must originate from the mobility of counterions in the Stern layer. It must be noted
that these large values of the conductivity ratio were detected at frequencies much more
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lower than the reciprocal time of charging of the liposome mebrane, so that the current
through the membrane must be negligibly small.

B. Evaluation of the Mobility of Adsorbed Counterions

In addition to the qualitative conclusion of the preceding section, a method of experi-
mental discrimination between low and high surface mobilities of adsorbed counterions
through the use of i.e.p. and isoconducting point (i.c.p.) determinations is elaborated and
verified in experiments with NaCl, BeSo4, and LaCl3 electrolytes [109] and CsCl and
CaCl2 electrolytes [110]. Under the condition of the i.e.p., the charge density of the
Stern layer �i is equal to the surface charge �o, because of the electroneutrality in the
DL. In this case Du is described as follows:

Du ¼
K�

Ka
¼

�iD
�

2azFDC
ð31Þ

where D� is the diffusivity of the adsorbed counterions, F is the Faraday constant, and C
is the concentration of the z-valent symmetric electrolyte solution.

Setting �i ¼ �o, and explicitly writing Due for Du at the i.e.p. in Eq. (31), the ratio of
the diffusivity in the Stern layer to that in the bulk is expressed as

D�

D
¼
2azFCeDue

�o
ð32Þ

where Ce is the electrolyte concentration at the i.e.p.
This equation can be used for the determination of the adsorbed counterion mobility

if there is independent information regarding surface charge. Unfortunately, this informa-
tion is not available for liposomes. The problem is solved in Ref. 110 by the measurement
of two concentration dependencies, namely, that in electrolytes with strongly adsorbed
counterions and in an indifferent electrolyte. Cesium ions have very low affinity for bind-
ing to egg PC liposome [110]. Therefore, Du associated with Csþ counterions can be
approximated by a diffuse-type DL:

Du ¼
2

�a
1þ

3m

z2

� �
cosh

z ~��d

2
� 1

" #

 1:45

exp
z ~��d

2

 !

�a
ð33Þ

The diffuse-layer charge density for monovalent ions is expressed by the Gouy–Chapman
theory:

j�dj ¼ j�oj ¼
4FC

�
sinh

~��d

2


2FC

�
exp

~��d

2

 !
ð34Þ

Comparing Eq. (34) with Eq. (33), Du is expressed as follows:

Du 
 1:45
j�oj

2FCa
ð35Þ

At the i.c.p. (Du ¼ 1=2 at C ¼ Cc), the surface charge density is calculated as

j�oj 
 FaCc=1:45 ð36Þ
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Therefore, we can estimate the surface charge density of the particles of radius a by
the determination of the i.c.p. Cc of nonadsorbing ions, e.g., Cs

þ. Combining Eq. (36) with
Eq. (32), we can obtain a useful equation:

D�=D 
 2:9zCeDue=Cc ð37Þ

Taking Cc of Csþ as 2� 10�3 M, the following estimation of the diffusivity is
obtained [110]:

1. In the case of Ca2þ: Ce ¼ 6� 10�4 M; Due ¼ 0:5. Using these values, we obtain
D�=D ¼ 0:87.

2. In the case of La3þ: Ce ¼ 5� 10�6 M; Due ¼ 3:5. Using these values, the result is
D�=D ¼ 0:07.

These data show the same trend as that established for polymer lattices [87], namely, the
larger the ion valency the smaller is its surface mobility.

VIII. ELECTROKINETIC POTENTIAL INTERPRETATION AND SURFACE
ROUGHNESS

A. Stagnant Layer Near a Rough Surface

Bikerman [39] attributed the SL phenomenon to surface roughness. Lyklema et al. [85]
established that the SLs are general properties of liquids adjacent to solid walls, and in
particular adjacent to a molecularly smooth one. This important conclusion does not
mean that the surface roughness does not affect the electrokinetic slip. The liquid
within valleys of a rough surface is hydrodynamically immobilized [2]. Hence, there
are two mechanisms of liquid immobilization near a solid–liquid interface, namely, the
universal mechanism [85] and that caused by the surface roughness. The first mechan-
ism is a generic property, while the second is important for sufficiently rough surfaces
only.

Thus, the solid–liquid interfaces may be classified into two groups. For the first
group the roughness role in electrokinetics is negligible, and for the second the roughness
cannot be disregarded. For the first group, the SL perhaps almost coincides with the Stern
layer, and its thickness dek is less than 1 nm.

The introduction of the thickness dr for the SL, caused by the surface roughness, is
useful at least for a qualitative analysis. The quantification of dr has to be done with
account for the statistical description of the roughness. Different models exist for rough-
ness and, correspondingly, different mean dr values will be predicted. As the first crude
approximation, the roughness role in electrokinetics can be neglected, if

dr < dek < 1 nm ð38Þ

This condition is not as strict as that assumed in the SEM, namely, that the surface has to
be molecularly smooth. The important conclusion follows that the GSEM (Section V.D)
may have a wider applicability than SEM. However, there is no proof that surfaces for
which:

dr > dek < 1 nm ð39Þ

do not exist; 1 nm is considered as the maximum thickness for the Stern layer. The term
molecular condenser is well known for Stern layers and corresponds to a Stern layer
thickness of less than 1 nm. For this case of a thin Stern layer, the condition (38) is violated
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even at a roughness scale that is not large. In this case, the discrimination between the SL
that is a generic property [85] of the liquid adjacent to a solid wall, and the SL arising due
to the surface roughness, is important.

B. Effective Slipping Plane and Effective Potentials for a Rough Surface

A simplification in electrokinetic theory is the assumption that the distribution of poten-
tial, electric charge density, and hydrodynamic field can be considered as functions of the
distance to the flat surface. For a rough surface this simplification is wrong [2]. It means
that the applicability of the notion of a flat slipping surface is questionable under the
condition (39). Even if it is so, this does not mean that the Smoluchowski theory is not
useful in this case, but rather that the convenient notions of slipping plane and electro-
kinetic potential are rather crude approximations [2].

There are common features in liquid slip along a smooth surface with adsorbed
uncharged polymer and along a rough clean surface. In both cases, a hydrodynamically
SL arises due to the viscous resistance enhancement near a surface caused either by
adsorbed macromolecules or by roughness. In both cases the slipping plane would
‘‘move’’ outward. Although the notion of a flat slipping surface is an oversimplification
under condition (39), this approach corresponds to the current state of electrokinetic
theories.

This approach enables us to model the hydrodynamic slip along a rough surface as a
slip along a flat surface with SL thickness dr. The effective slipping plane position and
corresponding roughness cannot be ignored if a significant fraction of the countercharge
resides inside the SL. At a given roughness scale, the larger the surface charge density and
the higher the electrolyte concentration (the smaller the diffuse-layer thickness), the larger
is the countercharge part located behind the slipping plane. A simple calculation shows
that this charge can exceed the electrokinetic charge by an order of magnitude. If dr
exceeds 1 nm, the charge behind the slipping plane cannot be considered as a Stern
layer, because its thickness is usually less than 1 nm. This is the part of the diffuse layer
located within the hydrodynamically immobile liquid.

Thus, if condition (38) holds, the slipping plane, characterized by its position dek, is
the boundary between Stern and diffuse layers. On the other hand, under condition (39)
the slipping plane, characterized in this case by dr, is the boundary between the hydro-
dynamically mobile and immobile parts of the diffuse layer. It is obvious that the potential
of this boundary differs from the Stern potential because this is a boundary between two
parts of the diffuse layer. In this case, a measured electrokinetic potential cannot be
interpreted as a Stern potential. Moreover, the question arises of what the Stern potential
means for a rough surface: if the local surface properties are invariant along it, the Stern
layer thickness is invariant as well, at least as a crude approximation. Its outer boundary
will then reproduce the geometry of the rough surface. This means that the notion of the
OHP has to be revised for rough surfaces under condition (39). In addition, the boundary
condition for the Poisson–Boltzmann equation is formulated in terms of the outer bound-
ary of the Stern layer. Hence, the consideration of different models for a rough surface and
correspondingly for the outer boundary of the Stern layer is necessary to quantify the
diffuse layer. As this task is extremely difficult, the simplified approach inherent in the
current state of electrokinetic theory was used [2], namely, an effective flat outer boundary
for the Stern layer was considered, and its corresponding potential was assumed to be the
effective Stern potential, �ef .
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C. Surface Conductivity and Roughness

The solution of the Poisson–Boltzmann equation, assuming a flat effective outer boundary
of the Stern layer, enable us [2] to express the diffuse layer charge near a rough surface
through �ef by means of the well-known Gouy–Chapman theory, and requires us to
generalize the Bikerman equation for surface conductivity:

K�d
¼ K�d

m ð�ef Þ þ K�d
eo ð�ef Þ ð40Þ

The contribution K�d
m is caused by the movement of charges with respect to the liquid by

ion migration in the electric field, and the term K�d
eo is caused by the charge movement

together with the moving liquid. The entire diffuse layer charge is involved in migration,
i.e., K�d

m depends on �ef . The part of the diffuse layer charge beyond the effective slipping
plane is involved in electro-osmosis, i.e., K�d

eo depends on �ef .
The electro-osmotic component is small in comparison with the migration compo-

nent even if Stern and electrokinetic potentials are comparable. Since an effective Stern
potential near a rough surface exceeds the electrokinetic potential, the necessity of
accounting for the electro-osmotic term in Eq. (40) is questionable.

D. Mobile Charge

Equation (21) is more exact if condition (39) holds, because neglecting the second term in
Eq. (40) can be justified. It can be emphasized that Eq. (21) can be derived without the
introduction of the effective Stern potential. This means that the uncertainty associated
with the introduction of a flat outer boundary for the Stern layer does not diminish the
exactness of Eq. (21).

Thus, the rather rough surface corresponding to the condition (39) can be character-
ized by the values of the mobile charge (surface charge) and by the effective values of Stern
and electrokinetic potentials. The characterization of a rough surface by its mobile charge
is more exact than that based on the use of effective potentials, because the evaluation of
the uncertainty arising at the averaging procedure, which is the basis for the notions of
effective values of potentials, is an unsolved and extremely difficult task. The evaluation of
the SL thickness for a rough surface can be accomplished with use of the equation:

d� ¼ ��1 ln
tanh ~��ef=4

tanh ~��ef=4
ð41Þ

The term generalized standard electrokinetic model was proposed in Section IV.A for
systems satisfying the condition (38). The term nonstandard electrokinetic model may be
proposed for the systems that satisfy the condition (39).

The difference between Stern and electrokinetic potentials was accounted for in the
initial version of the thin DL polarization theory [5]. Correspondingly, both potentials are
present in the theories for electrophoresis [60] and LFDD [21], and hence they in fact
correspond to the NSEM model. A number of investigations detailed in Refs 8 and 14
show how those theoretical treatments can be used for the estimation of K�, �ef , and �.

The values of �m obtained in this way proved to be very close to �t. Moreover, the
low values of �� as compared to �m established in these investigations confirm that K� and
�m are the most important characteristics of these surfaces [2]. In some of the papers cited
above, a thickness much larger than 1 nm was determined for dr. Later, there were com-
ments in the literature that these large values of SL thickness are meaningless, since dr
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should not exceed 1 nm [17, 90]. However, it must be taken into account that the extension
of the SL can be larger in rough than in flat surfaces.

Recently, it was shown [111] that small protrusions on the particle surface with
dimensions much smaller than the particle dimension, but of the order of ��1, may
have a dramatic influence on the DLVO interaction energy. Correspondingly, there is
great interest in the modification of DLVO theory in the case of rough surfaces [112].
This supports the conclusion that the generalization of electrokinetic theory to cover
rough surfaces is very important.

IX. SUMMARY

Both MD simulations and experimental investigations by Lyklema and coworkers [85]
proved that ‘‘stagnant layers are general properties of liquids adjacent to a solid wall,’’ and
‘‘at least in a number of systems, conduction behind the shear plane does take place.’’ This
characterizes a new standard for electrokinetic transport modeling, that can be called the
generalized standard electrokinetic model (GSEM). Its range of applicability is wider,
since, unlike the standard model (SEM), the existence of SLC is considered, and there
is no requirements concerning surface smoothness on the molecular level. Thus, the DL is
described by at least two parameters (� and K�i) in the GSEM, and only one, �, is needed
in SEM.

Electrokinetic consistency tests are possible for systems with or without SLC in the
framework of theories that take into account the existence of SLC. Inconsistencies are
unavoidable when the Du number is not small if SLC is disregarded.

The mobile and surface charges are approximately equal if the electrokinetic charge,
��, is small in comparison with the titratable one, and the adsorbed counterion mobility
approximates that in the bulk. The second condition is satisfied by monovalent ions,
according to recent measurements of the adsorbed counterion mobility. The first condition
is satisfied very well in many systems, because �� is often very small in comparison with �t.
For these systems, surface conductivity measurements yield nearly exact values for the
surface charge. In general, the surface conductivity yields at least an estimation of the
surface charge, because the electro-osmotic component of the surface conductivity is
always rather small according to the Bikerman equation.

For smooth surfaces without adsorbed macromolecules, �� characterizes the diffuse
layer, and the SLC characterizes the Stern layer. Combined measurements comprising two
electrical surface phenomena allow determination of the charge distribution between dif-
fuse and Stern layers. This new level in surface characterization is more precise, if the
difference in mobilities for adsorbed and bulk counterions is small.

In addition to circular capillaries and dilute suspensions of monodisperse spherical
particles the measurement of K� is now possible in polydisperse suspensions of different
volume fractions (CVP techniques), and for particles with shape approximated by a spher-
oid. For flat surfaces, both � and K�i can be measured (microslit electrokinetic setup). The
integrated measurement in the vicinities of the i.e.p. and i.c.p. is the method for the
determination of the adsorbed counterion mobilities. Furthermore, the surface conductiv-
ity measurements provide additional information about macromolecular adsorption.

There are two mechanisms of liquid immobilization near a solid–liquid interface,
namely, the universal mechanism and that caused by the surface roughness. The first
mechanism is a generic property, while the second one is important for sufficiently
rough surfaces only. The notions of slipping plane, OHP, and Stern and electrokinetic
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potentials are oversimplifications in the second case because the shape of boundaries
between the Stern layer and diffuse layer, as well as between stagnant and mobile liquid
is extremely complicated. The notions of OHP and slipping plane can perhaps be intro-
duced in this case as a very crude approximation. Correspondingly, the interpretation of
effective values of Stern and electrokinetic potentials is not clear at large roughness. In
contradistinction, the mobile charge can provide more precise evaluation of the surface
charge in the case of a rough surface, because the role of the electro-osmotic component of
the surface conductivity is small.

The roughness determines the boundary of applicability of the GSEM, and it is the
main source of uncertainty for electrokinetic potential interpretation. It is very important
to clarify whether the roughness can be disregarded in electrokinetics (with the exception
for the extreme case of very rough surfaces) or the notions of slipping plane and electro-
kinetic potential are oversimplifications that can cause a substantial decrease in precision.
The roughness role in electrokinetics decreases with decreasing electrolyte concentration
and surface charge.

The role of all the generalizations of the DL model described in electrophoresis can
also be applied to the Dorn effect (or sedimentation potential), and vice versa, considera-
tion about their role in the Dorn effect are pertinent for electrophoresis. This statement is
a direct consequence of the Onsager symmetry relationships applied to electrokinetics [79].

ABBREVIATIONS

DL double layer
DLVO Derjaguin, Landau, Verwey, Overbeek
GSEM generalized standard electrokinetic model
i.c.p. isoconducting point
i.d.m. induced dipole moment
i.e.p. isoelectric point
LFDD low-frequency dielectric dispersion
NESP nonequilibrium electric surface phenomena
MD molecular dynamics
MW Maxwell–Wagner
NSEM nonstandard electrokinetic model
OHP outer Helmholtz plane
PDFP plasma-deposited fluoropolymer
SEM standard electrokinetic model
SL stagnant layer
SLC lateral conductivity of stagnant layer
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3
The Role of Surface Conduction in the
Development of Electrokinetics

J. LYKLEMA Wageningen University, Wageningen, The Netherlands

I. INTRODUCTION

Surface conduction is an electrokinetic phenomenon in its own right, but it also plays an
auxiliary role in conjunction with other electrokinetic processes. The reason is that upon
tangential motion along charged interfaces the excess conductivity of the mobile ions in
the electric double layer contributes to flow of charges and, indirectly, to fluid motion.

Historically, recognizing the role of surface conduction in the interpretation of elec-
trokinetic observations has twice contributed to an improvement in the meaning of elec-
trokinetic or � potentials. First, in the 1930s it has led to the insight that � does not depend
on the size and shape of the object to be studied. Second, in the 1990s it resolved the
problem that � was sometimes found to depend on the electrokinetic method used. Thus,
understanding surface conduction has greatly contributed to the definiteness of � as a real
characteristic of charged surfces, only determined by the electrical properties of the inter-
face.

This is, in a nutshell, the theme of the present contribution.

II. SURFACE CONDUCTION

The phenomenon of surface conduction has already been recognized by von
Smoluchowski in 1905 [1]. It is the excess conduction tangential to a charged surface.
We shall assume this surface to be flat ð�a � 1Þ, unless otherwise specified. Our symbol is
K� ; the SI units are AV�1 or S. The defining equation is

j� ¼ K�E ð1Þ

where j� is the excess current density, tangential to the surface (in C s�1 m�1
¼ Am�1)

under the influence of the electric field parallel to the surface, E. Equation (1) is the two-
dimensional analog of Ohm’s law. It is noted that j� is a current per unit length, i.e., a
linear current density as opposed to the bulk current density in Am�2, occurring in Ohm’s
law. In reality, double layers have a finite thickness but for the phenomenological descrip-
tion this spatial excess is assigned to one line, just as in the Gibbs convention for adsorp-
tion, where surface excesses can be formally assigned to a certain dividing plane. Only
upon elaboration does one have to specify this plane.
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Let x be the distance in the double layer from the surface. The tangential current jðxÞ
is different at each position x. Let us call the bulk current density jð1Þ, then the excess in
each infinitesimal layer dx is ½ jðxÞ � jð1Þ�dx. Integration over the entire double layer
yields:

j� ¼

ð1
0

½ jðxÞ � jð1Þ�dx ð2Þ

Expressing all currents in terms of concentrations, ciðxÞ and mobilities, uiðxÞ:

j� ¼

ð1
0

X
i

½ciðxÞ � cið1Þ�jzijF uiðxÞE dx ð3Þ

where F is the Faraday and i indicates the ionic species. Hence, from Eqs (1) and (3):

K�
¼ F

X
i

jzij

ð1
0

½ciðxÞ � cið1Þ�uiðxÞ dx ð4Þ

It follows from Eq. (4) that the surface excess conductivity can be computed if we know
the ionic distribution and the ionic mobilities. Experience has shown that, in the diffuse
part of the double layer, to a good approximation uiðxÞ ¼ uið1Þ. So far that double layer
part uiðxÞ can be taken out of the integral. For the inner, or Stern, layer this is not usually
the case. In fact, studying the tangential mobility in this part will be one of the themes of
this chapter.

Anticipating further analysis, we mention the following elaboration of Eq. (4), given
by Bikerman for a diffuse double layer [2, 3]:

K�d
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8"o"cRT

p uþ
A� 1

�
u�

Aþ 1
þ
4"o"cRT

�zF

1

A2 � 1

� �
ð5Þ

where "o is the dielectric permittivity of the solvent, c is the electrolyte concentration, � is
the viscosity of the solvent, z is the valency of the (symmetrical) electrolyte, uþ and u� are
the mobilities of cation and anion, respectively, and

A ¼ coth �
zF�

4RT

� �
ð6Þ

Equation (5) can be converted into the following expression if uþ ¼ u� ¼ jzjFD=RT ,
where D ¼ Dþ ¼ D� is the ionic diffusion coefficient:

K�d
¼
4F2cz2D

RT�
1þ

3m

z2

� �
cosh

zF�

2RT

� �
� 1

	 

ð7Þ

where

m ¼
RT

F

� �2
2"o"

3�D
ð8Þ

and ��1 is the Debye length.
For other elaborations, see Ref. 4. Equation (5) and its variants apply for a purely

diffuse double layer, obeying Poisson–Boltzmann statistics, behaving ideally with respect
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to ", �, and u in the sense that these physical quantities are assumed to be homogeneous
and identical to those in the bulk.

Bikerman realized that application of the tangential field E also leads to electro-
osmosis, that is, fluid motion induced by the moving ions. The term 3m=z2 accounts for
this feature.

Bikerman’s model applies to the outer, or diffuse, part of the current leading to a
simplified double layer picture which is still generally accepted, viz., that of a double layer
of which a part resides in the stagnant layer, that is, a thin layer of solvent molecules
which, upon tangential motion, remain adhered to the solid surface, whereas the other
part is fully mobile. The stagnant layer is separated from the mobile part of the double
layer by an (infinitesimally thin) slip plane. The potential at this plane is the electrokinetic
potential �, occurring in Eqs (6) and (7). So, phenomenologically the picture is that of a
solid, including the stagnant layer, which behaves as if it were inert and which is electro-
kinetically characterized by the potential �.

Below we shall revisit this model.

III. DISCOVERY OF SURFACE CONDUCTION AND FIRST EVALUATION

At the beginning of the twentieth century it was not obvious what potentials could be
found in a double layer, let alone what � meant physically. One of the problems was that at
that time � potentials, measured by different electrokinetic techniques, and all interpreted
on the level of Helmholtz–Smoluchowski equations, were sometimes found to be different.
This observation gave rise to a debate on the physical meaning: is, under given conditions
of surface charge, electrolyte concentration, pH, etc., the � potential a unique character-
istic of a charged surface? Even Verwey and Overbeek, in their famous book [5], consid-
ered � as insufficiently established and decided to go for the surface potential  o as the
interaction-determining double-layer parameter. This decision has played its role in the
quantitative interpretation of the so-called Schulze–Hardy rule, an old point of contention
that we shall not discuss here.

More in line with the present theme was the equally troublesome observation that
some electrokinetic measurements with capillaries gave rise to radius-dependent � poten-
tials if surface conduction was not accounted for. So, the debate whether or not � poten-
tials were radius dependent was resolved when it was discovered that surface conduction
should be properly accounted for [6]. Let us illustrate this for the streaming potential Estr

of a capillary of radius a and electrokinetic potential �. The expression on the Helmholtz–
Smoluchowski level, including surface conduction, is

Estr ¼
"o"��p

�ðKL þ 2K�=aÞ
ð9Þ

and that without surface conduction

Estr ¼
"o"��p

�KL
ð10Þ

In these equations �p is the pressure difference applied across the capillary and KL is the
bulk conductivity. The denominator accounts for the back-conduction of accumulated
charge. In the case of negligible surface conduction ð2K�=a � KL

Þ all conduction takes
place through the bulk of the lumen which extends to the slip lane and has the same
conductivity KL everywhere.
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At this stage it is helpful to introduce the dimensionless surface conductivity ratio

Du ¼
K�

aKL
ð11Þ

which I have dubbed the Dukhin number after S.S. Dukhin who explicitly introduced this
parameter. (See Ref. 7, where references to older work can be found.) Dukhin himself
called it Rel. Expressions for what virtually is the same quotient can also be found in other
literature under different names and symbols, for instance in the O’Brien–White heory [8].
That the ratio K�=aKL plays an important role in electrokinetic phenomena was already
recognized by Bikerman [9] long ago. The Dukhin number enters the equation for the
streaming potential, Eq. (9), explicitly:

Estr ¼
"o"��p

�KLð1þ 2DuÞ
ð12Þ

The Dukhin number also occurs in the interpretation of other electrokinetic phenomena,
like electrophoresis, even though on the Helmholtz–Smoluchowski level the surface con-
ductivity does not enter the equation. The reason is that high surface conductivity tends to
‘‘contract’’ field lines around the moving particle.

With Eq. (9) or (12) in mind, the ‘‘historical’’ query regarding the radius dependence
of � can be solved; because of Du in the denominator of Eq. (12), Estr depends on a, but �
does not. If surface conduction is significant, but ignored in the interpretation, i.e., if Eq.
(10) is used instead of Eq. (9) or (12), � seemingly depends on a. The smaller a, the more
the computed � is underestimated. Quantitatively, � and K� can both be found, if the
streaming potential is measured at more than one radius. For instance, one could plot
"o"�p=Estr� as a function of a�1, which should be linear. From the slope and intercept
2K�=� and KL=� are obtained. Measuring KL is rarely a problem, so � and K� can be
found and the linearity ascertained. Such types of analysis have already been carried out
long ago by Rutgers [10].

Anticipating the following sections, it is also noted that � is underestimated if K� is
taken into account but if a too low value for this parameter is substituted. This takes us to
the quantitative evaluation.

IV. QUANTITATIVE ASPECTS. CONDUCTION AND MOBILITIES IN THE
STAGNANT LAYER

In a chapter on electrokinetic phenomena in Kruyt’s Colloid Science, Overbeek addresses
the state of the art of K� measurements up to about 1951 [11]. He tabulated data available
at that time, exclusively referring to glass surfaces (with that material well-defined capil-
laries can be manufactured). At that time data for sols were not available. The results
demonstrated a wide spread, which partly reflected the state of the art at that time. Data
ranged from less than 10�9 S to � 10�6 S, depending on the electrolyte concentration, the
pH (which was not always controlled), and the nature and pretreatment of the glass.
Overbeek compared these data with the predictions of Bikerman’s equation (5) and con-
cluded that most of these data exceeded Bikerman’s K�d by factors of 10–103. According
to Eq. (7), K�d increases with salt csalt and �. However, in practice, high � values are found
at low csalt. As a result, there is a window of practically relevant �ðcsaltÞ data, leading to
theoretical K�d values between 0 and 10�9 S [4]. Even allowing for some experimental
uncertainty in the data, it is obvious that Eq. (7) substantially underestimates K�. Later
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experiments confirmed this. The notion of an additional source of surface conduction,
besides that in the diffuse part of the double layer, forces itself on the investigator. Some
referred to this phenomenon as ‘‘anomalous surface conduction.’’ However, nowadays it is
known that this additional conductivity is the rule rather than the exception. It finds its
origin in conduction in the stagnant part of the double layer. Therefore, we shall not use
the term ‘‘anomalous.’’ As this stagnant layer more or less coincides with the Stern layer,
one also speaks of dynamic Stern layers.

Quantitatively, the total surface conductivity consists of two contributions, K�i,
caused by the stagnant layer, and K�d by the double layer part beyond it. For the latter
we can safely substitute Eq. (7). Hence, assuming additivity:

K�
¼ K�i

þ K�d
ð13Þ

The computation of K�i is now at issue. Some detailed elaborations are available [12–15]
for this. Most of these are multiparameter theories, requiring an adsorption isotherm
equation for the counterions in the Stern layer. Below we shall employ a more simple
model, assuming that stagnant layers usually contain only one type of counterion (i) and
that the charge, attributed to these ions ð�iiÞ, can be assessed with reasonable confidence
without invoking an adsorption isotherm equation. This is possible if simultaneously
surface charge and electrokinetic charge densities are available. Let the tangential mobi-
lities of these ions be uii, then we have simply

K�i
¼ �iiu

i
i ð14Þ

Of course, the stagnant layer exhibits no electro-osmosis.
Before discussing alternative methods of determining K� and finding data for uii, let

us formulate three considerations that simplify the analysis without significant loss of
precision.

1. For practical purposes the stagnant layer may be identified with the Stern layer.
We realize that both layers are abstractions from reality. Hydrodynamically it is unrea-
listic to have a thin layer, a few molecular cross-sections wide and having an infinitely high
viscosity, separated jump-like from the bulk with normal viscosity over an infinitesimally
thin slip layer. Nor do deviations from the ideal Poisson–Boltzmann statistics drop step-
wise from finite to zero at the outer Helmholtz plane; rather, they decrease more gradually.
However, both in fluid dynamics and double-layer electrochemistry experience has shown
that idealization in terms of step functions works very well, even if the precise thicknesses
of these two layers are not known; in fact, there is no unambiguous way of locating the
step. The literature, of course, contains many examples of better double-layer theories
(some are reviewed in Ref. 16), but the academic satisfaction of such improvements has to
be paid for by advanced mathematics, which is beyond the daily scope of the average
colloid scientist. Likewise, theories to account for a more gradual transition of viscosity,
like that based on the viscoelectric effect [17], cover only part of the slip phenomena.

2. Important colloid phenomena such as stability and rheology only involve the
diffuse part of the double layer, and a variety of experiments have corroborated the
correctness of the underlying theory. Such experiments include thickness measurements
in thin fluid films, and direct measurement of the interaction force in the so-called surface-
force apparatus. The only questions remaining are: (1) does interaction take place at
constant charge or constant potential, or perhaps something between these, and (2) if
interaction is controlled by a certain potential, or charge, what is then its value? As we
are dealing with the diffuse part, this potential is that of the outer Helmholtz plane, i.e.,
the potential  d from where the diffuse part of the double layer starts. In many experi-
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ments where � potentials are also available  d and � appear to be identical or close,
suggesting that the part that is electrokinetically active is about the same as the diffuse
part. This identification is commonplace and acceptable for many practical purposes.
However, the issue deserves more attention. It follows from the insight of substantial
conduction in the stagnant layer that the mostly used Helmholtz–Smoluchowski equation
for the electrophoretic mobility underestimates the � potential. Because of this, the inter-
pretations of many excellent experimental studies about interaction have to be revisited. It
may be added that finite mobility of ions in the inner layer also has direct consequences for
the mechanism of interaction in the DLVO range [18]. So, as far as the definitions and
values of  d or �d are regarded, there still is a problem. However, when the properties of
the inner layer are at issue, the difficulties are alleviated. This is our second rule.

3. The quantitative argument behind this rule is that both in electrostatics and
electrokinetics the contribution of the diffuse part is often minor. In electrostatics the
contribution of the diffuse part is often minor. In electrostatics, surface charges ð�oÞ on
model colloids such as oxides, latex, and vesicles can readily reach values of 10–
40 mCcm�2, whereas diffuse charges ð�dÞ, obtained from, say stability and Gouy–
Chapman theory, rarely exceed 5 mCcm�2. As a result, in the electroneutrality balance:

�o þ �i þ �d ¼ 0 ð15Þ

no large errors in �i are made if �d is not accurately known, and therefore:

�o þ �i þ �ek  0 ð16Þ

also is a good approximation, even if we are not one hundred percent certain of the value
of �. Like �d, �ek rarely exceeds 5 mCcm�2.

In surface conduction we have already seen that often K�i strongly exceeds K�d. The
consequences are similar as for electrostatics: from Eq. (13) we can confidently establish
K�i from K� by subtracting K�d, obtained from Eq. (7) even if we do not know � well.

Obviously, all of this breaks down when we are close to the point of zero charge, in
which case the inner layer is sparsely (or not at all) inhabited by ions. However, then we
have no problem because K�

 K�d and the Helmholtz–Smoluchowski equation for elec-
trophoresis applies. We shall not consider this lower limit.

The conclusion of the foregoing considerations is that we can obtain tangential
mobilities of ions ðuiiÞ in the stagnant layer according to the following scheme:

1. Measure K� (see below).
2. Measure �o by titration or otherwise.
3. Estimate � and/or �ek  �d from electrokinetics.
4. Find K�i by subtracting K�d from K�, Eqs (7) and (13).
5. Find �i by subtracting �d from �o.
6. Use Eq. (14) to find uii.

The advantages of this procedure are that it does not require an adsorption isotherm
equation. Neither do we have to specify the thickness of the stagnant layer.

Regarding step 1, we have already given one method of measuring K� in Section III.
It applies to capillaries of differing sizes. Let us now add two more recent ones.

1. Kijlstra method [19]. In Section III we discussed how incorporating surface con-
duction in Eq. (9) for the streaming potential ‘‘harmonized’’ � potentials in that the
spurious radius dependence could be eliminated. More experiments are needed (Estr as a
function of a), but then more information is obtainable ð� and K�

Þ. More recently, another
disharmony was discovered in that � potentials obtained by different electrokinetic experi-
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ments yielded different values, even if the standard theory of O’Brien and White [8] is used.
This theory automatically accounts for surface conduction, although only in the diffuse
part of the double layer because dynamic Stern layers [14, 15] had not been considered.

Basically, neglect of K�i (i.e., underestimating K�) works through in different direc-
tions for different groups of electrokinetic experiments. Typically, � potentials from
streaming potentials and electrophoresis are underestimated, whereas those from dielectric
spectroscopy are overestimated. Based on this idea, Kijlstra et al. considered K� as an
adjustable parameter, of which the real value was such that it harmonized � potentials. The
experiments involved electrophoresis and dielectric spectroscopy of silica and hematite
sols. The advantage of this ‘‘second harmonization’’ is that now K� data also become
available for dilute sols.

2. Minor method [20]. In this approach the conductivity of poly(styrene sulfonate)
latex plugs was measured directly as a function of the bulk conductivity KL. The last-
mentioned quantity was modified by changing the electrolyte concentration. Resulting
graphs of K(plug) versus KL are straight lines, obeying the following equation, derived
by O’Brien and Perrins [21]:

KðplugÞ ¼ ½1þ 3’ f ð0Þ�KL
�
6’ f ð0Þ

a
K�

ð17Þ

where ’ is the volume fraction and f ð0Þ ¼ f ðDu ¼ 0Þ accounts for the packing of the plug.
The product ’ f ð0Þ is obtainable from the slope; hence, K� can be obtained. By this
method K� data are now also obtainable for concentrated sols.

More recently these two methods, or combinations thereof, have been amended and
extended to a variety of systems, including bacterial cell walls [22], porous silicas [23], and
liposome vesicles [24]. As a result of these studies we now have an interesting set of uii data
available; they are collected in Table 1, where the ratio:

R ¼ uii=u
L
i ð18Þ
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TABLE 1 Ratios R for the Ionic Mobility uii in the Stagnant Layer with Respect to the Bulk
Mobility uLi

System Counterion R Reference

Silica (Stöber)
Silica (Monosphere-100)
Silica (Monosphere-100)

Hematite
Poly(styrene sulfate) latex
Poly(styrene sulfate) latex +adsorbed PEO layer

Bacterial cell walls
Liposome vesicles
Liposome vesicles
Liposome vesicles

Liposome vesicles
Liposome vesicles

Kþ

Kþ

Mg2þ

Cl�

Hþ;Liþ;Naþ;Kþ

Naþ

Naþ

Ca2þ;Cd2þ;Cu2þ

Csþ

Ca2þ

La3þ

0:96
0:7
0:7
0:7
0:85

� 0:6
0:2�0:5a

� 1:0
� 0:6
� 1:0
� 0:8
� 0:07

19, 25
23
23

19, 25
20
26

22
24
24
27, 28b

27, 28b

27, 28b

a Depending on species.
b Obtained by a different method exploiting the difference between the isoelectric and isoconducting points.



is given for a variety of systems. From this table the following is concluded:

1. For nonporous surfaces and monovalent countercations R is unity or close to it.
2. Porous surfaces (Monosphere, bacterial cell walls) have lower R values for the

same ions, probably because these ions have to make detours.
3. Chloride ions adsorb specifically on hematites; also, for that system R is lower

than for monovalent counterions.
4. For bivalent counterions R is much lower than for monovalent ones.
5. For a given substrate and valency no ion specificity is observed [compare the

bivalent counterions on vesicles in Ref. 24 and the monovalent ones on
poly(styrene sulfate) latices]. This nonspecificity even applies to the proton,
for which the conduction mechanism is very different from that of other ions.

6. Adsorbed polymers, also forcing tangentially moving ions to make detours, also
lower R.

Regarding the consistence of the data, those from Refs. 27 and 28, stemming from a
completely different group, using other liposomes, and a very different technique, agree
very well with those from Ref. 24, which is gratifying.

The inescapable conclusion is that, in the immobilized (stagnant) layer, ions can
move with up to the same mobility as in the bulk. What is the reason for this apparent
paradox?

V. AN INTERIM BALANCE: WHAT DO WE KNOW ABOUT STAGNANT
LAYERS?

At this stage it is appropriate to review the information we have collected on stagnant
layers:

1. Stagnant layers are hydrodynamically immobilized.
2. They have been observed for all solid–aqueous solution interfaces carrying an

electric double layer.
3. They have been observed on positive and negative surfaces.
4. They exist both adjacent to hydrophilic and hydrophobic surfaces.
5. From electrokinetics it is not known whether they also occur at water–air or at

solid–oil interfaces.
6. Ions in those layers move almost unimpeded.

From this list some inferences can be drawn. First, from point 3 it may be concluded that it
is very likely that stagnant layers also occur on uncharged surfaces; however, for those
conditions their presence cannot be established electrokinetically. From the observation
that such layers occur both on hydrophilic (oxides) and hydrophobic (silver iodide, poly-
styrene latices) surfaces, it is inferred that the solid–water interaction is not the reason for
their existence. Rather it is the stacking of liquid molecules against a hard wall. When this is
true, stagnant layers must also occur at solid–oil interfaces, although these cannot be
measured electrokinetically because �i is very small. By the same token, stagnant fluid
layers will be absent at water–air interfaces. Liquid–liquid interfaces form an intermediate
case that deserves further study.

Perhaps the most enigmatic feature is that, although the water in stagnant layers is
hydrodynamically immobilized, the embedded ions move almost unimpeded. On further
inspection, this feature does not stand on its own; a similar situation arises with gels. For
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these systems the fluid is immobilized, although the diffusion coefficients of dissolved
molecules do not differ greatly from those in the bulk. Because of this analogy we may
classify the behavior of stagnant layers as that of a two-dimensional (2D) gel.

VI. MOLECULAR DYNAMICS (MD) INTERPRETATION

Thanks to a constructive co-operation with the Modélisation Moléculaire group of the
University of Mons, Belgium, it was possible to subject liquid flow tangential to solid
surfaces by MD simulation. By this technique the general properties of stagnant layers
could be reproduced and given a molecular interpretation. The first results have been
published [29] and we shall now summarize some of these.

The simulations involved a large number of molecules, viz., 40,000, of which 32,000
were in the liquid and 8000 constituted the solid. The liquid consisted of 31,500 solvent
molecules (‘‘water’’) and 500 solute molecules (‘‘ions’’). Interactions are for the moment
only accounted for in terms of Lennard–Jones (L–J) pair energies. This is of course not
representative for electrostatics, but as explained above, stagnancy and slip are general
features, so a model without charges should already capture the main physical features.
The ions were chosen slightly larger than the water molecules and were stronger attracted
by the wall. The L–J interactions with water were chosen in such a way that they repre-
sented water well in previous simulations.

In the first part of the simulations, water and ions were randomly mixed and the
system left to equilibrate. Upon this equilibration the ions enriched the layer adjacent to
the surface. The phenomenon of stacking of solvent molecules against a hard wall was
confirmed: for water the density distribution �ðzÞ exhibited the familiar maxima and
minima, petering out beyond a few oscillations. The counterions had their first maximum
slightly beyond that of the water, because they had larger radii.

The logical physical step is to identify both the Stern layer and the stagnant layer
with the first, and main, maximum in �ðzÞ. For the Stern layer this is a relatively new idea;
mostly the interpretation has a more electrostatic nature and runs in terms of dipolar and
quadrupolar interactions, ignoring the fact that such layers are also formed with apolar
solvents [30]. In fluid dynamics, stagnant layers do not play an important role because
their contributions to the fluid flux is relatively small; in Poiseuille flow through capillaries
the major part of it goes through the center. It is now also understood that the charge on
the surface has no significant influence on the thickness, and that this thickness is not
sharply defined; it is statistically defined. As a measure of the quality of the step-function
abstraction the amplitudes of the second and following oscillations in �ðzÞ may be taken.
Certainly the first maximum and minimum dominate the stacking behavior of the fluid
molecules.

In the second part of the simulations a tangential force was applied to the ions and
their trajectories could be established. Regarding their qualitative physical behavior, one
of the main findings was that ions in the stagnant layer can move in that layer, or escape
from it to the diffuse part, from where they either may return or be exchanged against
another ion to keep the distribution intact. Ions in the bulk were much more subject to
thermal noise than those in the stagnant layer, apparently because the molecular stacking
in that layer forced them to stay there (or to escape completely). More recent MD experi-
ments, in which electrical fields are explicitly included, support this observation [31].

The excursions that ions can make into the diffuse part help to explain why for
monovalent ions R � 1. When ions can escape and return easily, and travel a substantial
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fraction of their time in the diffuse part, where bulk properties prevail, their averaged
mobilities are dominated by those in the bulk. This also explains the lack of specificity.
Bivalent ions are more strongly attracted by the solid, so it is more difficult for these to be
‘‘short circuited,’’ hence their lower R. Still another phenomenon is accounted for, viz.,
that of electro-osmosis. Although no tangential external force is applied to the solvent,
molecules do move with the field, simply because they are entrained by the ions; sites left
by an ion are mostly replenished by solvent molecules.

All of this can be made quantitative. By choosing reasonable values for the mole-
cular parameters it is possible to mimic experimental mobilities. Perhaps the most essential
distinction is that between the individual and collective displacement of water molecules.
The former follows from the trajectories and, as with ions, a bulk-like displacement rate
can be easily simulated. The collective mobility follows from the viscosity, which can be
obtained from the pressure tensor correlation function [29], which in adjacent layers is
anisotropic. Finding this viscosity requires simulation of very large numbers of molecules,
a condition which is met in our case. It transpired that the collective mobility of solvent
molecules was so low that for practical purposes the first layer behaved as stagnant. In this
way, not only is the physics of stagnancy explained, but at the same time the 2D-gel
behavior is also accounted for. In conclusion, MD simulations are very rewarding in
solving the mysteries of electrokinetics and we feel that the potentialities are not yet
exhausted [31].
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4
Evaluation and Usage of Electrostatic
Potentials in the Interfacial Layer

DAVOR KOVAČEVIĆ, ANA ČOP, and NIKOLA KALLAY University of Zagreb,
Zagreb, Croatia

I. INTRODUCTION

In the past decades the phenomena at the solid/liquid interface have been often interpreted
in terms of the surface complexation model (SCM), sometimes called the site binding
model [1, 2]. Most of the related experimental studies concern adsorption equilibrium
and development of the surface charge. In addition, electrokinetic measurements are
often reported. Adsorption of ionic species, i.e., binding of ionic groups, is markedly
affected by the electrostatic potentials at the interface to which bound charged species
are exposed. Interfacial electrostatic potentials could be calculated from the equilibrium
parameters determined from adsorption and electrokinetic studies. In some cases they
could also be measured. This chapter is devoted to the electrostatic potentials at the
interface and will concern their definition, meaning, evaluation, and also their use in
understanding the processes influenced by electrostatic interactions.

II. SURFACE REACTIONS

The SCM takes into account interactions of ions from the bulk of the solution with
specified active surface groups. It does not consider adsorption just as accumulation of
species at the interface, but rather as an interfacial chemical reaction, i.e., formation of
surface complexes. The concept of surface complexation includes different possible reac-
tions. The simplest mechanism was proposed by Bolt and van Riemsdijk [3] and is called
the ‘‘1-pK model.’’ It assumes charge separation among surface atoms and just one reac-
tion, i.e., protonation of negative sites. The classical 2-pK model, introduced by Parks [4],
assumes amphoteric surface OH groups that undergo protonation and deprotonation,
resulting in positively and negatively charged surface groups, respectively. The more gen-
eral approach, called the MUSIC model (multisite complexation model), proposed by
Hiemstra and coworkers [5–7], considers different types of active sites at the surface.
This model was recently modified using the Pauling concept of charge distribution and
resulted in the CD (charge distribution)–MUSIC model [8, 9].

99



A. 1-pK Model

According to the 1-pK model [2, 3], the surface consists of partially charged atomic groups
the charge of which depends on the type of metal oxide and on the co-ordination number
of the central metal ion. Negative groups bind, while positive groups release the proton. In
the case of, e.g., hematite, the protonation of surface MOH�1=2 groups results in the
formation of positive surface sites, MOHþ1=2

2 :

MOH�1=2
þ Hþ

! MOHþ1=2
2 K ¼ expð�0F=RTÞ

�
ðMOHþ1=2

2
Þ

aðHþÞ�ðMOH�1=2Þ

ð1Þ

where M denotes an iron atom at the surface, � is the surface concentration of surface
species, K is the (thermodynamic) equilibrium constant, and �0 is the potential that affects
the state of surface species. According to the 1-pK model, only one reaction is responsible
for surface charging, and contrary to the 2-pK model no neutral active surface groups are
assumed to exist.

B. 2-pK Model

According to the 2-pK model [2, 4], surface charging of metal oxides is a consequence of
protonation (p) and deprotonation (d) of amphoteric surface MOH groups:

MOH þ Hþ
! MOHþ

2 Kp ¼ expð�0F=RTÞ
�ðMOHþ

2
Þ

aðHþÞ�ðMOHÞ

ð2Þ

MOH ! MO�
þ Hþ Kd ¼ expð��0F=RTÞ

aðHþÞ�ðMO�Þ

�ðMOHÞ

ð3Þ

where Kp and Kd are the corresponding equilibrium constants. In commonly accepted
approximation, both positive and negative surface species (MOHþ

2 and MO�) are exposed
to the same electrostatic potential denoted as �0. In the literature this potential is some-
times called the potential of the inner plane of the compact (Helmholtz) layer, but more
often just the ‘‘surface potential.’’ Although the term surface potential has a general
meaning it will be used here for the potential �0 defined as the potential that affects the
state of ionic surface groups produced by interactions with potential determining ions
(p.d.i.). For metal oxides, potential determining ions are Hþ and OH�, since they are
directly or indirectly responsible for interactions with surface-active groups and because
they directly determine the surface potential �0.

C. Counterion Association

Charged surface groups may bind ions of opposite charge – counterions. Counterion
association will be described here on the basis of the 2-pK concept as

MOHþ
2 þ A�

! MOHþ
2 � A� KA ¼ expð���F=RTÞ

�ðMOHþ

2
�A�Þ

aðA�
Þ�ðMOHþ

2
Þ

ð4Þ

MO�
þ Cþ

! MO�
� Cþ KC ¼ expð��F=RTÞ

�ðMO��CþÞ

aðCþÞ�ðMO�Þ

ð5Þ
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where A� and Cþ denote anions and cations, respectively, and KA and KC are the respec-
tive equilibrium constants. The state of associated counterions is affected by electrostatic
potential ��, sometimes called the potential of the outer plane of the compact layer. In this
chapter, for ��, the term association potential will be used. Counterion association is
governed by electrostatic Coulombic interactions. This process takes place in ‘‘neutral’’
electrolyte solutions consisting of ions that do not undergo chemical bonding with surface
sites. The counterion association is enabled by the local electrostatic field created by
oppositely charged surface groups and by the overall electrostatic field due to the presence
of other ionic groups at the interface. In reality, the local electric field alone is not suffi-
cient to bind counterions of a neutral electrolyte so that significant association occurs only
at high values of the association potential ��. The effect of the �� potential on counterion
association equilibrium is expressed through the exponential term in Eqs (4) and (5).

Another approach to counterion association is based on the Bjerrum concept
originally developed for ionic association in the bulk of the solution. Statistical distribu-
tion of counterions around the oppositely charged central ion is considered by
Boltzmann statistics including the electrostatic Coulombic term. The probabililty of
finding the counterion at a certain distance has a minimum at the so-called critical
distance dcrit so that integration between the minimum possible separation dmin and
dcrit provides the fraction of associated pairs, and consequently, the equilibrium constant
of the ion-pairing process. This equilibrium constant is higher for higher dcrit values, i.e.,
for ions of higher charges and for media of lower permittivity. The equilibrium constant
also depends on the minimum possible separation, which is directly related to the ionic
size. Relatively large ions ðdmin > dcritÞ cannot approach each other close enough to
overcome the critical distance and become associated. The Bjerrum theory is an excellent
explanation for complete dissociation of strong electrolytes. At the interface the situation
is somehow different [10–12]. Half of the space is occupied by the solid phase and is thus
a ‘‘forbidden zone.’’ Second, the electrostatic potential is not only due to the Coulombic
potential of the central ion but also due to the presence of other ions at the interface.
The consequence is that critical distance depends on the angle, i.e., the ‘‘critical plane’’ is
not a sphere. As demonstrated in Fig. 1, the cross-section looks like an ellipse, the
extension of which is higher for higher surface potentials. This extension allows the
association, since at high enough surface potentials the critical distance could exceed
the minimum separation.

Accordingly, the association space and surface association equilibrium constant
would increase with the surface potential, in agreement with experimental findings. The
Bjerrum model applied to interfaces, introducing the association space concept, would
explain the effect of the medium permittivity and the so-called lyothropic effect. Smaller
counterions would be characterized by lower dmin and consequently higher association
equilibrium constant. However, the effective size of ions is not a clear concept, e.g., the
lithium ion is effectively larger than the cesium ion owing to the higher degree of hydra-
tion. If the hydration shell is destroyed in the association process the opposite order in the
lyothropic series could be found.

In conclusion one may say that the association space concept does not contradict the
common approach described by Eqs (4) and (5). In both cases the association is predicted
to be more pronounced at higher potentials. The specificity of a counterion is character-
ized by its effective size (minimum separation) in the association space model (ASM),
while in the common approach it is reflected in the value of the association equilibrium
constant. The common approach would predict a low degree of association at low poten-
tials while the ASM results in the complete absence of counterion association for poten-
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tials lower than the critical one, i.e., the potential at which the critical distance becomes
larger than the minimum separation.

D. Specific Adsorption

The above considerations dealt with metal oxides in aqueous solutions of ‘‘neutral’’ elec-
trolytes. Potential-determining ions (Hþ and OH� in the case of metal oxides) are respon-
sible for the formation of surface charge while other ions do not chemically react with
surface groups but could become associated with oppositely charged surface groups due to
electrostatic (Coulombic) interactions. However, several molecules and ionic groups may
be bound ‘‘chemically’’ to the surface. Such processes are commonly called specific
adsorption. Specific adsorption will be demonstrated here on the examples of adsorption
of salicylic acid and cadmium on ferric oxides.

The SCM considers the interaction of specific surface groups with defined species
from the bulk of the solution. Therefore, one should at first analyze the association and
dissociation equilibria of the adsorbent in the liquid medium. The interpretation of
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FIG. 1 Schematic presentation of critical boundaries of counterion’s association space around a

fixed central surface charged group for gradually increasing surface potentials [10–12]. Dashed lines
are minimum distances between centers of central ion and counterion for relatively small (a) and
large (b) counterions. The numbers represent the values of surface potentials at an arbitrary scale.

The shadowed area is the association space: for relative potential 2, vertical shading, and for relative
potential 3, horizontal shading. (From Ref. 12.)



adsorption and electrokinetic data [13] showed that the binding of singly charges species
(HL�) is responsible for adsorption of salicylic acid on hematite [14]:

MOH þ HL�
! ML�

þ H2O KðHL�Þ ¼ expð��aF=RT Þ
�ðML�Þ

�ðMOHÞaðHL�Þ

ð6Þ

Adsorption of cadmium on goethite is described by the following mechanism [15]:

MO�
þ CdOHþ

!MO�
� CdOHþ Kað1;1Þ ¼ expð�aF=RT Þ

�ðMO��CdOHþÞ

�ðMO�ÞaðCdOHþÞ

ð7Þ

CdOHþ being the species that actually adsorb. The above equilibria are influenced by the
electrostatic potential affecting the state of bound ionic species. This potential will be
called the adsorption potential and denoted by �a.

III. STRUCTURE OF THE ELECTRICAL INTERFACIAL LAYER

Several models of the electrical interfacial layer (EIL) are described in the literature
[2,12,13] and all of them may be considered as a simplification of the general scheme
presented in Fig. 2. At first, we will distinguish between ‘‘planes’’ and ‘‘layers.’’ For a
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FIG. 2 Schematic presentation of the general model of the electrical interfacial layer.



simple case of a metal oxide in aqueous solution of a ‘‘neutral’’ electrolyte four equipo-
tential planes are postulated: (1) the 0-plane, characterized by �0 potential, in which sur-
face groups formed by interactions with potential determining ions are located; (2) the �-
plane, characterized by �� potential, in which centers of associated counterions are
located; (3) the d-plane (�d potential), which is the onset of the diffuse layer; and (4)
the electrokinetic slipping or shear plane (e-plane), characterized by � potential, which
is located within the diffuse layer close to the d-plane, and being the hypothetical border
between mobile and immobile parts of the diffuse layer. These four planes divide the
interfacial layer into four layers. The inner compact layer is the space between 0- and
�-planes. The borders of the outer compact layer are �- and d-planes, while the diffuse
part of the interfacial layer is divided into two parts, immobile (between d- and e-planes)
and mobile (between e-plane and infinity). In practice, this last layer extends up to several
Debye–Hückel lengths.

The general EIL model can be reduced to more simple models as follows. The triple
layer model (TLM), proposed by Davis, James, and Leckie [16–18], can be derived from
the general model by taking the slipping plane to be identical to the onset of the diffuse
layer, so that �d ¼ �. In other words, the assumption while using the Davis–James–Leckie
TLM (DJL–TLM) is that the distance between the onset of the diffuse layer and the
slipping (shear) plane equals zero. Accordingly, this model includes three layers as pre-
sented in Fig. 3.
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FIG. 3 Schematic presentation of the triple layer model of the electrical interfacial layer as pro-

posed by Davis, James, and Leckie [16–18], with assumption �d ¼ �.



Another version of the TLM assumes that the onset of the diffuse layer is at the �-
plane and consequently that �� ¼ �d. Such an approach results in a slipping-plane separa-
tion between 5 and 20 A

�

. This version of TLM is presented in Fig. 4.
The two versions of the TLM, as presented in Figs 3 and 4, cannot be experimentally

distinguished since the interpretation of experimental data requires only j�0j > j��j > j�j,
which can be achieved by both versions.

More reduced models are those of Helmholtz and Gouy–Chapman. The latter one
may be derived from the general model by taking the d-plane as identical to the 0- and �-
planes, while the classical Helmholtz model could be obtained formally taking the �- and
d-planet as identical and by ‘‘compressing’’ the diffuse layer. However, the experimental
data cannot be successfully interpreted by these two oversimplified concepts so that they
should be incorporated in the more general scheme: the Helmholtz model for the inner
compact layer and the Gouy–Chapman theory for the diffuse part of the interfacial layer.

The above schemes of EIL models consider the simple case of a metal oxide in a
neutral electrolyte solution. The situation changes when specific adsorption takes place. In
such a case, another ‘‘surface’’ reaction is present: binding of adsorbed ions with certain
surface groups. Also, the plane in which this adsorption takes place should be introduced.
In doing so two main possibilities appear: the introduction of a new a-plane or the
assumption that adsorbed ions are located in one of the already postulated planes (0-,
�-, or d-plane).
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FIG. 4 Schematic presentation of the triple layer model of the electrical interfacial layer, with
assumption �� ¼ �d.



According to the SCM, the total surface concentration of active surface sites in the
interfacial layer ð�tot) is the sum of all contributions. In the absence of specific adsorption:

�tot ¼ �ðMOHÞ þ �ðMOHþ

2
Þ þ �ðMO�Þ þ �ðMO��CþÞ þ �ðMOHþ

2
�A�Þ ð8Þ

The surface charge densities in the 0-plane (�0) and in the �-plane (��Þ are given by

�0 ¼ Fð�ðMOHþ

2
Þ þ �ðMOHþ

2
�A�Þ � �ðMO�Þ � �ðMO��CþÞÞ ð9Þ

�� ¼ Fð�ðMO��CþÞ � �ðMOHþ

2
�A�ÞÞ ð10Þ

Surface charge density in the diffuse layer ð�dÞ is equal in magnitude, but different in sign,
to the net charge bound to the surface ð�sÞ:

�s ¼ ��d ¼ �0 þ �� ¼ Fð�ðMOHþ

2
Þ � �ðMO�ÞÞ ð11Þ

As commonly accepted, the potential drop between the 0- and d-planes can be calculated
on the basis of the constant capacitance ðC1Þ of the Helmholtz layer:

C1 ¼
�0

�0 � ��
ð12Þ

The possible potential drop in the region between the �- and d-planes depends on the
capacitance of the second capacitor ðC2Þ as

C2 ¼
��

�� � �d

ð13Þ

The surface charge density in the diffuse layer ð�dÞ is, according to the Gouy–Chapman
theory, defined as

�d ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8RT"Ic

p
sinh

�dF

2RT
ð14Þ

where Ic is the ionic strength. The potential at the onset of the diffuse layer is accordingly
defined as

�d ¼
2RT

F
arcsinh

��dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8RT"Ic

p ð15Þ

IV. ZERO-CHARGE CONDITION

The zero-charge condition at the surface is commonly described by two quantities, i.e., the
isoelectric point (i.e.p.) and the point of zero charge (p.z.c.). The i.e.p. corresponds to the
condition at which � ¼ 0, and consequently to the zero effective charge: �s ¼ ��d ¼ 0, and
�d ¼ 0. For oxides it is given by the characteristic pH value (pHiep) which could be
experimentally obtained by common electrokinetic methods such as electrophoresis, elec-
tro-osmosis, by measuring the streaming potential or current, and on the basis of the
sedimentation potential [2, 19, 20]. The i.e.p. of conductive surfaces, as in the case of
metals, could be obtained by adhesion methods, showing that metallic surfaces have
pHiep values close to those of the corresponding oxides [21, 22].
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The p.z.c. is defined through the consumption of potential-determining ions from the
bulk of the solution. In the case of metal oxides it could be obtained by pH titration of the
suspension at different ionic strengths, by the pH-shift method, or by using the mass
titration method [23]. In the case of metal oxides the p.z.c. corresponds to the pH at which

�ðMOHþ

2
Þ þ �ðMOHþ

2
�A�Þ ¼ �ðMO�Þ þ �ðMO��CþÞ ð16Þ

In the absence of specific adsorption, and in the case of negligible ½�ðMOHþ

2
�A�Þ ¼ 0;

�ðMO��CþÞ ¼ 0] or symmetric [�ðMOHþ

2
�A�Þ ¼ �ðMO��CþÞ] counterion association, the p.z.c.

corresponds to �0 ¼ 0. In these systems all other interfacial potentials ð�0; ��; �dÞ are
equal to zero and also �ðMOHþ

2
Þ ¼ �ðMO�Þ. According to Eqs (2) and (3), the p.z.c. is related

to protonation and deprotonation equilibrium constants by

pHpzc ¼ 0:5 logðKp=KdÞ ð17Þ

There are two additional possibilities to define the zero-charge condition. The first of
them is the point of zero potential (p.z.p.) at which �0 ¼ 0, and the second one is char-
acterized by �0 ¼ 0. The p.z.p. is of special interest since it is available experimentally. One
would need to construct the proper metal oxide electrode and measure its potential with
respect to the reference electrode. The problem is that one cannot simply obtain the
absolute values of the surface potential, but, at low concentrations of a neutral electrolyte,
one may assume that the p.z.p. corresponds to the i.e.p. so that zero value of the surface
potential could be found. Once the system is calibrated one may follow the change in p.z.p.
as a function of concentration of specifically adsorbable ions. Such data may be extremely
useful to conclude on the EIL structure and on the mechanism of binding of ions that
chemically adsorb at the surface.

V. POTENTIALS IN THE ELECTRICAL INTERFACIAL LAYER

A. Electrokinetic Potential

The electrokinetic � potential could be evaluated from electrokinetic phenomena such as
electrophoresis, etc. The strict physical meaning of this quantity is given by the equation
used for its evaluation from the measured data, e.g., by the equation that relates � poten-
tial and the electrophoretic mobility of the particles. However, the intention is to obtain
the quantity which would correspond to the hypothetical slipping or shear plane. The
importance of � potential lies in the fact that it is a measurable quantity that can be
obtained independently. As will be described later, the only other potential that can be
measured is the surface potential �0. The methods that can be used for evaluation of �
potential are extensively explained in other chapters so that here only the relation of �
potential with other electrostatic potentials in the electrical interfacial layer will be
described.

The measured � potential could be the starting point in calculation of other electro-
static potentials. The direct connection between � potential, which is the potential some-
where in the diffuse layer, and the �d potential, which is characteristic of the onset of the
diffuse layer, is given by the Gouy–Chapman theory. The relationship between the poten-
tial at the onset of the diffuse layer ð�dÞ and the potential at a distance x from the onset of
the diffuse layer ð�xÞ is given by
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�d ¼ 2RTF�1 ln
expð�x
Þ þ tanhðF�x=4RTÞ

expð�x
Þ � tanhðF�x=4RTÞ

� �
ð18Þ

with 
 being the Debye–Hückel reciprocal length:


 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2F2Ic
"RT

s
ð19Þ

where Ic is the ionic strength, and permittivity " is the product of the relative value for the
medium "r, and the permittivity of the vacuum "0. It is obvious that calculated potentials
depend on the value of permittivity, i.e., on the relative permittivity of the medium. In the
calculations the value of the relative permittivity of bulk water is commonly used, which is
questionable since the interfacial water may have different properties, e.g., lower permit-
tivity. According to Eq. (18), the difference between � potential and �d is determined by
the slipping-plane separation distance so that the use of the bulk water permittivity will
lead to the apparent value of the separation distance.

The relationship between � potential and �d potential is extensively discussed in the
literature. Some authors [24–26] believe that the slipping-plane separation distance is
negligible, so that � � �d, while others [27–35] suggest that such an approximation
would cause considerable error, especially in systems at high ionic strengths.

In the discussion regarding the slipping-plane separation it is worth noting that
Eversole and coworkers [28, 29] suggested a method for its evaluation by interpreting �-
potential dependency on the ionic strength on the basis of the Gouy–Chapman theory.
The Gouy–Chapman relationship (Eq. 18) can be linearized as

ln tanh
F�

4RT

� �
¼ ln tan

F�d

4RT

� �
� 
 s ð20Þ

with the slope providing the slipping-plane separation (s). Such a procedure assumes
constant potential �d (at constant activity of potential-determining ions) despite increase
in the electrolyte concentration. However, knowing that �d decreases with ionic strength,
mainly due to counterion association, no linearity could be expected and the slope of the
tangent at a certain point should be always higher than the slipping-plane separation.

Therefore, the Eversole method determines only the upper possible limit of the value
of the slipping-plane separation s. Anothe possibility for evaluation of s is based on the
comparison of adsorption data with electrokinetic measurements. By using this approach
[27], the results obtained with an iminodiacetic acid/hematite system yielded a value of
s ¼ 16 A

�

. For other systems, such as hematite/water, hematite/water–methanol, and
hematite/water–ethanol with neutral electrolytes [30, 31], a similar value was obtained
ðs ¼ 12  3 A

�

Þ. By modeling the data obtained by potentiometric measurements, Healy
and White [32] obtained a slipping-plane separation (at higher ionic strengths) of 20 A

�

.
The slipping-plane distance can be calculated also from the pH dependence of the �
potential in the vicinity of the i.e.p. at different ionic strengths [33]; for chromium hydro-
xide the slipping-plane distance was thus determined to be 17–20 A

�

. Harding and Healy
[34] interpreted the electrokinetic measurements of latex particles at low ionic strengths
and obtained a slipping-plane separation of 20 A

�

. Using electrokinetic measurements of
latex particles, Chow and Takamura [35] estimated the slipping-plane separation to be
6 A

�

. The results on the adsorption of organic acids on metal oxides were interpreted by
means of simultaneous analysis of adsorption and electrokinetic measurements [14, 15, 36,
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37] and a slipping-plane separation of 15  5 A
�

was obtained. All the results mentioned
suggest that the slipping-plane separation should not be neglected, and that its value is
somewhere between 5 and 20 A

�

. When neglecting the slippping-plane separation one is
forced to introduce the potential drop between the �-plane in which counterions are
associated and the onset of the diffuse layer and use the DJL–TLM with the outer-layer
capacitor. The reason for such a refinement is that adsorption data require higher poten-
tials to which adsorbed species are exposed with respect to the measured � potential. At
present, one cannot experimentally distinguish between these two different approaches so
that both concepts, introduction of the second capacitor and the slipping-plane separa-
tion, are in use.

The practical use of the � potential could be either on the quantitative or semiquan-
titative level [19, 20]. In the latter case one can, e.g., conclude on the sign of charge of
particles and predict the conditions required for colloid stability. On the quantitative level
one may use the electrokinetic data [14, 15, 36, 37] to calculate �d potential, which is then
useful in the interpretation of the ionic adsorption equilibria and the mutual particle
interactions. Electrokinetic potentials may be converted into electrokinetic charge (den-
sity), which provides information regarding the effective charge of the particle moving in
the electric field.

The i.e.p. is an important characteristic of the solid phase in contact with the liquid.
This makes electrokinetic methods popular tools in interfacial chemistry. In the case of
specific adsorption the i.e.p. moves from its original value. Specifically adsorbed anions
would change the i.e.p. to lower, and cations to higher, pH values. The p.z.c. moves in the
opposite direction with respect to the i.e.p. These effects may be used to detect the pre-
sence of specific adsorption. Classical electrokinetic methods cannot be used for conduc-
tive metallic surfaces, with the exception of metals that can be prepared in colloidal form
so that electrophoresis can be applied. For other cases one may apply adhesion methods
[21, 22], which show that i.e.p. values of metals are approximately equal to those of the
corresponding oxides. The adhesion method was found to be useful for characterization of
the oxide layer at the metal surface and it is thus applicable in studying corrosion processes
[38].

B. �d Potential

The potential at the onset of the diffuse layer ð�dÞ cannot be obtained by direct measure-
ments. It is related to both the potential affecting the state of the bound ions in the outer
plane of the compact layer ð�� or �a) and to the experimental � potential. In the case of
neutral electrolytes, according to the DJL–TLM presented in Fig. 3, j�dj < j��j and
�d � �. On the other hand, according to the second version of the TLM presented in
Fig. 4, �d � �� and j�dj > j�j. Considering these two approaches one may conclude that
j��j � j�dj � j�j. Also, it is clear that the �dðpH) function should follow the experimental
�-potential dependency on pH, being somehow higher in magnitude. The difference should
be more pronounced at higher ionic strengths. With respect to the surface potential ð�0Þ,
the potential at the onset of the diffuse layer ð�dÞ should be lower in magnitude. For
further discussion, we shall use the second version of the TLM (Fig. 4) with the assump-
tion that �� ¼ �d and j�dj � j�j, i.e., s � 0. In such a case:

�d ¼ �� ¼ �0 �
�0

C
ð21Þ
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which means that the �d(pH) function follows the �0(pH) function up to a certain
extent. As will be shown in Section V.D, �0 decreases with pH. This function is
approximately linear, with a slope lower than the Nernstian one. The second term
in Eq. (21) depends on the surface charge density in the 0-plane, which results in
the leveling of the �d(pH) function. At high electrolyte concentration the magnitude
of �0 increases, mainly due to counterion association, so that �d is significantly reduced
with respect to �0. In Figs 5 and 6 the effect of pH [39] and ionic strength [40] on the
�d potential is presented.

In Fig. 7 the effect of pH on the �d potential in the case of a salicylic acid/hematite
system at two different ionic strengths is presented [36]. For comparison, the �(pH) func-
tion is also displayed.

The significance of the potential at the onset of the diffuse layer, �d, lies in the fact
that it determines the equilibrium in the diffuse layer. This potential represents the
overall (net) charge of colloid particles and thus determines their aggregation kinetics.
According to the above discussion, the electrostatic energy barrier between two inter-
acting particles will be reduced by addition of electrolytes for two reasons. At first the
association of counterions will decrease the �d potential, and second the diffuse layer
will be more ‘‘compressed,’’ which means that ions will be distributed more closely to
the d-plane. In a 1:1 electrolyte systems all ions may be considered to behave similarly in
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FIG. 5 Effect of ionic strength on the �d(pH) function calculated for �-Al2O3=NaClðaqÞ system on
the basis of the SCM. Dashed line represents the Nernstian slope. (Data from Ref. 39.)



the diffuse layer so that no difference may be expected between effects of, e.g., sodium
nitrate and potassium perchlorate. However, the surface association will depend on the
nature of the ions, so that counterions characterized by higher association equilibrium
constants will reduce �d to a greater extent and will promote the coagulation process
more efficiently. According to the SCM this effect will be more pronounced for counter-
ions of higher charge number through their association equilibrium constant and the
exponential term in the equilibrium relationship. Association of cations with negative
surface sites is described by

MO�
þ Czþ

! MO�
� Czþ K ¼ expðz��F=RTÞ

�ðMO�
� Czþ

Þ

aðCzþ
Þ�ðMO�Þ

ð22Þ

Another approach, based on the Bjerrum concept, would suggest that ions of higher
charge exhibit extended association space and consequently higher values of association
equilibrium constants and more pronounced association. Accordingly, both theoretical
approaches would predict that counterions of higher charge number reduce �d potential
more efficiently so that the critical coagulation concentration of these ions will be lower,
which is known as the Schulze–Hardy rule [2,12].
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FIG. 6 Effect of ionic strength on the �d potential at pH 4, calculated for -Fe2O3=NaCl(aq) and
-Fe2O3=NaNO3(aq) systems. (Data from Ref. 40.)



C. �� and �a Potentials

The potential affecting the state of associated counterions in the interfacial layer ð��) is
defined by Eqs (4) and (5). This potential cannot be obtained by direct measurements but
rather indirectly by interpreting the adsorption equilibrium data. The problem is that in
most of cases adsorption of counterions is not measured directly but rather deduced from
experimental �0(pH) functions. According to the DJK–TLM, as presented in Fig. 3, the ��
potential is higher in magnitude than the �d potential. The difference between these two
potentials is proportional to the charge density in the �-plane, and the proportionality
constant is the reciprocal capacity of the assumed capacitor with �- and d-planes ðC2Þ.
High C2 values would correspond to closer proximity of the �- and d-planes and result in
�� � �d. Within the second simplification of the general scheme of the EIL (Fig. 4) C2 !

1 and �� ¼ �d, so that the �� potential could be deduced from electrokinetic measure-
ments via Eq. (18).

A similar situation applies for the ‘‘adsorption potential’’ �a. If specifically adsorbed
ions are not located in the 0-plane, one may relate �a to the �0 potential, introducing the
capacitor C1 and the approximation �a � �d.

The interesting feature of the �� and �a potentials is the ‘‘charge reversal.’’ If the
concentration of specifically adsorbed ions is high with respect to �0 or if the adsorbed ions
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FIG. 7 Effect of ionic strength on �d (heavy lines) and � potential (thin lines) calculated for -
Fe2O3/salicylic acid system. Dashed line represents the Nernstian slope. (Data from Ref. 36.)



are of higher charge number, the signs of potentials �0 and �� (or �a) could be opposite.
Such a situation is demonstrated in Fig. 8. Again, �� (�aÞ are close (or equal) to the
potential at the onset of diffuse layer �d.

D. �0 Potential

Potential �0 will be defined here by Eqs (2) and (3) as the potential that determines the
equilibrium involving interactions of surface groups with potential determining ions. For
metal oxides, according to the 2-pK model, Eqs (2) and (3), the following equation could
be derived:

�0 ¼
RT

2F
ln
Kp

Kd

�
RT

2F
ln
�ðMOHþ

2
Þ

�ðMO�Þ

þ
RT

F
ln aðHþÞ ð23Þ

¼
RT ln 10

F
ðpHpzc � pHÞ �

RT ln 10

2F
log

�ðMOHþ

2
Þ

�ðMO�Þ

while the 1-pK model, Eq. (1), results in
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FIG. 8 Schematic presentation of electric interfacial layer in the case of ‘‘charge reversal’’ due to
the specific adsorption of anions. (From Ref. 13.)



�0 ¼
RT

F
lnK �

RT

F
ln
�
ðMOHþ1=2

2
Þ

�ðMOH�1=2Þ

þ
RT

F
ln aðHþÞ ð24Þ

¼
RT ln 10

F
ðpHpzc � pHÞ �

RT ln 10

F
log

�
ðMOHþ1=2

2
Þ

�ðMOH�1=2Þ

In both cases the slope of the �0(pH) function should be lower than the Nernstian one,
given by RT ln 10=F . Deviation from the Nernst equation is due to the pH dependence of
the ratio of surface concentrations of positive and negative groups. Below the p.z.c. the
positive groups prevail while at higher pH values their concentration is reduced. Negative
groups exhibit the opposite trend. Since the surface charge is given by the difference
between surface concentrations of positive and negative groups, and the deviation from
the Nernst equation by their ratio, one can conclude that the surface will be closer to
Nernstian at higher values of �ðMOHþ

2 Þ and �ðMO�
Þ. This condition may be achieved

with systems characterized by higher values of protonation and deprotonation equilibrium
constants and low values of the counterion association equilibrium constants. Also, the
higher value of the total concentration of active surface sites ð�totÞ would lead to the
potential being closer to Nernstian. However, �tot is limited by the surface structure
and could have significantly higher values only if surface reactions take place in a layer
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FIG. 9 Effect of ionic strength on the �0(pH) function calculated for -Fe2O3=KNO3(aq) system;

logKp ¼ 6:4, logKd ¼ �10:5, �tot ¼ 1 � 10�5 mol m�2. Dashed line represents Nernstian slope.
(Data from Ref. 1.)



but not in the plane, e.g., in the case of a porous surface or, as in the case of glass, when a
thin ‘‘gel’’ layer is formed.

The �0(pH) function could be analyzed quantitatively by numerical simulation [1, 24,
26, 39, 41–43] based on the SCM using the equilibrium parameters obtained by interpreta-
tion of the adsorption measurements, i.e., of the �0(pH) function. Such an example is
presented in Fig. 9, which shows that the �0(pH) function is approximately linear and that
deviation from the Nernst equation is more pronounced at higher ionic strengths [1].

Depending on the values of the equilibrium parameters, a significant deviation from
linearity in the region around the p.z.c. could be observed. According to Fig. 10, this
deviation is significant for low values of the equilibrium constants Kp and Kd, and is more
pronounced at higher ionic strengths [39].

The above theoretical speculations may be tested, since the �0 potential can also be
obtained by direct measurements. For that purpose two approaches are in use: (i) applica-
tion of field-effect transistors (FETs) [44–47] and (ii) measurements of the electrode poten-
tial of a metal covered by an oxide layer [48–55]. In both cases the measured quantity is the
total potential drop in the circuit. Assuming that the only potential that depends on pH is
the potential drop within the interfacial layer one may conclude that the measured poten-
tial difference is equal to the relative value of the surface potential. The absolute scale of
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FIG. 10 Effect of magnitudes of Kp and Kd values on the �0(pH) function for �-Al2O3/electrolyte
system. Dashed line represents Nernstian slope. (Data from Ref. 39.)



the surface potential can be obtained by locating its zero value at the p.z.c. and/or i.e.p.
The procedure is correct in the absence of specific adsorption and in the case of negligible
or symmetric counterion association. In this case these two zero points coincide.

The origin of the surface potential may be a redox process involving ions from the
solid phase [48–50] or the surface complexation as described by Eq. (1) or Eqs (2) and (3)
[51–55]. Redox equilibrium will be explained by means of the example of manganese
dioxide [48]. The following reactions may take place at the surface:

MnO2 þ Hþ
þ e� ! MnOOH ð25Þ

MnO2 þ 4Hþ
þ 2e� ! Mn2þ

þ 2H2O ð26Þ

Since both reactions involve Hþ ions, their equilibrium should depend on pH. In the case
of reaction (25) the following equation could be derived:

E ¼ Eo
þ
RT ln 10

F
log aðHþÞ ¼ Eo

�
RT ln 10

F
pH ð27Þ

where Eo is the standard value of the potential. In the second case, the potential for
reaction (26) is equal to

E ¼ Eo
þ
RT ln 10

2F
log

a4
ðHþÞ

aðMn2þÞ

¼ Eo
�
RT ln 10

2F
log aðMn2þÞ �

2RT ln 10

F
pH ð28Þ

According to the above analysis, the slope of the function E(pH) should be either RT ln
10=F or 2RT ln 10=F , depending on the reaction being responsible for the equilibrium at
the surface. Experimental results show that in the acidic region ðpH < 6Þ the slope is
between �90 and �100 mV which corresponds to mechanism (26) and Eq. (28). The
slope is lower in magnitude than 120 mV, which may be due to slight changes in the
local equilibrium concentration of Mn2þ ions. In the basic region ðpH > 7Þ the slope is
found to be �60 mV, in accordance with the Nernst equation [Eq. (27)] for equilibrium
(25). As expected, in this region perfect agreement with Nernstian behavior is obtained,
because no dissolved species are involved in the reaction so that only the activity of Hþ

ions is responsible for the equilibrium.
Surface complexation is a more complicated mechanism with respect to the redox

process. In the simplest case of an oxide in contact with ‘‘neutral electrolyte solution’’
four surface reactions take place, Eqs (2)–(5). Each reaction influences others through sur-
face charge and consequently surface potential. They also compete for active surface sites. It
may be concluded that surface complexation is responsible for the development of surface
potential in the absence of redox processes. According to the SCM, the slope of the �0(pH)
function should be either close to Nernstian (�59:2mV at 258C) or lower, this decrease being
more pronounced at higher ionic strengths. Also, depending on the nature of the surface
sites, a minimum of the slope can be observed in the zero-charge region. In some cases it is
not simple to conclude on the nature of the process responsible for the development of the
surface potential. For example, in the case of a redox process involving the same number of
Hþ ions and electrons the function �0(pH) will be linear, with slope RT ln 10=F . Similar
observations may be found in the case of the surface complexation mechanism. However,
the latter case can be recognized through the sensitivity on addition of electrolyte.

In the literature one can find several examples of ‘‘open-circuit potential’’ measure-
ments with metal oxide electrodes. Some of them are presented in Fig. 11. Electrodes
made by Penners et al. [52], by depositing hematite on platinum wire, showed behavior
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close to Nernstian in the pH range 6–10 in 5 � 10�3 mol dm�3 KCl solution. In the
acidic region below pH 6 the magnitude of the slope decreased significantly. Avena et
al. [53] prepared a Ti/TiO2 electrode and showed that surface potential changed linearly
with pH with a slope of �39 mV, independent of ionic strength. Again, in the acidic
region below pH 5 the magnitude of the slope was decreased. This finding was confirmed
by the interpretation of adsorption data [56]. In the case of a ZrO2 electrode, prepared
by Ardizzone and Radaelli [54], the results were sensitive to thermal treatment.
However, the electrode prepared at 4008C showed reversible and fast response with a
slope of �59 mV. Kallay and Čakara [55] prepared an ice electrode and found the slope
to be lower in magnitude than the Nernstian one (from �40 to �46 mV at 08C) with the
maximum of its magnitude at the i.e.p. of ice at pH � 4. The important requirement for
these electrodes is nonporosity of the oxide layer since in the opposite case the electrode
would behave as the oxide electrode of the second kind, the potential of which would
depend on pH through the solubility.

These results correspond to the surface complexation mechanism. However, in the
case of manganese dioxide [48], iridium dioxide [49], and palladium oxide [50] the redox
process was found to be responsible for the development of the surface potential.
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FIG. 11 ‘‘Open-circuit potential’’ of different metal oxide electrodes: (�) Ptj-
Fe2O3j5 � 10�3 mol dm�3 KCl, 208C (data from Ref. 52); (^) TijTiO2j2 � 10�3 mol dm�3 KNO3,

258C (data from Ref. 53.); (&) PtjZrO2j1 � 10�3 mol dm�3 KNO3 or NaClO4, � 258C (data from
Ref. 54). Dashed line represents the Nernstian slope.



There are numerous reports, e.g., Refs 44–47, of direct measurement of �0 using
FETs. One purpose of the work was to prepare an ion-selective FET electrode [44]. Here,
we will focus on the results that contribute to our knowledge of the surface complexation
equilibria. Most of the reports deal with SiO2 and Al2O3 surfaces exposed to aqueous
electrolyte solutions [45–47]. Cichos and Geidel [46] examined the effect of electrolytes on
the surface potential of silica and alumina. In the case of silica, the minimum in the
magnitude of the slope was found at pH � 7, and the region of lower slope significantly
extended at higher concentrations of electrolytes. Alumina showed a very good linearity of
the �0(pH) function with a slope independent of electrolyte concentration. Bousse et al.
[47] examined in detail the deviation of the alumina surface from Nernstian behavior and
found a minimum magnitude of the slope ðjd�0j=dpH) at pH 8, which is the p.z.c. of
alumina. The results were successfully intrepreted by the SCM. Figure 12 demonstrates the
pH dependence of the surface potential and the slope for alumina.
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FIG. 12 Measurements of surface potential of �-Al2O3 by FET device in (*) 0.1 mol dm�3 NaCl;

(�) 0.1mol dm�3 NaH2PO4=Na2HPO4. Dashed line represents the Nernstian slope. (Data from Ref.
47.)



FIG. 13 Effect of specific adsorption on �0(pH) and �d(pH) functions for -Fe2O3/salicylic acid
system. Asterisk represents values for pure hematite in absence of specific adsorption. (Data from
Ref. 14.)

FIG. 14 Effect of specific adsorption on �0(pH) and �d(pH) functions for Cd2þ/goethite system.
Asterisk represents values for pure goethite in absence of specific adsorption. (Data from Ref. 15.)



VI. THE SHIFT OF ‘‘ZERO POINTS’’ IN THE CASE OF SPECIFIC
ADSORPTION

In the simplest case of metal oxides in aqueous solutions of neutral elecrolytes (with ions
that do not show affinity towards adsorption) all four ‘‘zero points’’ coincide so that
pHiep ¼ pHpzc ¼ pHpzp ¼ pHð�0 ¼ 0Þ. Any specific adsorption will shift these ‘‘zero
points’’ differently. For example, specific adsorption of anions will shift the i.e.p. to
lower pH values, but the p.z.c. in the opposite direction. Such a finding is in accordance
with all variation of the SCM. However, the possible shift in pHpzp would depend on the
mechanism of binding of these ions and on the structure of the EIL so that this informa-
tion may be used to study these systems. This hypothesis is worth examining theoretically,
because �0 is a measurable quantity.

In the case of specific adsorption, when some ions are chemically bound to certain
surface groups, Eqs (2) and (3) are still valid. However, specific adsorption will change
the zero point and may also indirectly affect the ratio of surface concentrations of
positive and negative surface groups. Figure 13 represents the results obtained by the
analysis of adsorption and electrokinetic data for a salicylic acid/hematite system [14]. It
is obvious that the i.e.p. shifts towards lower pH values after adsorption of anions while
the p.z.c. shifts in the opposite direction. The point of zero potential has the same value
as the i.e.p. and p.z.c. before adsorption. In the case of cation adsorption, presented in
Fig. 14 for the Cd2þ/ goethite system [15], it is shown that the i.e.p. and p.z.c. shift in
expected different directions, and that the p.z.p. is shifted in the same direction as the
p.z.c.
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10. N Kallay, M Tomić. Langmuir 4:559, 1988.
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56. N Kallay, D Babić, E Matijević. Colloids Surfaces 19:457, 1986.

Electrostatic Potentials in Interfacial Layer 121



This Page Intentionally Left Blank



5
Electrophoresis of Charged Particles and
Drops

HIROYUKI OHSHIMA Science University of Tokyo, Tokyo, Japan

I. INTRODUCTION

The motion of charged colloidal particles in an applied electric field, which is called
electrophoresis, depends on their zeta potential or electric charge [1–7]. In this chapter
we derive equations relating the electrophoretic mobility (the electrophoretic velocity
per unit applied electric field) to the zeta potential or electric charges of various types
of colloidal particles (hard particles, liquid drops, and soft particles) in a liquid con-
taining an electrolyte in an applied electric field both for dilute and concentrated
suspensions. We deal mainly with static electrophoresis, i.e., electrophoresis of colloi-
dal particles when a static electric field is applied. We also consider dynamic electro-
phoresis and other electrokinetic phenomena such as sedimentation potential and
conductivity of suspensions of colloidal particles with particular emphasis on an
Onsager relationship holding between electrophoretic mobility and sedimentation
potential.

II. SMOLUCHOWSKI’S EQUATION

The electrophoretic mobility � of a spherical particle moving with a velocity U in an
electrolyte solution in an applied electric field E is given by the ratio U=E, where U ¼

jU j and E ¼ jEj. The most widely employed formula relating the electrophoretic mobility
� of a colloidal particle to its zeta potential � is Smoluchowski’s formula (8),

� ¼
"r"o

�
� ð1Þ

Here, "r and � are, respectively, the relative permittivity and the viscosity of the electrolyte
solution, and "o is the permittivity of a vacuum. The zeta potential � is defined as the
potential at the plane where the liquid velocity u relative to the particle (u ! �U far from
the particle) is 0. This plane is called the slipping plane or shear plane. The slipping plane
does not necessarily coincide with the particle surface. Only if the slipping plane is located
at the particle surface, does the zeta potential � become equal to the surface potential  o.
In the following we treat the case where � ¼  o.
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Smoluchowski’s equation (1) is readily derived from the condition of balance
between electric and viscous forces acting on the particle, as described below. Both the
liquid velocity u and electric potential  decay (nearly exponentially) over the distance of
the order of the Debye length 1=� from the particle surface (Fig. 1), � being the Debye–
Hückel parameter. For a general electrolyte composed of N ionic mobile species of valence
zi and bulk concentration (number density) n1i , � is defined by

� ¼
1

"r"okT

XN
i¼1

zie
2n1i

 !1=2

ð2Þ
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FIG. 1 Distribution of ions (a), potential  ðxÞ (b), and liquid velocity uðxÞ (c) near the surface of a
solid particle moving with a velocity U in an applied electric field E; x is the distance measured from
the particle surface,  o is the surface potential of the particle, which is approximately equal to the

zeta potential �, � ¼ U=EðU ¼ jU j and E ¼ jEjÞ is the electrophoretic mobility, and 1=� is the
Debye length.



where e is the elementary electric charge, k is Boltzmann’s constant, and T is the absolute
temperature. Let � be the charge density of the particle surface. The magnitude of the
electric force Fe per unit area acting on the particle surface is then

Fe ¼ �E ð3Þ

Since the electric potential  varies from  o to zero with a decay constant ��1 (Fig. 1), the
electric field at the particle surface is approximately given by  o=ð�

�1
Þ. This field, which is

generated by �, is equal to �="r"o. Thus, we have  o=ð�
�1
Þ ¼ �="r"o, viz.,

 o ¼
�

"r"o�
ð4Þ

The magnitude of the viscous force Fh acting on the particle surface per unit area, on the
other hand, is given by the product of the viscosity � and the velocity gradient at the
particle surface, the magnitude of which, in turn, is approximately given by U=ð��1

Þ. Thus,

Fh ¼ �U=ð��1
Þ ð5Þ

In the stationary state, these two forces must be equal: Fe ¼ Fh. Thus, if the surface
potential  o is identified as the zeta potential �, then Smoluchowski’s mobility formula
(1) follows from Eqs (3)–(5).

Smoluchowski’s equation (1) has been derived on the basis of some approximations.
This formula, however, is the correct limiting mobility equation for very large particles
and is valid irrespective of the shape of the particle provided that the dimension of the
particle is much larger than the Debye length 1=�, and thus the particle surface can be
considered to be locally planar. For a sphere with radius a, this condition is expressed by
�a� 1.

III. HENRY’S EQUATION

The electrophoretic mobility of very small spheres (�a	 1Þ is given by Hückel’s equation [9]:

� ¼
2"r"o

3�
� ð6Þ

The difference between Smoluchowski’s equation (1) and Hückel’s equation (6) by a factor
of 2/3 can be explained as follows. Consider a spherical colloidal particle of radius a. The
origin of the spherical polar co-ordinate system ðr; 
; �Þ is held fixed at the center of the
particle. The applied electric field is distorted in the presence of a colloidal particle in such
a way that the applied field becomes parallel to the particle surface. The potential of the
applied electric field, which is �Er cos 
 in the absence of the particle, is distorted to
become

�E rþ
a3

2r2

 !
cos 
 ð7Þ

where the second term corresponds to the distortion of the applied electric field due to the
presence of the particle. It follows from Eq. (7) that the potential of the applied field near
the particle surface r � a is larger than the original undistorted field by a factor of 3/2. The
electrophoretic mobility is determined mainly by electrolyte ions in the double layer (of
thickness 1=�Þ. As is seen in Fig. 2, for thick double layers (�a	 1Þ most electrolyte ions in
the double layer experience an undistorted original field. For thin double layers (�a� 1),
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on the other hand, most electrolyte ions in the double layer experience a distorted field. This
is the reason why Smoluchowski’s equation (1) differs from the Hückel equation (6) by 3/2.

Henry [10] derived the mobility equations for spheres of radius a and an infinitely
long cylinder of radius a, which are applicable for low � and any value of �a. Henry’s
equation for the electrophoretic mobility � of a spherical colloidal particle of radius a with
a zeta potential � is expressed as

� ¼
"r"o

�
�f ð�aÞ ð8Þ

with

f ð�aÞ ¼ 1 � e�af5E7ð�aÞ � 2E5ð�aÞg ð9Þ

where En (�aÞ is the exponential integral of order n and f ð�aÞ is called Henry’s function. As
�a! 1, f ð�aÞ ! 1 and Eq. (8) tends to Smoluchowski’s equation (1), while if �a! 0,
then f ð�aÞ ! 2=3 and Eq. (8) becomes Hückel’s equation (6). Ohshima [11] has derived the
following simple approximate formula for Henry’s function f ð�aÞ with relative errors less
than 1%:

f ð�aÞ ¼
2

3
1 þ

1

2 1 þ
2:5

�af1 þ 2 expð��aÞg

� �3

2
6664

3
7775 ð10Þ
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FIG. 2 The applied electric field is distorted so as to be parallel to the particle surface. For thick
double layers (�a	 1Þ (a) most electrolyte ions in the double layer experience an undistorted original

field. For thin double layers (�a� 1Þ (b), most electrolyte ions in the double layer experience a
distorted field.



For the case of a cylindrical particle, the electrophoretic mobility depends on the
orientation of the particle with respect to the applied electric field. When the cylinder is
oriented parallel to the applied electric field, its electrophoretic mobility � is given by
Smoluchowski’s equation (1), viz.,

�== ¼
"r"o

�
� ð11Þ

If, on the other hand, the cylinder is oriented perpendicularly to the applied field, then the
mobility depends not only on � but also on the value of �a. Henry [10] showed that f ð�aÞ
for a cylindrical particle of radius a oriented perpendicularly to the applied field is given by
[see Eq. (3) in Ref. 12].

�? ¼
"r"o

�
�f ð�aÞ ð12Þ

with

f ð�aÞ ¼ 1 �
4ð�aÞ4

K0ð�aÞ

ð1
�a

K0ðtÞ

t5
dtþ

ð�aÞ2

K0ð�aÞ

ð1
�a

K0ðtÞ

t3
dt ð13Þ

where K0ðxÞ is the zero-order modified Bessel function of the second kind. Ohshima [13]
obtained an approximate formula for Henry’s function for a cylinder:

f ð�aÞ ¼
1

2
1 þ

2

1 þ
2:55

�af1 þ expð��aÞg

� �2

2
6664

3
7775 ð14Þ

the relative error being less than 1%. As �a! 1, f ð�aÞ ! 1 and Eq. (14) gives
Smoluchowski’s equation (1), while if �a! 0, then f ð�aÞ ! 1=2. For a cylindrical particle
oriented at an arbitrary angle between its axis and the applied electric field, its electro-
phoretic mobility averaged over a random distribution of orientation is given by [14, 15]

�av ¼
1

3
�== þ

2

3
�? ð15Þ

where �== is the mobility for parallel orientation given by Smoluchowski’s formula (1) and
�? is the mobility for perpendicular orientation given by Eq. (14).

Figure 3 compares Henry’s equations for a sphere and a cylinder.

IV. ACCURATE MOBILITY EXPRESSION

Henry’s mobility equation (8) assumes that the double-layer potential distribution around
a spherical particle remains unchanged during electrophoresis. For high zeta potentials,
the double layer is no longer spherically symmetrical. This effect is called the relaxation
effect (Fig. 4). Equation (8) does not take into account the relaxation effect and thus this
equation is correct to the first order of zeta potential �. Full electrokinetic equations
determining electrophoretic mobility of spherical particles with arbitrary values of zeta
potentials were derived independently by Overbeek [16] and Booth [17]. Wiersema et al.
[18] solved the equations numerically using an electronic computer. The computer calcula-
tion of the electrophoretic mobility was considerably improved by O’Brien and White [19].
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FIG. 3 Henry’s function f ð�aÞ for a spherical particle and a cylindrical particle of radius a as a
function of scaled radius �a. The cylinder is oriented parallel (�==Þ or perpendicularly (�?) to the

applied field; �av ¼ ð�== þ 2�?Þ=3 [Eq. (15)].

FIG. 4 The relaxation effect. The electrical diffuse double layer around a spherical particle is
spherical for low zeta potentials (a), but is no longer spherical for high zeta potentials (b).



Approximate analytic mobility expressions, on the other hand, have been proposed by
several authors [16, 17, 20–22].

Ohshima et al. [22] showed that analytic approximate solutions to electrokinetic
equations are most easily derived by introducing the electrochemical potential of ionic
species, which are

�r � r � uþ rpþ elr ¼ 0 ð16Þ

r � u ¼ 0 ð17Þ

vi ¼ u�
1

�i
r�i ð18Þ

r � ðniviÞ ¼ 0 ð19Þ

elðrÞ ¼
XN
i¼1

zieniðrÞ ð20Þ

�iðrÞ ¼ �1
i þ zie ðrÞ þ kT ln niðrÞ ð21Þ

� ðrÞ ¼ �
elðrÞ

"r"o

ð22Þ

where pðrÞ is the pressure, elðrÞ is the charge density resulting from the mobile charged
ionic species given by Eq. (20),  ðrÞ is the electric potential, �iðrÞ and niðrÞ are, respectively,
the electrochemical potential and concentration (the number density) of the ith ionic
species, and �1

i is a constant term in �iðrÞ. Equations (16) and (17) are the Navier–
Stokes equation and the equation of continuity for an incompressible flow. Equation
(18) expresses that the flow viðrÞ of the ith ionic species is caused by the liquid flow uðrÞ
and the gradient of the electrochemical potential �iðrÞ, given by Eq. (21). Equation (19) is
the continuity equation for the ith ionic species, and Eq. (22) is Poisson’s equation.
Ohshima et al. [22] derived an accurate analytic approximate expression for the elctro-
phoretic mobility of a spherical colloidal particle of radius a and zeta potential � in a
symmetrical electrolyte of valence z and bulk concentration n with a relative error of less
than 1% for 10 � �a � 1, which is

Em ¼ sgnð�Þ
3

2
� �

3F

1 þ F
H þ

1

�a
�18 tþ

t3

9

 !
K þ

15F

1 þ F
tþ

7t2

20
þ
t3

9

 !("

� 6ð1 þ 3 ~mmÞð1 � e�
~��=2
ÞGþ

12F

ð1 þ FÞ2
H þ

9 ~��

1 þ F
ð ~mmGþmHÞ

�
36F

1 þ F
~mmG2

þ
m

1 þ F
H2

� �)#
ð23Þ

with

Em ¼
3�ze

2"r"okT
� ð24Þ

� ¼
zej�j

kT
ð25Þ
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F ¼
2

�a
ð1 þ 3mÞðe

~��=2
� 1Þ ð26Þ

G ¼ ln
1 þ e�

~��=2

2
ð27Þ

H ¼ ln
1 þ e�=2

2
ð28Þ

K ¼ 1 �
25

3ð�aþ 10Þ
exp �

�a

6ð�a� 6Þ
~��

� �
ð29Þ

t ¼ tanhð ~��=4Þ ð30Þ

m ¼
2"r"okT

3�z2e2
� ð31Þ

~mm ¼
2"r"okT

3�z2e2
~�� ð32Þ

where Em is the scaled electrophoretic mobility; sgn (�)¼ þ1 if � > 0 and �1 if � < 0; ~�� is
the magnitude of the scaled zeta potential; � and ~�� are, respectively, the ionic drag
coefficients of counterions and coions; and m and ~mm are the corresponding dimensionless
quantities. The drag coefficient � of an ionic species is further related to the limiting
conductance �8 of that ionic species by

� ¼
NAe

2
jzj

�8
ð33Þ

where NA is Avogadro’s number. For Kþ and Cl� ions, for example, m ¼ 0:176
(�8 ¼ 73:5 � 10�4 m2 ��1mol�1) and m ¼ 0:169 (�8 ¼ 76:3 � 10�4 m2 ��1mol�1),
respectively.

In Fig. 5 we plot the mobility–zeta potential relationship for KCl for several values
of �a. The �a ¼ 1 and �a ¼ 0, which are both given by straight lines, correspond to
Smoluchowski’s equation (1) and Hückel’s equation (6), respectively. It is seen that
there is a mobility maximum, which is due to the relaxation effect. That is, as the zeta
potential increases, the tangential flow of counterions in the double layer along the particle
surface increases. This surface current tends to equalize the potential around the surface
and hence retards the motion of the particle. According to the results of the computer
calculation by O’Brien and White [19], there is a mobility maximum, when mobility is
plotted as a function of � for �a > 3. It is also seen that the mobility tends to a limiting
value as �! 1, which is given by

Em ! sgnð�Þ3 ln 2 þO
1

�a

� �
ð34Þ

V. CONCENTRATED SUSPENSION

So far we have discussed electrokinetic processes in a dilute suspension of colloidal par-
ticles. For concentrated suspensions, hydrodynamic and electrostatic interactions between
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particles become important. The simplest but most effective way to take into account the
interparticle interactions is to employ Kuwabara’s cell model [23]. In this model each
particle of radius a is considered to be surrounded by a concentric spherical shell of an
electrolyte solution, having an outer radius b such that the particle/solution volume ratio
in a unit cell is equal to the particle volume fraction � throughout the entire system (Fig.
6), viz.,

� ¼ ða=bÞ3 ð35Þ

and the fluid vorticity is zero at the outer surface of the cell.
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FIG. 5 The reduced electrophoretic mobility Em of a spherical colloidal particle of radius a in a

KCl solution at 258C as a function of reduced zeta potential e�=kT for various values of �a; Em is
defined by Eq. (24).

FIG. 6 Spherical particles of radius a in concentrated suspensions in the cell model [23]. Each

sphere is surrounded by a virtual shell of outer radius b. The particle volume fraction � is given
by � ¼ ða=bÞ3 and the porosity is " ¼ 1 � �.



Levine and Neale [24] derived a mobility expression applicable for low zeta poten-
tials. Kozak and Davis [25, 26] also developed a more general theory for the electrokinetics
of concentrated suspensions and porous media, which is applicable to all zeta-potential
values but ignores double-layer overlapping. For low � potentials, Ohshima [27] derived a
simple approximate formula with relative errors of less than 4%. The result is

� ¼
"r"o�

�
f ð�a; �Þ ð36Þ

with

f ð�a; �Þ ¼
2

3
1 þ

1

2ð1 þ 2:5=�a½1 þ 2 expð��aÞ�Þ3

� �
M1 þM2 ð37Þ

where

M1 ¼ 1 �
3

ð�aÞ2
�

1 � �
ð1 þ �aQÞ �

ð�aÞ2

3ð1 � �ÞP
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ð38Þ

M2 ¼
2ð�aÞ2

9P

1 þ �=2

1 � �
�1=3

þ
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�2=3
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5�1=3
�
�4=3

5

" #
ð39Þ

P ¼ cosh½�ðb� aÞ� �
sinh½�ðb� aÞ�

�b

¼ cosh½�að��1=3
� 1Þ� �

�1=3

�a
sinh½�að��1=3

� 1Þ� ð40Þ

Q ¼
1 � �b � tanh½�ðb� aÞ�

tanh½�ðb� aÞ� � �b
¼

1 � �a��1=3
� tanh½�að��1=3

� 1Þ�

tanh½�að��1=3 � 1Þ� � �a��1=3
ð41Þ

In Fig. 7 we plot f ð�a; �Þ given by Eq. (37), which is Henry’s function for a con-
centrated suspension. As �! 0, Eq. (37) reduces to Eq. (10). It is seen from Fig. 7 that, at
the limit of thin double layers around the particles (�a! 1Þ, the electrophoretic mobility
is described by Smoluchowski’s formula (1) for a single particle with infinitesimally thin
electrical double layers. In other words, in the large �a limit the mobility in concentrated
suspensions does not depend on the particle volume fraction �. Further, it is seen that as
�a decreases and/or the particle volume fraction � increases (the porosity " decreases), the
mobility rapidly decreases because of interparticle interactions.

Kozak and Davis [28] extended the theory of Levine and Neale [24] to electro-
osmosis in an array of circular cylinders, where the electro-osmotic velocity U of liquid
flowing perpendicularly to the cylinders in an applied electric field E is considered.
Ohshima [29] derived an approximate formula for the electro-osmotic velocity for this
system with relative errors of less than 5.6%:

U ¼
"r"o�

�

1

2
1 þ

1

ð1 þ 2:55=�a½1 þ expð��aÞ�Þ2

� �
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E ð42Þ

where U ¼ jU j;E ¼ jEj, and
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2ð1 � "Þ
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1
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N2ð�a; "Þ ¼
ð2 � "Þð1 � "Þ1=2

4"

�a

K1ð�bÞI0ð�aÞ þ I1ð�bÞK0ð�aÞ
1 �

3

4ð1 � "Þ
�

1 � "

4
�

lnð1 � "Þ

2ð1 � "Þ

� �
ð44Þ

Note that in the limit "! 1;U=E reduces to �? given by Eq. (12).

VI. CHARGED DROPS

The electrophoretic velocity of liquid drops is faster than that of rigid particles because the
flow velocity of the surrounding liquid need not become zero at the drop surface and is
conveyed into the drop interior [30–36]. The electrophoretic mobility of a drop thus
depends on the viscosity of the drop. Here, we treat the example of mercury drops. In
this instance the drop surface is always equipotential so that it is relatively easy to solve the
electrokinetic equations for this case.

For the case where � is low and �a is large, the following approximate equation was
derived by Levine and O’Brien [31], viz.,

� ¼
"r"o

�
�

�

3�d þ 2�
�a ð45Þ

where �d is the viscosity of the drop. Ohshima et al. [32] extended the theory of Levine and
O’Brien [31] and derived:

� ¼
"r"o

�
�

�

3�d þ 2�
�aþ

3�d þ �

3�d þ 2�
þ 2e�aE5ð�aÞ �

15�d

3�d þ 2�
e�aE7ð�aÞ

� �
ð46Þ

which is applicable for low � and all values of �a. The first term on the right agrees with
that of Eq. (45). For �d ! 1, Eq. (46) reduces to Henry’s equation (8) for a rigid sphere.
Ohshima [35] has shown that Eq. (46) is approximated well by
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FIG. 7 Henry’s function f ð�a; �Þ for concentrated suspensions as a function of scaled radius a and
particle volume fraction � (or porosity " ¼ 1 � �Þ. (From Refs. 24 and 27.)
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with a maximum relative error of less than 1%.
Levich and Frumkin (see Ref. 30) derived an approximate analytic mobility equation

applicable for arbitrary values of �, and Ohshima et al. [32] derived a more accurate
mobility expression correct to the order of 1=�a. The leading term of their expression is
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with

D ¼ mð1 � e
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Þ
2
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Þ
2

ð49Þ

where ~��, F;m, and ~mm are already given In Eqs (25), (26), (31), and (32). We find that at the
limit of large �a:

�ðmercuryÞ

�ðrigidÞ
¼ Oð�aÞ ð50Þ

That is, at this limit the mobility of mercury drops is larger than that of rigid particles by
an order of �a. It is also to be noted that mercury drops behave like rigid particles at very
high � (solidification effect) [30, 32].

For a concentrated suspension of mercury drops with the particle volume fraction �,
Ohshima [36] derived the following mobility formula:
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where P and Q are given by Eqs. (40) and (41).

VII. SURFACE POTENTIAL/SURFACE CHARGE DENSITY RELATIONSHIP

If zeta potential � is identified as surface potential  o, then one can calculate the surface
charge density � of particles or drops from their surface potential  o. Numerical tables of
 o=� relationships for a sphere [37] and approximate analytic expressions for a sphere [38–
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40] and a cylinder [38, 41] are available. In this section we give accurate analytical relation-
ships between surface potential and surface charge density for various cases [38–41].

For a spherical particle in a 1:1 electrolyte (e.g., NaCl) of concentration n:

� ¼
2"r"o�kT

e
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where

� ¼ ð2ne2="r"okTÞ
1=2

ð55Þ

is the Debye–Hückel parameter for a 1:1 electrolyte. The relative error of Eq. (54) is less
than 1% for 0:5 � �a <1. For a spherical particle in a 2:1 electrolyte (e.g., CaCl2) of
concentration n:
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where

� ¼
6�e2

"r"0kT

 !1=2

ð57Þ

is the Debye–Hückel parameter for a 2:1 electrolyte, and

p ¼ 1 � expð�e o=kTÞ ð58Þ
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The relative error of Eq. (56) is 1% for 0.5 � �a <1. For a spherical particle in a mixed
solution of 1:1 electrolyte of concentration n1 and 2:1 electrolyte of concentration n2:

� ¼
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where
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"r"okT
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is the Debye–Hückel parameter for a mixed solutions of 1:1 and 2:1 electrolytes, p is given
by Eq. (58), and
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ð62Þ

� ¼
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The relative error of Eq. (60) is less than 1% for 5 � �a � 1. Note that, for low poten-
tials, Eqs (54), (56) and (60) all reduce to

� ¼ "r"o� o 1 þ
1

�a

� �
ð64Þ

which holds irrespective of the type of electrolyte.
For a cylindrical particle in a 1:1 electrolyte of concentration n:
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where � is given by Eq. (55), and K
n
ðxÞ is the nth-order modified Bessel function of the

second kind. For a spherical particle in a 2:1 electrolyte of concentration n:
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where �, p, and q are, respectively, given by Eqs (57)–(59). For a cylindrical particle in a
mixed solution of 1:1 electrolyte of concentration n1 and 2:1 electrolyte of concentration n2
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where �; p; and t are, respectively, given by Eqs (61), (58), and (62). For low potentials,
Eqs (65)–(67) all reduce to

� ¼ "r"o� o

K1ð�aÞ

K0ð�aÞ
ð68Þ

It must be noted here that in the above �= o relationships the electrolyte concentra-
tion n (and also n1 and n2) is given in units of m�3. If the electrolyte concentration is given
in units of M (mol/liter), then n must be replaced by 1000 NAn;NA being Avogadro’s
number.

VIII. ONSAGER’S RELATIONSHIP

The basic equations governing electrophoresis also describe other electrokinetic phenom-
ena, e.g., the electric conductivity and sedimentation of a suspension of colloidal particles.
In particular, Onsager’s relationship holds between electrophoretic mobility � and sedi-
mentation potential ESED:

ESED ¼ �
�ðp � oÞ

K1
�g ð69Þ

which is correct to the first order of the particle volume fraction �. In Eq. (69), p and o

are, respectively, the mass densities of the particle and the electrolyte solution, g is the
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gravity, and K1 is the conductivity of the electrolyte solution in the absence of the
particles, defined by

K1
¼
XN
t¼1

z2
i e

2n1i =�i ð70Þ

Equation (69) was originally derived by de Groot et al. [42] on the basis of irreversible
thermodynamics, and later a direct proof was given by Ohshima et al. [43].

For a concentrated suspension with particle volume fraction �, Ohshima [44] derived
the following Onsager relationship on the basis of Kuwabara’s cell model [23]:

ESED ¼ �
�ð1 � �Þ

ð1 þ �=2Þ

ðp � oÞ

K1
�g ð71Þ

where � is the electrophoretic mobility of particles in concentrated suspensions. For
�a! 1, Eq. (72) holds for any �. For arbitrary values of �a, Eq. (71) holds for low �.
Later Ohshima [45] generalized Eq. (71) to obtain:
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�ðp � oÞ�

K1

K�

K1

� �
g ð72Þ

where K� is the electrical conductivity of the suspension. For concentrated suspensions of
particles or drops of radius a with low zeta potentials, Ohshima [36, 46] derived:
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with

Lð�a; �Þ ¼
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1 þ

1

2ð1 þ �=�aÞ3

� �
ð74Þ

where Q is defined by Eq. (41) and � ¼ 2:5=ð1 þ z expð��aÞÞ for rigid particles and � ¼ 1:86
for mercury drops.

IX. SOFT PARTICLES (POLYELECTROLYTE-COATED PARTICLES)

In this section we consider soft particles, i.e., colloidal particles covered with a polyelec-
trolyte layer (Fig. 8). For such particles one must consider the potential distribution and
the liquid flow distribution not only outside but also inside the surface charge layer. As is
seen in Fig. 9, the potential deep inside the polyelectrolyte layer is almost equal to the
Donnan potential, provided that the surface layer is much thicker than the Debye length
1=�. A number of theoretical studies have been made [47–57] on the basis of the model of
Debye and Bueche [58]. This model assumes that the polymer segments are regarded as
resistance centers distributed in the polyelectrolyte layer, exerting frictional forces on the
liquid flowing in the polyelectrolyte layer. That is, a friction term ��u, � being a frictional
coefficient, is incorporated into electrokinetic equations for the liquid flow u in the poly-
electrolyte layer. The Navier–Stokes equation for the liquid flow inside the surface charge
layer is thus given by
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�r � r � uþ �uþ rpþ elr ¼ 0 ð75Þ

Ohshima [55–57] has presented a theory for electrophoresis of a soft particle, which
unites two different electrophoresis theories of hard particles and of spherical polyelec-
trolytes (Fig. 10). For a spherical soft particle consisting of a hard particle core of radius a
covered with a layer of polyelectrolytes of thickness d, in which dissociated groups of
valence Z are distributed with a uniform density N, Ohshima obtained [55–57]:
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FIG. 8 A soft particle. The hard particle core of radius a is covered with a layer of polyelectrolytes
of thickness d; b ¼ aþ d.



where  o is the surface potential (i.e., the potential at the boundary of the surface charge
layer and the surrounding solution),  DON is the Donnan potential of the surface charge
layer, and �m is the effective Debye–Hückel parameter of the surface charge layer that
involves the contribution of the fixed charges ZeN.

Equation (76) is applicable for the case where the relaxation effect is negligible and
�a� 1, �a� 1, �d � 1, and �d � 1. In Fig. 11, we plot the function f ðd=aÞ, which varies
from 2/3 to 1, as d=a increases. For d 	 a ½f ðd=aÞ � 1�, the polyelectrolyte layer can be
regarded as planar and Eq. (76) becomes
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FIG. 9 Distribution of ions (a), potential  ðxÞ (b), and liquid velocity uðxÞ (c) across the surface

layer of a soft particle moving with a velocity U in an applied electric field E;  o is the surface
potential and  DON is the Donnan potential.
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while for d � a ½f ðd=aÞ � 2=3�, the soft particle behaves like a spherical polyelectrolyte
with no particle core. In the limit a! 0, the particle core vanishes and the particle
becomes a spherical polyelectrolyte (a porous charged sphere). For low potentials, in
particular, Eq. (76) tends to

� ¼
ZeN

��2
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2

3

�

�

� �2
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1 þ �=�

" #
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which agrees with the Hermans–Fujita equation for spherical polyelectrolytes [59]. The
function f ðd=aÞ corresponds to Henry’s function f ð�aÞ [see Eq. (10)] for hard particles.
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FIG. 10 A soft sphere becomes a hard sphere in the absence of the polyelectrolyte layer and tends
to a spherical polyelectrolyte in the absence of the particle core.

FIG. 11 f ðd=aÞ, defined by Eq. (77), as a function of d=a. (From Ref. 55.)



That is, the thickness of the polyelectrolyte layer d plays essentially the same role as the
thickness of the electrical double layer 1=�.

Equation (76) does not involve the thickness of the surface charge layer or the
position of the slipping plane. This implies that the zeta potential and the slipping plane
both lose their meaning. At the limit of �! 1, Eq. (76) becomes the Smoluchowski
equation (1), as should be expected. On theo ther hand, at the limit of high electrolyte
concentrations, Eq. (76) attains a nonzero value, viz.,

�! �1
�
ZeN

��2
ð84Þ

This is the most remarkable difference between Eq. (76) and Smoluchowski’s equa-
tion (1). This can be understood by noting the velocity distribution of liquid flow within
the surface charge layer (Fig. 9). That is, in the midregion of the surface charge layer the
liquid velocity is shown to have an almost constant value independent of the position, and
this constant value gives �1. It can also be shown that the parameter 1=� is the distance
between the slipping plane and the region where the liquid velocity is almost constant.

Equation (76) [or Eq. (82)] involves two parameters, ZeN and 1=�, the latter of
which can be considered to characterize the ‘‘softness’’ of the polyelectrolyte layer, because
at the limit of 1=�! 0, the particle becomes rigid. Experimentally, these parameters may
be determined from a plot of measured mobility values of a soft particle as a function of
electrolyte concentration by a curve-fitting procedure [60–72]. Note that N and n are given
in units of m�3. If one uses the units of M, then N and n must be replaced by 1000NAN
and NAn, where NA is Avogadro’s number.

For cylindrical soft particles, Ohshima [73] derived the following mobility expres-
sions:

�== ¼
"r"o

�

 o=�m þ  DON=�

1=�m þ 1=�
þ
ZeN

��2
ð85Þ

�? ¼
"r"o

�

 o=�m þ  DON=�

1=�m þ 1=�
f
d

a

� �
þ
ZeN

��2
ð86Þ

with

f
d

a

� �
¼

1

2
1 þ

1

ð1 þ d=aÞ2

� �
ð87Þ

The above theory assumes that the fixed-charges are uniformly distributed in the
polyelectrolyte layer and that the relative permittivity in the polyelectrolyte layer takes the
same values as that in the bulk solution phase. These effects are discussed in Refs 74–76.
The case where the polyelectrolyte layer is not fully ion-penetratable is considered in Ref.
77.

So far the polyelectrolyte layer has been assumed to have a definite thickness with a
uniform segment density distribution. When, however, the polyelectrolyte layer has origi-
nated from polymer adsorption, there are some cases in which the effect of the segment
density distribution of adsorbed polymers becomes important. Varoqui [78] considered the
case where electrically neutral polymers are adsorbed with an exponential segment density
distribution on to the particle surface with a charge density �o. He assumed that frictional
coefficient is expressed as

� expð�x=dÞ ð88Þ
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where x is the distance measured from the particle surface, � is a constant, and d is the
average thickness of the polymer layer, and he derived the following mobility expression:
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with

� ¼ ð�=�Þ1=2 ð90Þ

where �ðzÞ is the gamma function and I0ðzÞ is the zero-order modified Bessel function.
Ohshima [79] extended Varoqui’s theory [78] to the case where adsorbed polymers

are charged with a density

fixðxÞ ¼ o expð�x=dÞ ð91Þ

In Eq. (91) o corresponds to the average value of the fixed charge density within the
polyelectrolyte layer (Fig. 12). The mobility expression thus obtained is
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" # ð92Þ

where the first term on the right arises from the charged particle core [which agrees with
Eq. (89)] and the second from the charged polymer layer.
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FIG. 12 Schematic representation of the surface of a particle adsorbed by polyelectrolytes (upper)
and the segment density distribution (lower).



X. DYNAMIC ELECTROPHORESIS

When a suspension of colloidal particles is in an oscillating electric field, the electrophore-
tic mobility of the particles depends on the frequency ! of the applied field. O’Brien [80],
Babchin and coworkers [81, 82], Sawatzky and Babchin [83], and Fixman [84] proposed
approximate theories for the dynamic mobility and derived approximate mobility formu-
las. James et al. [85] compared these approximations. Mangelsdorf and White [86, 87]
obtained the full electrokinetic equations governing the dynamic electrophoresis of sphe-
rical colloidal particles, as well as their numerical computer solutions, and an approximate
expression for the dynamic mobility for low zeta potentials. For the case where �a� 1
and the dynamic relaxation effect is neglected, O’Brien’s formula [80] reads:

�ð!Þ ¼
"r"o�

�

1 � i�a

HðaÞ � �
ð93Þ

with

� ¼

ffiffiffiffiffiffiffiffiffiffi
i!o

�

s
¼ ði þ 1Þ

ffiffiffiffiffiffiffiffi
!o

2�

r
ð94Þ

HðaÞ ¼ 1 � i�a�
ð�aÞ2

3
ð95Þ

� ¼
2ð�aÞ2ðp � oÞ

9o

ð96Þ

where p and o are, respectively, the mass densities of the particle and the electrolyte
solution. When ! ¼ 0, Eq. (89) becomes Smoluchowski’s equation (1). For arbitrary �a
and low zeta potentials, the mobility is expressed by [83, 87, 88]

�ð!Þ ¼
"r"o

�
�

�2

�2½HðaÞ � ��

� e�afE5ð�aÞ � i�aE4ð�aÞ �
ð�aÞ2

3
E3ð�aÞg �HðaÞe�aE5ð�aÞ

"

þ
2

3

�

�

� �2

1 �
i��a

�

� �#
ð97Þ

with

� ¼ �� i� ð98Þ

Equation (97), which is applicable for all �a at zero particle permittivity and low zeta
potentials, reduces to Henry’s equation (8) in the static limit (!! 0Þ and to O’Brien
formula (93) for �a! 1.

The ratio �ð!Þ=�s, where �s ¼ "r"o�=� is Smoluchwski’s mobility formula [Eq. (1)],
can be interpreted as a dynamic Henry function. It can be shown that Eq. (93) is well
approximated by [88]

�ð!Þ ¼
2"r"o�

3�
1 þ

1

2ð1 þ 2:5=�af1 þ 2 expð��aÞgÞ3

� �
1 � i�að1 þ 1=�aÞ

½HðaÞ � ��ð1 � i�=�Þ
ð99Þ
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from which the following simple expression for the dynamic/static mobility ratio is
derived:

�ð!Þ

�ð0Þ
¼

1 � i�að1 þ 1=�aÞ

½HðaÞ � ��ð1 � i�=�Þ
ð100Þ

Ohshima [89] derived expressions for the dynamic mobility formulas for cylindrical
particles. The dynamic electrophoretic mobility �?ð!Þ of a cylinder oriented perpendicu-
larly to the applied field is given by

�?ð!Þ ¼
"r"o�

2�
1 þ

1

ð1 þ 2:55=�af1 þ expð��aÞgÞ2

� �
1

1 þ ð�=�Þ2

�
H

ð1Þ
1 ð�aÞ=f�aHð1Þ

0 ð�aÞg þ K1ð�aÞ=f�aK0ð�aÞg

H
ð1Þ
1 ð�aÞ=f�aHð1Þ

0 ð�aÞg � ð1 þ�=2oÞ=2

ð101Þ

When the cylinder is parallel to the applied field, the mobility is given by

�==ð!Þ ¼
"r"o�

�

1

1 þ ð�=�Þ2
H

ð1Þ
1 ð�aÞ=f�aHð1Þ

0 ð�aÞg þ K1ð�aÞ=f�aK0ð�aÞg

H
ð1Þ
1 ð�aÞ=f�aHð1Þ

0 ð�aÞg � ð1 þ�=oÞ=2
ð102Þ

For a cylindrical particle oriented at an arbitrary angle between its axis and the applied
electric field, its electrophoretic mobility averaged over a random distribution of orienta-
tion is given by Eq. (15) as in the static case.

An approximate expression for the dynamic electrophoretic mobility of spherical
colloidal particles in concentrated suspensions in an oscillating field has been derived by
Ohshima [90], which depends on the frequency ! of the applied field and the particle
volume fraction �. Ohshima and Dukhin [91] derived an Onsager relationship between
dynamic electrophoretic mobility and colloid vibration potential (or current), and Dukhin
et al. [92–94] presented a general theory of dynamic electrophoresis in concentrated sus-
pensions.
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I. INTRODUCTION

A. Classical Electrophoresis

Most classical works on electrophoresis are for individual particles that are uniformly
charged [1]. In practice these conditions are often not met, and so the purpose of this
chapter is to summarize recent theoretical and experimental results for nonuniformly
charged particles and interacting particles (see Fig. 1). Several of the theoretical results
might seem counterintuitive at first; however, many are supported by experimental data
[2–5]. This empowers the electrokinetic results in this chapter to be used for a variety of
important new analytical applications, including measurements of colloidal forces and
charge distributions on individual particles [4, 6]. A new experimental technique to deter-
mine forces between coagulated particles, ‘‘differential electrophoresis,’’ has been devel-
oped using the concepts presented here [5].

Electrokinetic theory is based on the equations of electrostatics and hydrodynamics.
These equations have been laid out clearly by previous authors [7–10]. In general, these
equations can be quite difficult to solve, especially for complex problems like those in this
chapter; therefore, we focus on the electrophoresis of particles with thin, unpolarized
electrical double layers (EDLs). The starting point for the discussion is the
Smoluchowski result [11], which relates the zeta (�) potential of a particle to its transla-
tional electrophoretic velocity (UÞ and angular electrophoretic velocity (:):

U ¼
"�E1

�
; : ¼ 0 ð1Þ

where " is the permittivity and � the viscosity of the fluid, and E1 is the uniform applied
electric field in the suspension. This equation was developed for spheres, but Morrison
extended it to arbitrary shapes and pointed out that the result contains four key assump-
tions [12]:

1. The particle is rigid and nonconducting, and it has a negligible electrical permit-
tivity compared to the surrounding fluid which is conductive.
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2. The EDL around the particle is infinitesimally thin (i.e., �R ! 1 for the whole
particle, where R is the local curvature of the particle and ��1 is the Debye
length).

3. The particle is in an unbounded fluid.
4. The � potential over the surface of the particle is uniform.

The first assumption is satisfied for a broad range of particles. It is in fact usual for
the permittivity of the particle to be much less than that of the fluid. For polystyrene latex
particles, the dielectric constant is 2.5, whereas for water it is 80 at room temperature.
With regard to conductivity, even conducting particles (e.g., gold) often behave as non-
conducting particles since the transfer of charge across the fluid–solid interface is usually
zero or negligible. While we will consider only rigid particles in this chapter, it is also
useful to note that many fluid particles behave as rigid particles hydrodynamically [13, 14].

Equation (1) is applicable for a sphere not only when E1 is uniform, but also when
E1 varies spatially and the field used in Eq. (1) is evaluated at the position of the center of
the particle [15]. This is not true for nonspherical particles, however. For spheroidal
particles there is an angular velocity which is proportional to rE1, and the translational
velocity depends on both E1 and r

2E1 [16].
The assumption concerning ‘‘thin’’ EDLs has been corrected in two important ways.

Shortly after Eq. (1) was developed, the result for infinitely thick double layers (i.e., �R !

0Þ was obtained by Hückel for arbitrary � potentials [17]. Later, Henry developed the
equation for spheres with arbitrary �a, where a is the sphere radius [18]; however, this
equation requires that the � potential on the sphere be small relative to the thermal
electrical potential ðkT=eÞ. In practice, the Henry result usually works well for
Zej�j=kT < 2, where Z is the valence of the symmetric electrolyte. Yoon and Kim [19]
extended Henry’s analysis to spheroids.

The second correction to Eq. (1) for thin EDLs is for ‘‘concentration polarization,’’
which involves a significant conduction of ions within the EDL. Dukhin and Derjaguin
[20] clarified the understanding of ‘‘thin double layers,’’ showing that ‘‘thin’’ means

�a

coshðZe�=2kTÞ
	 1 ð2Þ

where ��1 is the Debye length and a is the particle radius. Following the work of Wiersema
et al. [21], O’Brien and White [7] developed a numerical scheme to calculate electrophore-
tic mobility for spheres with arbitrary �a and � potential, showing that for finite double
layers, particles reach a maximum electrophoretic mobility at a particular � potential. If
the � potential on a particle is higher than this, then the mobility of the particle actually
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FIG. 1 Example of interacting and nonuniformly charged particles. Left: particles 1 and 2 with

radii ðaiÞ, zeta potentials ð�iÞ, and gap ð2�Þ. Right: schematic example of a particle with a nonuniform
� potential (units mV) on each ‘‘patch.’’



decreases because of the increasing significance of concentration polarization of the double
layer.

Another cause for thick double layers – at least over part of the surface – is surface
roughness [22]*. If the radius of curvature is small for the local surface roughness, then so
is �R. However, the scarce data on surface roughness indicates that this is not ordinarily
the case. Finally, finite double layers have been considered for interacting spheres [23, 24];
in general, the differences from the results for thin EDLs for interacting particles are not
usually large, and so we will not discuss finite or thick double layers in this chapter.

B. Scope of This Chapter

This chapter focuses on the third and fourth assumptions above. We consider particles
with infinitesimal EDLs, but an arbitrary distribution of � potential on the surface, and
also particles that interact with other particles or with boundaries. The applied electric
field (E1) is assumed to be uniform on the length scale of the particles. Here, we report
advances that have occurred since a previous review of the topic [10] and emphasize two
key points:

1. More than just the average (monopole) � potential of particles can be determined
from electrophoresis measurements; for example, the second (dipole) moment of
the � distribution of the particle’s surface, which is often critical in understand-
ing the stability and other behavior of colloidal suspensions, is also measurable.

2. The electrophoresis of interacting particles can be used to probe other colloidal
phenomena (e.g., surface forces) by providing a controlled means to exert forces
between the particles.

II. SINGLE PARTICLES WITH NONUNIFORMLY CHARGED SURFACES

A. Spheres

The importance of charge nonuniformity on electrophoresis was addressed by Teubner [9],
and in his seminal paper he gave integrals that account for the charge nonuniformity.
However, it is easier to understand the role of charge nonuniformity in terms of moments
of the � potential distribution [15]. The distribution of � potential can be expressed in terms
of the monopole moment (i.e., the average), the dipole moment, the quadrupole moment,
etc.; and the electrokinetic equations can be solved to give the particle’s translational and
angular velocities in terms of these moments. Interestingly, the electrophoretic velocities of
a sphere depend only on the monopole (h�i), dipole (P1Þ and quadrupole (P2Þ [15]:

U ¼
"

�
h�iI �

1

2
P2

� �
� E1 ð3Þ

: ¼

9
4 "

�a
P1  E1 ð4Þ
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�Particle roughness was seen to consist of 30-nm hemispheres on a 10-mm colloidal sphere; however,

the SEM required that the particle was dried, and the effects of this on producing roughness are
unknown.



where I is the identity tensor, and the moments are defined by integrals over the surface of
the sphere:

h�i ¼
1

4	

ð2	
0

ð	
0

� sin 
d
d� ð5Þ

P1 ¼
1

4	

ð2	
0

ð	
0

�n sin 
d
d� ð6Þ

P2 ¼
1

4	

ð2	
0

ð	
0

�ð3nn� IÞ sin 
d
d� ð7Þ

where n is the unit normal pointing away from the surface; for a sphere, this is the unit
vector in the r-co-ordinate direction. In an electrophoresis experiment, one usually aims to
measure h�i. Equation (3) shows that in fact typical electrophoresis experiments measure
both the monopole and the quadrupole. Indeed, the movement due to the quadrupole
need not even be in the same direction as the electric field (E1Þ, depending on the orienta-
tion of the particle relative to the applied field.

An important type of charge nonuniformity is achieved by random charging. It is not
always appreciated that a random placement of charges on a particle’s surface implies a
nonuniform charge distribution. Velegol et al. [25] recently studied the electrophoresis of
spheres that are randomly charged. They developed a model in which the particle has a
number ðNÞ of finite-size patches, with each patch on the particle having a � potential from
a Gaussian distribution with an average � potential (h�iÞ and standard deviation (��Þ. The
length scale ðLÞ of the patch is arbitrary (see Fig. 1); if one considers the entire sphere, then
N ¼ 1, but we could also select a patch size that, say, corresponds to the area of interac-
tion between two particles that nearly touch as would exist in a secondary potential energy
minimum. Since in an electrophoresis experiment the measurable quantities are the par-
ticle translational and angular velocities, Eq. (4) can be used to obtain the dipole moment
(P1Þ on an individual particle. In practice the magnitude of the dipole moment
(P1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1 � P1

p
Þ is easier to measure. After measuring the angular velocity of many par-

ticles and finding the ensemble average dipole (hP1iÞ, one would like to interpret the result
in terms of the standard deviation of the � potential on the particle surface. Using statis-
tical concepts, Velegol et al. [25] related the ensemble average of P1 (e.g., over many
spheres) and its sphere-to-sphere standard deviation to the number ðNÞ of patches and
the standard deviation (��Þ of � potential for each patch:

hP1i ¼
4ffiffiffiffiffiffi
6	

p
��ffiffiffiffi
N

p ¼ 0:921
��ffiffiffiffi
N

p ð8Þ

�P1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

16

6	

r
��ffiffiffiffi
N

p ¼ 0:389
��ffiffiffiffi
N

p ð9Þ

The average dipole moment of the sphere, which is measurable, is proportional to the
standard deviation of the � potential. Note that, for a constant hP1i (since this is a
measurable property), �� �

ffiffiffiffi
N

p
for a random distribution of the � potential, which implies

that �� � L�1.
To gain intuition into the above relations, consider a set of spherical particles with

a ¼ 1 mm in an aqueous solution with ��1
¼ 1 nm. Suppose the measured average transla-

tional mobility is hjUji=E1 ¼ 5:0  10�8 m2/V�s and the angular mobility is hj�ji=E1 ¼
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1:0  10�3 m/V�s, then using Eq. (4) with � as the maximum angular velocity gives hP1i ¼

0:63 mV. The next step is to obtain a standard deviation of � potential on a pertinent
length scale ðLÞ. From the theory of colloidal forces, the spheres interact most at the
regions near contact over a length scale ðLÞ. From the theory of colloidal forces,the
spheres interact most at the regions near contact over a length scale L �

ffiffiffiffiffiffiffiffiffiffi
��1a

p
, which,

here, is 32 nm. If we consider round patches on the sphere, the ratio of the sphere area to
the patch area gives N � 4000. From Eq. (8) we have �� ¼ 43 mV for each patch. This is a
very large standard deviation on this length scale, which is important to the interaction
between two nearly touching particles; however, as shown in the next paragraph, it is
highly unlikely that this variation would be detected in translational electrophoresis mea-
surements. Theoretical work has shown that such large standard deviations of � in the
region of contact between two particles can cause instability in colloidal suspensions, even
though the average � potential indicates that the suspension should be stable [26, 27].

Knowing the value of �� from the angular velocity, we can also obtain the expected
quadrupole contribution to the translational velocity. If we define the z co-ordinate axis by
E1 ¼ E1iz, then we are interested in the quantity P2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP2 � izÞ � ðP2 � izÞ

p
, especially its

average and standard deviation. Statistical analysis gives [25]

hP2i ¼
4 þ 3 ln 3ffiffiffiffiffiffiffiffi

10	
p

��ffiffiffiffi
N

p ¼ 1:302
��ffiffiffiffi
N

p ð10Þ

�P2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �

ð4 þ 3 ln 3Þ2

10	

s
��ffiffiffiffi
N

p ¼ 0:553
��ffiffiffiffi
N

p ð11Þ

The average magnitude of the quadrupole is directly related to the standard deviation of �
(and thus, to the dipole), and so in the example above, hP2i ¼ 0:89 mV and h�i ¼ �71 mV.
So whereas the dipole is the leading order term in the angular velocity and therefore
readily measurable, the quadrupole would likely go completely undetected in this experi-
ment because the translational mobility would be masked by h�i.

The results presented above are summarized as follows:

. Random charging of the surface of a particle leads to a nonuniform rather than
uniform distribution of � potential.

. The results above hold for any random distribution of � potential (Poisson,
uniform, etc.) if the number of patches is sufficiently large ðN > 30Þ and are
reasonable approximations for smaller N. This is by the central limit theorem
of statistics.

. The dipole and quadrupole are measurable but related quantities, both propor-
tional to ��=

ffiffiffiffi
N

p
. Thus, the standard deviation of � potential on any given patch

ð��Þ of the particle’s surface depends inversely on the length scale ðLÞ of the
patch.

. Whereas translational electrophoresis can usually be expected to give a good
approximation for the average � potential, rotational electrophoresis provides
a means to obtain ��=

ffiffiffiffi
N

p
.

The results given above for infinitesimal EDLs have been extended [25] to thick
EDLs by using Yoon’s results for arbitrary EDL thickness [28]. Yoon’s solutions are
cast in terms of the monopole, dipole, and quadrupole, making the results above readily
usable with only a minor modification of the three precoefficients that account for arbi-
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trary �a. Although the extension to arbitrary �a requires low � potentials on the particles,
this is often satisfied for small particles.

B. Spheroids

Fair and Anderson [29] developed expressions for the electrophoretic mobility of an
ellipsoid with an arbitrary variation of � potential on its surface, assuming unpolarized,
thin EDLs. Since other shapes can be approximated by spheroids (e.g., disks, doublets,
slender bodies), this is a broadly applicable class of solutions. They found

U ¼
"

3�Vp

ð
Sþ

ð
n � rðI � nnÞ�dS � G � E1 ð12Þ

� ¼
"

�Vp

H �

ð
Sþ

ð
n � rr ðI � nnÞ�dS � G � E1 ð13Þ

where Vp ¼
4
3	b1b2b3 is the volume of an ellipsoid (semiaxes b1; b2; b3Þ, n is the unit normal

to the surface, and r is the position on the surface. The surface Sþ denotes the outer edge
of the double layer, which for infinitesimal EDLs is geometrically the same as the true
surface of the particle. For a uniform � potential, Eqs (12) and (13) reduce to the
Smoluchowski result given by Eq. (1).

The tensors G and H are geometric only. For a sphere of radius a, G ¼ 3
2 I and

H ¼ I=2a2, so that Eqs (3)–(7) are recovered. For a spheroid with axes ðb; b; cÞ, expres-
sions are given in the original paper [29] for G and H in terms of the aspect ratio � ¼ b=c:

H ¼
1

b2 þ c2
ðI � eeÞ þ

1

2b2
ee ð14Þ

G ¼ Gkeeþ G?ðI � eeÞ ð15Þ

The unit vector (eÞ is along the c axis. The G coefficients are well approximated by the
following:

prolate spheroid (� < 1Þ

Gk � 1 þ 0:3�þ 0:2�2; G? � 2 � 0:62�þ 0:12�2
ð16Þ

oblate spheroid (� > 1Þ

Gk � 0:863 þ 0:637�; G? � 1 þ 0:75=�� 0:25=�2
ð17Þ

These approximations are accurate at the limits (i.e., small �, large �, and � ¼ 1Þ and are
within 1% of the correct result for all �.

An interesting example of the electrophoresis of complex particles is that of proteins
[30]. Chae and Lenhoff developed the method of Teubner [9] to analyze the translational
and rotational mobility of proteins in free solution, accounting for complicated protein
shapes and charge distributions (including charges interior to the proteins). They used
their method to analyze experimental results for ribonuclease A, showing good agreement
under conditions when the protein was charged. This work was motivated by the desire to
model globular proteins realistically, accounting for the distributed charge within the
molecule.
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C. Using Spheroid Results to Approximate a Disk (Clay Platelets)

The importance of Eqs (12) and (13) can be demonstrated by approximating other geo-
metries. For example, the limit �! 0 is a rod, while the limit �! 1 is a flat plate. In this
section we will approximate a disk as an oblate spheroid. Kaolinite clay particles have a
disk-like shape and are believed to be nonuniformly charged. The surface chemistry of
kaolinite is well referenced in the literature [31, 32] and it suggests that the faces and edge
of the disk have different � potentials. Indeed, even the two basal surfaces might have
different � potentials because of their different surface chemistries [33]. In order to estimate
the charge nonuniformity on the clay particles, one can use electrophoresis. Since the
typical face diameter of clay platelets� is about 1 mm, and the thickness is about 0.1
mm, kaolinite particles can be approximated by an oblate spheroid as shown in Fig. 2.

Choosing an ‘‘equivalent spheroid’’ to approximate a disk is a subtle process. Three
parameters must be fixed: the spheroid’s major axis (2b) and minor axis (2cÞ, and the local
surface charge density �sðxÞ. Several constraints are available to determine these para-
meters, including the total surface area of the disk, the total charge on the disk (or perhaps
the total charges on any region of the disk), the volume of the disk, the hydrodynamic
resistance of the disk parallel to its axis (eÞ, and the hydrodynamic resistance of the disk
perpendicular to e. We choose to match the surface area and the particle volume, which
allows determination of the two semiaxes of the spheroid.

The surface area (S) and volume ðVÞ of a spheroid with axes (b; b; cÞ are given by

S ¼

2	b2
þ
	c2

e
ln

1 þ e

1 � e

� 	
; e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

c2

b2

s
if b > c (oblate)

4	b2 if b ¼ c

2	b2
þ 2	bc

sin�1 e

e
; e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 �

b2

c2

s
if b < c (prolate)

8>>>>>>><
>>>>>>>:

ð18Þ

V ¼
4

3
	b2c ð19Þ

The eccentricity ðeÞ is always less than or equal to unity. In approximating the disk with
the oblate spheroid, we must simultaneously solve for the semiaxes b and c as well as the
edge region ðx0Þ. These are obtained from the disk diameter ðDÞ and the disk thickness ð2�Þ
by maintaining the areas of the faces and the edge. The results of these calculations are
given in Table 1.
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FIG. 2 Approximation of a disk by a spheroid, as a model for clay platelets.

�These particles are especially suitable for the coating of paper.



In practice the size of the clay particles is estimated from sedimentation experiments
and is given as an ‘‘equivalent diameter’’ ðdeÞ, which is the diameter of a sphere that would
have the same hydrodynamic settling velocity as the disk. We approximate the settling
velocity UsÞ of a disk using the spheroid, as�

Us ¼
de

2��g

18�
¼

1

3
Mk þ

2

3
M?

� �
4

3
	c3�2��g ð20Þ

where Mk and M? are the Stokes’ mobility coefficients for a spheroid moving parallel or
perpendicular to the e vector [34]. For oblate spheroids:

Mk ¼
1

6	�

3

8b

2��1

1 � ��2
þ

2ð1 � 2��2
Þ

ð1 � ��2Þ
3=2

tan�1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p" #
ð21Þ

M? ¼
1

6	�

3

8b

���1

1 � ��2
þ

3 � 2��2

ð1 � ��2Þ
3=2

sin�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ��2

p" #
ð22Þ

where � ¼ b=c > 1. From Eq. (20) we have

b

de

¼
2�

16	�bðMk þ 2M?Þ

� �
ð23Þ

The charges are distributed on the disk-like spheroid as follows:
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TABLE 1 Approximating a Disk by a Spheroid.a The Disk
Diameter (D) and Thickness (2�) are Related to the Major

Semiaxis ðbÞ and Minor Semiaxis ðcÞ of the Oblate Spheroid.
The ‘‘Edge’’ Region has a Thickness 2x0 Corresponding to
Edge of Disk

D=2� D=2b b=c x0=c

1 0.6595 2.3238 0.7593
2 0.7871 2.7341 0.6332
3 0.8386 3.3908 0.5626

4 0.8675 4.0843 0.5146
5 0.8866 4.7832 0.4786
6 0.9003 5.4810 0.4500
7 0.9108 6.1761 0.4265

10 0.9316 8.2453 0.3744
20 0.9606 15.0411 0.2841
50 0.9823 35.1716 0.1900

100 0.9907 68.5688 0.1375
1000 0.9990 668.6515 0.0446

aSee Fig. 2.

�The particle size of kaolinite is often expressed as an equivalent spherical diameter ðdeÞ, which is the
diameter of a sphere that has the same sedimentation velocity as the actual particle. Particles larger

than de ¼ 5 mm are called ‘‘booklets,’’ and are made of several plate-like particles. In paper coating,
particles < 2 mm are desirable.



0 � jzj � z0 : � ¼ �e

zo < z � 1 : � ¼ �f1

�1 � z < �z0 : � ¼ �f2

ð24Þ

where zð¼ x=cÞ is the dimensionless position along the c semiaxis.
The expressions from the previous section can be simplified, and the mobility of a

spheroid with an axisymmetric charge distribution can be described as [29].

U ¼
"

�
m?ðI � eeÞ þmkee� � E1

�
ð25Þ

: ¼
"

�c
mre E1 ð26Þ

where mk and m? are electrophoretic translation mobility coefficients that depend on even
moments of � potential, and mr is an electrophoretic rotation mobility coefficient that
depends on the odd moments of � potential. They can be written as

mk ¼
�f1 þ �f2

2
þ �e �

�f1 þ �f2

2

� �
fkð"; z0Þ ð27Þ

m? ¼
�f1 þ �f2

2
þ �e �

�f1 þ �f2

2

� �
f?ð"; z0Þ ð28Þ

mr ¼ ð�f1 � �f2Þfrð"; z0Þ ð29Þ

As the disk becomes infinitesimally thin (i.e., D=�! 1Þ, then fk ! 1, f? ! 0, and fr ! 0.
Values for the f functions are listed in Table 2.

D. Using Spheroids to Approximate Doublets

A colloidal doublet can be approximated as a prolate spheroid. Such an equivalence was
made by Nir and Acrivos [35] using the hydrodynamic characteristics of each geometry as
the criteria for matching. They matched the angular velocities of a doublet and a spheroid
undergoing Jeffery orbits, finding that c=b ¼ 1:982 for the equivalent axis ratio. For
electrophoresis we can do a similar calculation. Once again we have a variety of para-
meters to choose from, but we choose to equate the total surface charge (or equivalently
here, the surface area) and the electrophoretic angular velocity of a doublet and a spher-
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TABLE 2 Electrophoretic Mobility Coefficients for Oblate

Spheroid Equivalent Model of a Diska

D=2� fk f? fr

2 0.9344 0.5606 0.07963
3 0.9260 0.5051 0.06195

5 0.9110 0.4145 0.03893
10 0.9107 0.3261 0.01617
20 0.9191 0.2520 0.000589
30 0.9261 0.2146 0.000310

50 0.9358 0.1736 0.000132

a See Eqs (27) and (28).



oid. Fair and Anderson [29] showed that for a spheroid with an axisymmetric charge
distribution:

: � e
de

dt
¼

9"

4�c
�1  E1 ð30Þ

�1 ¼
G?

3

ð1
�1

�ðzÞz

1 þ z2 �2
� 1

�2 þ 1

 !

1 þ z2ð�2 � 1Þ
dze ð31Þ

where z is a dimensionless position ð�1 � z � 1Þ along the c axis and e is the unit vector
giving the orientation of that axis; � ¼ b=c and G? is given by Eqs (16) and (17).

We want to find the semiaxes, b and c, that make a spheroid equivalent electrophor-
etically to a rigid doublet comprising two spheres of equal radius ðaÞ but different zeta
potential (see Fig. 3). The angular velocity of a doublet composed of two spheres (1 and 2,
each uniformly charged) is [36]

: � e
de

dt
¼
"ð�2 � �1Þ

2�a
Ne E1 ð32Þ

where e is the unit vector along the line between centers (from sphere 1 to 2). For a rigid
doublet of equal size spheres, N ¼ 0:6400 [36].

We will let the top half of the spheroid have a � potential �2Þ and the bottom half �1,
as shown in Fig. 3. Solving the integral in Eq. (31) leads to

N ¼
3G?a

4c

�2
� 1 þ 2�2 ln�

�4 � 1

 !
ð33Þ

We thus need to solve for two parameters (b < c) from Eq. (18), with S ¼ 8	a2 (for two
spheres in a doublet) and Eq. (33) with N ¼ 0:64. This calculation reveals that b=a ¼ 0:9
9993 and c=a ¼ 2:39192, and hence c=b ¼ 2:392 (compared to 1.982 obtained by Nir and
Acrivos [35] for equivalence based solely on hydrodynamic behavior). That is, if we have a
spheroid with these semiaxes and the zeta potentials as shown above, the spheroid will
have the same total charge and electrophoretic angular velocity as a doublet in which the
spheres have radius a.
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FIG. 3 Approximating a doublet with a spheroid. The equivalent axis ratios are b=a ¼ 0:99993 and
c=a ¼ 2:39192.



III. PARTICLE–PARTICLE AND PARTICLE–BOUNDARY INTERACTIONS

A. Results for Two Interacting Spheres

The electrophoresis of two interacting but force-free and couple-free particles is compli-
cated by the fact that we no longer have a potential flow field outside the EDL. This is
because the flow field produced by particle 1 exerts a force on particle 2, and vice versa.
Methods that have been used to solve this problem are reflection calculations [37, 38],
numerical calculations [39–43], and semianalytical results for small gaps between the
spheres [44]. Results have also been obtained for thin but polarized EDLs, but we will
not discuss those results here [23]. A significant difference between the interactions in
electrophoresis versus seidmentation is that electrophoretic interactions are much shorter
range; the flow fields driven by sedimentation and other body forces decay as 1=r, where r
is the distance from the moving particle, whereas in electrophoresis the flow fields decay as
1=r3. The paper by Zeng et al. [43] summarizes many of the reflection and numerical results
in the literature and puts them into convenient empirical forms for a broad range of gaps
and size ratios of spheres.

Chen and Keh [37] developed the first reflection results and numerical solutions for
the electrophoretic mobility of two spheres. They gave the translational and rotational
velocities of two force-free, couple-free particles as a function of the � potential on the
spheres (assumed uniform on each sphere) and the gap between the spheres. They put their
calculations in a form developed by Fair and Anderson [36]:

U1 ¼
"�1

�
E1 þ

"ð�2 � �1Þ

�
½M

p
12eeþMn

12ðI � eeÞ� � E1 ð34Þ

U2 ¼
"�2

�
E1 �

"ð�2 � �1Þ

�
½Mp

21eeþMn
21ðI � eeÞ� � E1 ð35Þ

X1 ¼
"ð�2 � �1Þ

�L
N12e E1 ð36Þ

X2 ¼ �
"ð�2 � �1Þ

�L
N21e E1 ð37Þ

The ‘‘p’’ and ‘‘n’’ superscripts on the elctrophoretic mobility coefficients (M and N)
represent the motion parallel and perpendicular to the center-to-center axis (e = unit
vector from particle 1 to 2, where 2 is the larger particle). For large separations the method
of reflections gives [37]

Mp
12 ¼

a2
3

R3
þ13

2

a1
3a2

3

R6
þOðR�8

Þ; Mp
21 ¼

a1
3

R3
þ 13

2

a1
3a2

3

R6
þOðR�8

Þ ð38Þ

Mn
12 ¼ �1

2

a2
3

R3
�1

4

a1
3a2

3

R6
þOðR�8

Þ; Mn
21 ¼ �1

2

a1
3

R3
�1

4

a1
3a2

3

R6
þOðR�8

Þ ð39Þ

N12 ¼ 15
4

a1
2a2

4

R6
þOðR�8

Þ; N21 ¼15
4

a1
4a2

2

R6
þOðR�8

Þ ð40Þ

where R is the center-to-center distance between the two particles. These results show the
sharp decay of the interaction, which is OðR�3

Þ.
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Near-field results have also been obtained, both for the case when the electric field is
oriented parallel [45] and perpendicular [44, 46] to the line between the particles. Velegol et
al. [44] showed that in fact some of the coefficients become singular as the gap between the
spheres goes to zero, a fact not appreciated in the work of Keh and coworkers. The
lubrication result for electrophoresis along the line of centers is [45]

kE �
U2 �U1

U1
2 �U1

1

¼

cE
1 ð1 þ �Þ3

�2
�

1 �
ð1 þ 7�þ �2

Þ

5�
� ln

ð1 þ �Þ2

�
�

" #
þ cE

2

ð1 þ �Þ2

�
�

ð41Þ

where � ¼ 2�=ða1 þ a2Þ, 2� is the gap between the particles, � ¼ a1=a2 (where a1 is the
smaller particle), and U1

i is the velocity of the particle when the separation is large (given

by Smoluchowski’s equation). The coefficient cE
1 is 1.50553 for � ¼ 1; 0:84548 for � ¼ 0:5,

and 0.23567 for � ¼ 0:2. The coefficient cE
2 is 2.24 for � ¼ 1 and 1.84 for � ¼ 0:5 (difficult

to calculate for other �). For � ¼ 1 we know [3]

Mp
12 ¼

1 � kE

2
ð42Þ

For the case when e is perpendicular to E1, electrophoretic motion is still described
by an analytical result, albeit more complicated [44]. A solution for N was obtained only
for � ¼ 1. The coefficients were determined using lubrication theory. For � ¼ 1 we have
Mn

12 ¼ Mn
21 and N12 ¼ �N21, and

Mn
12 ¼ 1 þ ya11 �3:00	a�

ffiffi
2

p
=2�1

þ Iouter
22

j k
þ ya12 3:00	a�

ffiffi
2

p
=2�1

þ Iouter
21

j k
þ yb11 3:00	a2�

ffiffi
2

p
=2�1

þ Kouter
22

h i
þ yb12 �3:00	a2�

ffiffi
2

p
=2�1

þ Kouter
21

h i ð43Þ

N12

L
¼ �yb11 �3:00	a�

ffiffi
2

p
=2�1

þ Iouter
22

h i
� yb12 3:00	a�

ffiffi
2

p
=2�1

þ Iouter
21

h i
� yc11 3:00	a�

ffiffi
2

p
=2�1

þ Kouter
22

h i
þ yc12 �3:00	a�

ffiffi
2

p
=2�1

þ Kouter
21

h i ð44Þ

for � ¼ �=a (2� is the gap; a is the radius of the spheres) and

Iouter
21 ¼ �5:48901a; Iouter

22 ¼ �8:16940a ð45Þ

Kouter
21 ¼ 11:97955a2;Kouter

22 ¼ � 14:96163a2
ð46Þ

6	aya11 ¼

0:89056 ln
1

2�

� 	2

þ 5:77196 ln
1

2�

� 	
þ 7:06897

ln
1

2�

� 	2

þ 6:04250 ln
1

2�

� 	
þ 6:32549

ð47Þ

6	aya12 ¼

0:48951 ln
1

2�

� 	2

þ 2:80545 ln
1

2�

� 	
þ 1:98174

ln
1

2�

� 	2

þ 6:04250 ln
1

2�

� 	
þ 6:32549

ð48Þ
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6	a2yb11 ¼

0:20052 ln
1

2�

� 	2

þ 0:29918 ln
1

2�

� 	
� 1:18857

ln
1

2�

� 	2

þ6:04250 ln
1

2�

� 	
þ 6:32549

ð49Þ

6	a2yb12 ¼

�0:20052 ln
1

2�

� 	2

� 1:39080 ln
1

2�

� 	
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1

2�

2� 	
þ 6:04250 ln

1
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� 	
þ 6:32549

ð50Þ

6	a3yc11 ¼

0:20052 ln
1

2�

� 	2

þ 4:20672 ln
1

2�

� 	
þ 6:96083

ln
1

2�

� 	2

þ 6:04250 ln
1

2�

� 	
þ 6:32549

ð51Þ

6	a3yc12 ¼

0:20052 ln
1

2�

� 	2

� 0:79328 ln
1

2�

� 	
þ 0:22486

ln
1

2�

� 	2

þ 6:04250 ln
1

2�

� 	
þ 6:32549

ð52Þ

The �
ffiffi
2

p
=2�1 dependencies of the coefficients are interesting and not initially intuitive;

seldom do such irrational powers appear. It says that, as the particles come closer
together, their angular velocities increase. This is opposite to the behavior of sedimenta-
tion. An intuitive explanation for this behavior is that since electrophoresis exerts a force
on the diffuse charge region of the thin double layers, as the particles come closer together
they can ‘‘push off’’ each other more efficiently.

The motivation for the above calculations was to obtain an effective angular velocity
of two spheres that are freely rotating (i.e., close but not touching) and yet behave as a
single doublet because colloidal forces acting along the line between centers hold the
particles at a fixed separation (see the ‘‘freely rotating’’ case of Fig. 4). This would con-
ceivably happen for spheres that are in a DLVO secondary energy minimum. The coeffi-
cient for the angular velocity of two freely rotating spheres is [3]

N ¼ 1 �Mn
12 �Mn

21 ð53Þ

where N is defined by Eq. (32) with the radius a replaced by ðaþ �Þ. In addition, we
wanted to know the effect on N if the � potential in the gap between the spheres was
not uniform. We found that if on sphere 1 the � potential is kT=e outside the gap region
but zero in the gap, while on sphere 2 the � potential is �kT=e on the entire surface, the
change in the angular velocity is less than 15%. This calculation was done for a dimen-
sionles gap 2�=2a ¼ 0:01; the nonuniformity in zeta potential becomes more important for
smaller gaps. Finally, a calculation was done to examine the effect of finite, overlapping
double layers. The EDLs are still thin relative to the particle size (eg., �a ¼ 100Þ, but can
be large relative to the gap dimension (eg., �� ¼ 3Þ. Under this condition the infinitesimal
EDL result, given by Eqs (43)–(53), predicts the angular velocity to within 5%.
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B. Rigid Doublets

In order to find the electrophoretic mobility of two spheres, Fair and Anderson [36] used
the Lorentz reciprocal theorem and the results from Keh and Yang [41, 42] (see also Ref.
43). In the freely rotating case, the spheres can rotate force and torque free. However, for
rigid doublets, the constraints are

F1 þ F2 ¼ 0;T1 þ T2 ¼ 0 ð54Þ

:1 ¼ :2 ¼ : � e
de

dt
ð55Þ

The sum of the forces or torques on a doublet must be zero since the doublet is not
accelerating; however, this is not true for each particle. This constraint is most important,
as it slows the rotation. The M and N coefficients from above have been calculated for
rigid doublets, and the results vary slowly with the gap [3–5]. We list here only the results
for two spheres in a rigid doublet configuration with no gap between them ð� ¼ 0Þ, since
the dependence on � is weak when �� a:

U0 ¼
"�1

�
E1 þ

"ð�2 � �1Þ

�
MpeeþMn

ðI � eeÞ
� �

� E1 ð56Þ

:1 ¼ :2 ¼ : ¼
"ð�2 � �1Þ

�L
Ne E1 ð57Þ

where the Ms and N are given in Table 3 [36, 42, 43]; r01 is the distance from the center of
particle 1 to the center of hydrodynamic stress (point 0) of the doublet, and U0 is the
velocity of point 0. For equal size spheres r01 ¼ a, the midpoint between the centers of the
particles, but this is not true for the case of unequal size spheres [36].

C. Estimates for Rigid and Freely Rotating Doublets

Measurements of the coefficient N can be used to probe the rigidity of a colloidal doublet
because the value of N depends on whether or not the surfaces of the particles in the gap
region are able to move parallel to each other. Here, we provide an approximate analysis
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FIG. 4 Rigid and freely rotating doublets. Experimentally, one can see only the whole doublet
rotating. For rigid doublets, each sphere rotates with the same angular velocity as the e vector. For

freely rotating doublets, the spheres may rotate relative to each other, and they both rotate in the
opposite direction as the e vector.



of the dynamics of a doublet to illustrate this dependence. The approximate analyses in
this section and Section III.E emphasize that, by using simple ideas of connectivity and
zero- or first-order approximations for particle interactions, one can often gain valuable
qualitative and semiquantitative insights into the behavior of groups or clusters of parti-
cles without resorting to solving fully the electrokinetic equations for the entire system.

Consider the orientation of the doublet as shown in Fig. 4, with the forces and
translational velocities in the direction of the electric field while the torques and angular
velocities are directed perpendicular to the plane of the paper. If the particles are free to
rotate such that each achieves mechanical equilibrium with the surrounding fluid, then the
total force and torque on each particle must be zero:

Fi ¼ 0;Ti ¼ 0 ð58Þ

Because the double layers are very thin relative to the radius of the particles (�ai 	 1Þ, the
force and torque on the particles can be calculated at the outer edge of the double layer,
and hence the forces are all hydrodynamic in nature (i.e., electrical forces are zero at the
edge of the EDL to first order in the electric field, although the electric field is not) [10]. If
electrostatic and hydrodynamic interactions between the particles are neglected, then each
particle would move (without rotation) at the velocity U i0 given by Eq. (1). The angular
velocity of the doublet is defined by : ¼ e ðU2 �U1Þ=L, so N is defined by

� ¼
U2 �U1

L
¼ N

U20 �U10

L
ð59Þ

Since we assume here that Ui ¼ Ui0, then N ¼ 1 in the absence of interactions. Effects of
particle interactions have been determined by a ‘‘method of reflections’’ technique [37].
Using only the first nonzero reflections of the disturbances to the fluid velocity and electric
field caused by each sphere, corrections to the velocity of each sphere are determined and
then Eq. (59) gives the following for freely rotating doublets:

N ¼ Nfr ¼ 1 þ
1

2
ð1 þ �3

Þ
a2

L

� �3

þ O
a2

L

� �6

ð60Þ

where L is the center-to-center separation of the particles and is essentially equal to a2ð1 þ

�Þ for a doublet held together by colloidal forces, and � ¼ a1=a2 where particle 2 is defined
to be the larger particle. The above expression is the result of two interactions between the
spheres; the motion of sphere 2 creates a disturbance to the fluid velocity leading to a term
(1/2)(a2=LÞ

3, while sphere 1 disturbs the electric field and contributes (1/2)(a1=LÞ
3 to the

value of Nfr. Note that :i ¼ 0 for both spheres until terms of O(a2=LÞ
8 are included. To

the order given in Eq. (60) the two spheres move relative to each other without rotating;
hence, their surfaces slide by one another unless there is a mechanical restraint. Chen and
Keh [37] give the expansions for the sphere interactions to Oða2=LÞ

12, from which Nfr

could be determined. Note that Nfr > 1 for the case of free rotation.
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TABLE 3 Mobility Coefficients for Rigid Doubletsa

a1=a2 � 1 Mp Mn N r01=ða1 þ a2Þ

0.2 0.98238 0.7684 0.1560 0.9648

0.5 0.8429 0.3470 0.4880 0.7920
1 0.5000 0.1800 0.6400 0.5000

a See Eqs (56) and (57).



Now consider the rigid-body case. Because the two particles act as one, due to forces
between them directed both along the line of centers and tangent to the surfaces, mechan-
ical equilibrium is achieved when the total force and torque on the doublet are zero [36]:

F1 þ F2 ¼ 0 ð61Þ

T1 þ T2 þ L F2 ¼ 0 ð62Þ

�1 ¼ �2 ¼ � ð63Þ

Equation (63) is the important one, as it forces each particle to rotate with the doublet.
Neglecting hydrodynamic interactions between the spheres, the force and torque on each
sphere are

Fi ¼ �6	�aiðUi �Uf
i Þ ð64Þ

Ti ¼ �8	�a3
i ð�i ��f

i Þ ð65Þ

where Uf
i and �f

i are the velocities for the freely rotating case. Combining Eqs (59)–(62) we
have the following for rigid-body rotation, correct to O(a2=LÞ [7]:

N ¼ Nrb ¼ 1 þ
4

3

a2

L

� �2ð1 þ �Þð1 þ �3
Þ

�

" #�1

Nfr ð66Þ

The above equation indicates that N < 1 for all separations L down to the minimum value
of contact, a2ð1 þ �Þ.

The essence of the rigid-body constraint is Eq. (63). The coupling between the two
spheres prevents their surfaces from moving tangentially relative to each other, thus impart-
ing an angular velocity to each of Oða2=LÞ

2. This is why Nrb < 1 for all values of separa-
tion. In addition to providing insight into the essential hydrodynamic difference between
the freely rotating and rigid-body conditions for a doublet, the above analysis results in
reasonably accurate approximations for N. For L=a2 > 1:05ð1 þ �Þ, Eq. (60) is accurate to
within 8%, while Eq. (66) is accurate to within 30%.

D. Slender Bodies

Particles can aggregate into chains, and the electrophoresis of these chains can be approxi-
mated by slender-body theory. An example is shown in Fig. 5. Semianalytical formulas
have been derived [47–49] for the motion of long, slender particles whose charge varies
along the contour. The results are valid when �bo= lnð�Þ 	 1 where bo is the characteristic
radius of the cross-section of the particle and � is the ratio of contour length to 2bo. The
Lorentz reciprocal theorem for Stokes flow was used to evaluate the translational and
angular velocities of the slender body based on a distribution of stokeslets, which must be
computed from hydrodynamic theory based on the geometry.

An interesting example is a straight cylinder of diameter 2b and length 2L with the
slenderness parameter " ¼ b=L � 1. Define the first three moments of the �-potential
distribution as

p0 ¼
1

2

ðþ1

�1

�ds p1 ¼
1

2

ðþ1

�1

s�ds p2 ¼
1

2

ðþ1

�1

ð3s2
� 1Þ�ds ð67Þ
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where s is the dimensionless position along the axis (s ¼ �1 represents the ends of the
cylinder). Note that p0 is the area-averaged zeta potential ð�aveÞ on the surface. Using the
formulation of Eqs (25) and (26) and the results of ref. 47, the mobilities are

mk ¼ �ave þ
5=6

3 � 2 lnð4"Þ
p2; m? ¼ �ave þ

5=6

1 � 2 lnð4"Þ
p2; mr ¼ 3p1 ð68Þ

where �ave ¼ p0, the area-average zeta potential of the cylinder. These expressions are valid
when �b 	 1 and "� 1. This example illustrates three interesting facets of nonuniformly
charged particles in electric fields: (1) the particle rotates into alignment with its dipole
moment ðp1Þ, (2) the mobility is different along the axis compared to perpendicular to it
(also note that the mobility is greater for the perpendicular motion if p2 has the same sign
as �aveÞ, and (3) neutral particles can have a finite mobility. Concerning the third observa-
tion, the local charge per surface area is proportional to � for small �, so the particle would
be neutral if �ave ¼ 0; however, a finite p2 would lead to translation in the electric field.

The effect of hydrodynamic shielding on electrophoretic mobility can be illustrated
by considering a cylinder having N segments each of which has its own zeta potential �i, as
shown in Fig. 6. In this example the length of each segment equals the cylinder’s diameter,
so the slenderness parameter " equals N�1. Note that this geometry is a reasonable
approximation for a chain of spherical particles. Here, we consider a straight cylinder,
but we could generalize the results to a curved chain using the basic relations derived in
Ref. 47. For the straight cylinder we have

mk ¼
XN
i¼1

Ai
k�i;m? ¼

Xn
i¼1

Ai
?�i; mr ¼

XN
i¼1

Ai
r�i ð69Þ

In the case of translational motion parallel and perpendicular to the axis of the cylinder,P
ðAi

Þ ¼ 1 because Smoluchowski’s equation must hold if all segments have the same zeta
potential, and ANþ1�i

¼ Ai because of symmetry. For rotation we have
P

ðAi
rÞ ¼ 0 and

ANþ1�i
r ¼ �Ai

r. The general formulas for the coefficients are given below:

Ai
k ¼ f2½ð1 � i"Þ lnð1 � i"Þ � ln½1 � ði � 1Þ"� � i" lnð4i"Þ�þ

"½6 � 4 lnð2"Þ � 2ð1 � iÞ ln½4"ði � 1Þð1 � ði � 1Þ"Þ��gf6 � 4 lnð4"Þg�1
ð70Þ
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FIG. 5 Chains of particles. These can be approximated as ‘‘slender bodies’’: (a) long chain that can
be well approximated as a ‘‘slender body’’, (b) and (c) chains with the same set of particles, but which
will have different electrophoretic velocities. Whereas the chain in (c) will move at the average

mobility of the two types of spheres, the chain in (b) will move at a mobility close to that of the
lighter-shaded sphere since these are the ‘‘exposed’’ particles.



Ai
? ¼ f2½ð1 � i"Þ lnð1 � i"Þ � ln½1 � ði � 1Þ"� � i" lnð4i"Þ�þ

"½6 � 4 lnð2"Þ � 2ð1 � iÞ ln½4"ði � 1Þð1 � ði � 1Þ"Þ� � 4�g½2 � 4 lnð4"Þ��1
ð71Þ

Ai
r ¼

C

2
ð2"i � 1Þ2 � ð2"ði � 1Þ � 1Þ2
� �

þ
D

4
f�2"i � 1Þ2 þ ð2"ði � 1Þ � 1Þ2þ

ð2"i � 1Þ2 � 1
� �

ln½4"ið1 � "iÞ� � ð2"ði � 1Þ � 1Þ2 � 1
� �

ln½4"ði � 1Þ 1 � "ði � 1Þð Þ�g

ð72Þ

C ¼
9

2

� 	
1 þ 2 lnð2"Þ

�5 þ 6 lnð4"Þ
; D ¼

9

2

� 	
1

�5 þ 6 lnð4"Þ
ð73Þ

Note that Eq. (72) corrects a typographical error in Eq. (1.3) of Ref. 48.
As an example consider a chain of N ¼ 10 segments (¼ "�1). The A coefficients are

given in Table 4. Consider the case where five of the spheres have � ¼ þ�0 and five have
� ¼ ��0; thus, the chain is neutral. Figure 6 shows that the relative placement of the
charged spheres has a significant effect on the electrophoretic mobility; furthermore,
this is a case where a neutral chain has a significant electrophoretic mobility. The ends
of the chain ði ¼ 1 and 10) are weighted the most because they are hydrodynamically
exposed.

Han and Yang [50] extended the slender body approach [47] to rod-like particles
with low � potentials but arbitrary �b. The results were then used to compute the orienta-
tion distribution of rod-like particles during capillary electrophoresis. The analysis uses
singularity solutions of the linearized Poisson–Boltzmann equation as the base set of the
electrostatic part of the problem. They considered two cases that allow analytical expres-
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FIG. 6 Modeling a straight chain of equal size particles by a cylinder of N ¼ 10 segments. The

darker spheres have a zeta potential of þ�0 and the lighter spheres have ��0. The mobility coeffi-
cients ðmÞ are expressed in units of �0.



sions for rotational mobility of the particle. As expected the result for an infinitesimal
double layer coincides with Eq. (67). For very thick double layers relative to the radius of
the fiber, the factor 1/2 in Eq. (67) is replaced by 1/4. Similar expressions were obtained by
Chen and Koch [51]

:

E. Rigid Networks of Particles

Insight into the effects of variations in � among spherical particles in a cluster can be
gained simply by applying basic concepts of mechanics and neglecting disturbances in the
velocity and electric fields caused by each particle. Consider a group of M spherical
particles in an unbounded fluid, each of which has zeta potential �i and radius ai. The
electric field far from the cluster is E1. The double layers on each particle are assumed to
be thin and unpolarized; thus, in the absence of interactions between the particles, each
would move according to the Smoluchowski equation with � ¼ �i for each.

Now consider the case where the M spherical particles are connected by rigid rods of
negligible hydrodynamic resistance, as shown in Fig. 4. The cluster of M particles moves
as a rigid body with translational velocity Uo (i.e., the velocity of the center ‘‘o’’ of the
group) and angular velocity :. Using Stokes’ law (remembering that hydrodynamic and
electrostatic interactions among the particles are neglected) we calculate the net force on
each particle to be

F i ¼ �6	�ai½Uo þ: roi �U i0� ð74Þ

where U i0 is given by Eq. (1), and roi is the vector from the center of the cluster (point ‘o’)
to the center of particle i. Point ‘o’ is determined such that there is no coupling between the
translational and angular velocites [52]; since hydrodynamic interactions are neglected in
this analysis, point ‘o’ is given by

XM
i¼1

airoi ¼ 0 ð75Þ

The velocity of the cluster is determined by summing all the forces to zero:
P

F i ¼ 0, so
that
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TABLE 4 A coefficients Defined in Eq. (69) and Computed
from Eqs (70)–(73) with " ¼ 0:1 ¼ N�1 and N ¼ 10a

Position of
segment i Ai

k Ai
? Ai

r

1 0.1280 0.1478 �0:2492
2 0.1016 0.1028 �0:1544

3 0.0934 0.0888 �0:1016
4 0.0893 0.0818 �0:0584
5 0.0876 0.0788 �0:0191

a Note that A11�i ¼ Ai for the translational coefficients and A11�i
r ¼ �Ai

r

for rotation.



Uo ¼
"

�

P
ai�iP
ai

E1 ð76Þ

Consider a cluster that is ‘‘neutral.’’ For low zeta potentials (about 2kT=e or less), the
charge per area on the particle surface is proportional to �i; thus, a neutral cluster would
have

P
a2
i �i ¼ 0. However, from (76) we see that Uo is not necessarily zero unless all the

particles are neutral. So here we have another example of how a neutral body (the M
connected particles) has a finite electrophoretic mobility even though it is neutral.
Allowing for hydrodynamic and electrostatic interactions among the particles does not
change the essence of this result.

The connected cluster of M particles will also rotate in an electric field. The angular
velocity is found by requiring the hydrodynamic torque ðTÞ on the cluster to be zero:

T ¼
XM
i¼1

roi  F i � 8	�a3
i:

� �
¼ 0 ð77Þ

Because the cluster is force free, the torque is independent of the placement of the origin
point ‘o’. From the above equations we have the following for the angular velocity:

: �
XM
i¼1

ai r2
oiI � roiroi þ

4

3
ai

2
I

� �
¼
"

�

XM
i¼1

ai�iroi  E1 ð78Þ

Note that ‘‘alignment’’ of the cluster with the electric field occurs when the right-hand size
of Eq. (78) equals zero. If all the spheres have the same zeta potential, then the right-hand
side automatically equals zero because of Eq. (75) so that : ¼ 0 for any orientation.

As an example, consider M ¼ 2 as shown in Fig. 4; L equals the center-to-center
separation and � ¼ a1=a2 � 1 (i.e., particle ‘2’ is always the larger sphere). The unit vector
e gives the direction of the line of centers:

e ¼
ro2 � ro1

jro2 � ro1j
ð79Þ

The center (o) is defined along e according to Eq. (75); thus, ro2 ¼ �L=ð1 þ �Þ and
ro1 ¼ L� ro2. The angular velocity of the vector e is then given by

: ¼ N
"

�L
ð�2 � �1Þe E1 ð80Þ

where the dimensionless coefficient N is given by Eq. (66) with Nfr ¼ 1 (which is the case if
hydrodynamic and electrostatic interactions between the particles are neglected, as
assumed in this section). Note that no rotation occurs about the e vector for this axisym-
metric case.

The above discussion neglects hydrodynamic and electrostatic interactions among
the particles, except for the rigid connectedness that makes the cluster a rigid body. The
disturbance to the electric field caused by particle j and felt by particle i goes as r�3

ij , which
is a weak interaction. On the other hand, the leading interaction of the velocity fields is of
order r�1

ij , so neglect of the hydrodynamic interactions is a more serious assumption.
However, inclusion of these interactions would not change the basic structure of the
above equations, and the results of the simplified analysis presented above are still con-
ceptually correct and semiquantitative.
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F. Sphere Approaching a Flat Wall

Electrophoretic deposition is a process that is used to produce dense monolayer or multi-
layer films of particles from nanometer to micrometer sizes [53]. An electric field is used to
transport the particles to the surface of the electrode, which is usually a thin metallic film
on a solid substrate. The particles become loosely deposited such that they remain near the
electrode surface, but are mobile in the plane parallel to the electrode. Two-dimensional
particle aggregation occurs during continued application of the field [54–56]. A theory
based on electroosmotic convection about the deposited particles has been validated for
the aggregation of two [57, 58] and three particles [59] under direct current (dc) electric
field conditions.

Consider the electrophoresis of a spherical particle toward the electrode (a constant
potential surface). The effect of the wall on the electrophoretic velocity is determined by
the dimensionless separation � ¼ a=z where z is the distance of the center of the particle
from the wall. The following equation is valid over a broad range of separations [60]:

U

U0

¼ F ðeÞ
ð�Þ ¼ 1 �

5�3

8
þ
�5

4
�

5�6

8
þ Oð�8

Þ ð81Þ

where U0 is given by Smoluchowski’s equation (1). The mobility as � approaches unity has
also been calculated [61, 62].

Particles often experience a gravitational force as well. Using superscript (s) for
sedimentation, we have the following for the wall effect on settling of the paticle toward
the electrode [59].

UðsÞ

U
ðsÞ
0

¼ F ðsÞ
ð�Þ ¼

1 � 0:700�

1 þ 0:554�

� �
F ðeÞ

ð�Þ;UðsÞ
0 ¼

2

9

a2��g

�
ð82Þ

The wall slows the sedimentation more than it does electrophoresis for a given separation,
and as the particle approaches contact, the hindrance is about a factor of 5 greater on
sedimentation than on electrophoresis. This means that the position z of the particle can
be controlled within limits by applying an electric field to counterbalance gravitational
settling.

If a spherical particle is stationary near a surface, say, due to colloidal forces that
prevent it from sticking to the wall, then the particle acts as an electro-osmotic pump as
shown in Fig. 7. In this figure the particle has a negative � potential, and the electric field
acts on the positive space charge of the double layer to force fluid upward on the sides of
the particle. To conserve mass the fluid must flow parallel to the surface toward the
particle. The streamlines shown in the figure were computed by solving the electrostatic
equation for the electrical potential and then the Stokes’ equations for the velocity field (or
the stream function of the velocity field) [59]. The aggregation of particles under dc fields is
primarily due to entrainment of neighboring particles in the electro-osmotic flow gener-
ated by each deposited particle [57, 58]. The strength of the electro-osmotic flow at any
distance from the deposited particle depends on the particle size, so larger particles entrain
smaller particles, and clusters of particles entrain other particles and clusters [56,59]. In
this way the deposited particles are consolidated on the surface, leaving bare areas for
other particles to deposit. The film is stabilized at the end of some time period, once a
dense layer (or multilayer) is formed, by adjusting experimental conditions and forcing the
particles to adhere to the surface.
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IV. EXPERIMENTAL RESULTS

Few experimental results exist concerning the electrophoresis of complex and interacting
particles. In many cases, even though the experiments were on complex particles, the
analysis was done as if the particles were uniformly charged, giving an ‘‘average’’ charge.
The first experiments done to study the electrophoresis of colloidal doublets were by Fair
and Anderson [2]. They found results quantitatively and qualitatively consistent with their
theory for rigid doublets [36]. In these experiments they observed both the translational
and rotational motion of the doublets; this appears to be the first reported rotation of
dipolar particles by electrophoresis (versus rotation by dielectric polarization). The results
for the translational mobility of colloidal doublets compared to within a few per cent of
theoretical predictions for mobility parallel to the axis of the doublet. The mobility of the
doublet perpendicular to its axis was difficult to measure since the doublet rotated.

Fair and Anderson’s measurements of the angular velocity of colloidal doublets were
qualitatively in agreement with theory. They allowed two particles with different zeta
potentials [1.1-mm carboxylate-coated polystyrene (PS) latex and 2.5-mm amidine-coated
PS latex] to aggregate by Brownian motion. The resulting doublets had a dipole moment
of zeta potential, and therefore rotated in an applied electric field. Due to the effects of
Brownian rotation, they were not able to obtain quantitative agreement with theory. The
use of video microscopy enabled Velegol et al. [3] to confirm the theory precisely. An
example of doublet rotation trajectories is shown in Fig. 8.

It has also been shown that clusters of particles that have an area-average � potential
of nearly zero can have a finite electrophoretic mobility, as discussed previously [32]. The
particle trajectories were viewed with a video camera on a MKII Microelectrophoresis
Apparatus (Rank Brothers). Two types of particles were used: a carboxylate-coated PS
latex (4.42 mmÞ and an amidine-coated PS latex (2.50 mm). At 10 mM NaCl, the carbox-
ylate particle had � ¼ �47 mV and the amidine particle had � ¼ þ53 mV. Clusters of three
or more particles had measured mobilities different from that which would be expected
based on area-averaged zeta potential. For example, a cluster of three amidines and one
carboxylate that was expected from an area-averaged zeta potential to have a mobility of

168 Velegol et al.

FIG. 7 Streamlines generated by electro-osmosis about particle 1 [59]. In this example, the particles
are negatively charged and the electrode is positive. There is a small gap of fluid between the particle

and the electrode, thus imparting two-dimensional mobility to the particles. The electric field gen-
erates an electrokinetic slip velocity about particle 1, pushing fluid upward along that particle’s
surface and drawing fluid laterally in toward the particle to conserve mass. A neighboring particle

(2) would be convected toward particle 1 and vice versa, as particle 2 also generates an electro-
osmotic flow field.



0.169 mm/cm / V�s in fact had a mobility of +2.312 mm cm / V�s. This reinforces the
theoretical calculations presented here showing that the area-averaged � potential is not
the relevant property for the electrophoretic mobility of complex particles, rather it is a
hydrodynamic-based average of the � potential that determines the motion.

V. SUMMARY AND FUTURE DIRECTIONS

In this chapter we have demonstrated that nonuniformly charged particles and clusters of
particles behave in ways unpredictable from simply applying Smoluchowki’s equation
assuming an area average of the � potential. Geometry and hydrodynamics are important
to the electrophoretic motion of complex bodies. The rich electrokinetic behavior of
complex particles in electric fields should be viewed as an opportunity, and the curious
dynamics such as rotation of dipolar particles and translation of neutral particles or a
connected cluster of particles could be exploited in separations and synthesis of colloidal
material.

Electrophoretic theory for nonuniformly charged or interacting particles is devel-
oped to the point where it can be used to test various parameters important in under-
standing colloidal forces and stability. Historically, this has meant only the zeta potential,
but more recently ‘‘differential electrophoresis’’ has been used to measure the normal and
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FIG. 8 Typical rotation data for a single doublet. The data are for a doublet formed from an
amidine particle (2a ¼ 2:51 � 0:12 mm, � ¼ þ74 � 11 mV) and a sulfate particle (2a ¼ 2:75 � 0:09
mm, � ¼ �113 � 5 mV). For this doublet N ¼ 0:57 � 0:04, whereas the theoretical value for a rigid

doublet with this size ratio is N ¼ 0:64þ0:00
�0:02. The center line is cos�1

hcos 
ðtÞi, obtained by solving the
orientation probability equation, and the two outer lines represent approximately the region of one
standard deviation; i.e., they represent cos�1

½hcos 
ðtÞi � �cos� where �2
cos ¼ hcos2 
ðtÞi � ½hcos 
ðtÞi�2.

Roughly two-thirds of the data should (and do) fall between these lines. (From Ref. 3. Reproduced
with permission from Langmuir.)



tangential forces between colloidal particles [5]. Initial results have shown large attractive
forces between polymer colloids that have no surfactant on them. Tangential forces, which
are not predicted by the classical theory for colloidal forces, have also been found [6].
These tangential forces, measured between PS latex particles and silica particles, showed
interesting time-dependent effects over short (but nonBrownian) time scales.

Recent measurements show that nominally ‘‘homogeneous’’ colloidal particles can
actually have a nonuniform charge distribution on them [25, 63], thus supporting the
models developed in Section II.A. Since many researchers have shown that charge non-
uniformity on colloidal particles can be a cominant factor in interparticle forces [26, 27,
64–66], these experiments provide one explanation for why the classical DLVO theory [67]
of colloidal forces often fails to predict the behavior of colloidal suspensions. An impor-
tant consequence of this work could be the identification of particles with a small charge
nonuniformity. Thus, just as translational electrophoresis has been used for years to
measure the ‘‘average’’ zeta potential, now rotational electrophoresis can be used to
measure the standard deviation of zeta potential on individual particles or even between
particles of the same nominal specifications. By identifying manufacturing techniques that
produce more homogeneous particles, downstream manufacturing design and costs could
be greatly reduced – even if initial manufacturing costs were slightly higher. In addition, in
some cases a certain charge distribution might be desirable, and electrophoretic rotation
experiments could determine when this exists.
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Electrophoresis Theory of Nonspherical
Particles

JAE YOUNG KIM and BYUNG JUN YOON Pohang University of Science and
Technology, Pohang, Korea

I. INTRODUCTION

The electrokinetic or zeta potential of a charged particle is commonly determined by using
electrophoresis measurements. In capillary electrophoresis the velocity of a charged par-
ticle is measured either by direct observation through a microscope or by using other
optical techniques such as laser light scattering. The measured velocity of the particle
comprises both electrophoretic and nonelectrophoretic contributions. The electrophoretic
contribution is the part that depends linearly on the electrokinetic potential of the particle
and the applied electric field. The nonelectrophoretic contribution is attributable to several
factors such as electro-osmotic flow of the surrounding fluid and other nonelectrostatic
forces applied to the particle during experiments.

To determine the electrokinetic potential of a charged particle, one must isolate the
electrophoretic contribution from the observed particle velocity. The electrokinetic poten-
tial is then estimated using an appropriate relationship between the electrokinetic potential
and the electrophoretic velocity of the particle. The isolation of the electrophoretic con-
tribution and the estimation of the electrokinetic potential therefrom both require math-
ematical model analyses for the motion of a charged particle in an electrophoresis
experiment. The mathematical model consists of a set of partial differential equations:
the conservation equations for mass, momentum, and ionic species, and the Poisson
equation. When the mathematical model is simple, the governing differential equations
can be solved analytically and a simple explicit relationship between the electrokinetic
potential and the electrophoretic mobility can be derived. The most famous model is
due to Henry [1], who considered spherical particles with small and uniform electrokinetic
potentials. As the particle shape or the electrical surface condition becomes more compli-
cated, the analysis becomes more involved and explicit relationships between the electro-
kinetic potential and the electrophoretic mobility may not become available.

Electrophoresis measurement furnishes us the value of the electrokinetic potential as
a single parameter that characterizes the electrical property of the particle. Although we
may interpret the furnished value as one of the lumped electrical properties of the particle,
it is worth while to explore possible connections between the electrophoretic measurement
data and the surface charge or potential distribution of the particle. For homogeneous
spherical particles the electrical surface condition may be uniform so that a single para-
meter suffices to represent their electrical properties. On the other hand, for nonspherical
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particles the electrical surface condition is not uniform and the electrical property must
assume the form of surface distribution. In electrophoresis analysis for such nonspherical
particles it is natural to ask the following questions. First, how do we interpret physically
the meaning of the lumped electrokinetic potential obtained from the electrophoretic
measurement? Second, is it possible to determine the electrokinetic potential distribution?
For spherical particles with arbitrary electrokinetic potential distributions the answers to
these questions are partly available [2, 3]. For Brownian spheres with small electrokinetic
potentials it has shown that the lumped value from the electrophoresis measurement is
nothing but an area average (or monopole moment) of the electrokinetic potential dis-
tribution. In addition, the dipole moment induces the electrophoretic rotation and the
quadrupole moment contributes to the electrophoretic translation. When spherical parti-
cles are nonBrownian, we thus may be able to determine the dipole and quadrupole
moments of the electrokinetic potential distribution by measuring the orientation and
the rotational velocity of the sphere.

When an electric field is applied to a suspension of charged nonspherical particles,
each particle experiences electrostatic, hydrodynamic, gravitational, and Brownian forces.
Since each of these forces affects the dynamics of the particle in a very complicated way,
the determination and proper interpretation of the electrokinetic potential for nonsphe-
rical particles is a challenging task. In particular, a continuous change in the particle
orientation during the course of the electrophoresis experiment complicates the analysis.
During the electrophoresis of nonspherical particles the particle orientation is affected by
both electrophoretic and nonelectrophoretic contributions. Therefore, the isolation of the
electrophoretic contribution and the determination of the electrokinetic potential require
more careful analyses for nonspherical particles.

Previous studies on the electrophoresis theory for nonspherical particles are mostly
concerned with cylindrical and spheroidal particles. Henry’s work [1] for infinite cylinders
with small and uniform electrokinetic potentials was later extended by including double-
layer relaxation [4] and by considering finite cylinders [5]. Electrophoresis of spheroidal
particles with small and uniform electrokinetic potentials has been analyzed under various
conditions: in quiescent fluid [6], with gravitational settling [7], and in electro-osmotic bulk
flow [8]. Electrophoresis of disks with small and uniform electrokinetic potentials has also
been analyzed [9]. The aforementioned works all assume that the double-layer thickness is
arbitrary. When the double layer is very thin compared to the particle size, the electro-
phoresis analysis may become more tractable. Utilizing the assumption of thin double
layers, electrophoretic motion has been analyzed for the following systems: a spheroid
with a polarized double layer [10, 11], a spheroid with a nonuniform electrokinetic poten-
tial [12], a dumbbell-like particle which consists of two spheres with unequal electrokinetic
potentials [14], and a spheroid in nonhomogeneous electric field [15]. When the particle
shape is highly irregular, the set of governing partial differential equations must be solved
numerically. For this purpose, boundary element methods have been developed and uti-
lized for studying the electrophoretic mobility of biomolecules [16–20].

The outline of this chapter is as follows. Section II summarizes the general theory for
the dynamics of charged dielectric particles in electrophoresis experiments. By following
the general scheme developed by Teubner [21], force and torque balance equations are
obtained to derive the relationship between the velocity and the electrical condition of the
particle. The effects of external flow and gravitational settling are also included in the
balance equations. For the further development of the theory we introduce the assumption
that the double-layer potentials are small. Sections III and IV deal with the applications of
the theory developed in Section II. Section III discusses the electrophoresis of slightly
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deformed spheres. Extending the earlier work for spheres [3], we determine the electro-
phoretic mobility tensors of slightly deformed spheres in terms of the multipole moments
of the shape function and the electrokinetic potential distribution of the particle. Section
IV deals with the electrophoresis of spheroidal particles, including electro-osmotic bulk
flow and gravitational settling. By performing the trajectory analyses for spheroidal par-
ticles under such circumstances the effects of nonelectrophoretic contributions on the
apparent motion of the particle are discussed. Section V concludes this chapter by sum-
marizing major findings and further comments.

II. THEORY

A. Force and Torque Balances

Consider a charged dielectric particle undergoing a rigid-body motion through an electro-
lyte solution in a capillary under the influence of an electric field. The translational and
rotational motion of the particle is governed by Newton’s laws of motion. The force and
torque exerted on the particle consist of hydrodynamic, electrostatic, gravitational, and
stochastic Brownian contributions. Based on the quasisteady-state approximation,
Brownian force and torque are commonly excluded in the balance equations for the
electrophoresis analysis. However, the Brownian rotation must be properly incorporated
in the determination of the orientation distribution for nonspherical particles. Neglecting
the particle inertia, the force and torque balance equations are given by

0 ¼ F
H
þ F

E
þ ðmp � mf Þg ð1aÞ

0 ¼ T
H
þ T

E
þ ðmpxm � mf xbÞ � g ð1bÞ

Here, the superscripts H and E denote hydrodynamic and electrostatic contributions,
respectively. The last term in the force balance equation is the gravity force on the particle,
where mp � mf denotes the difference between the masses of the particle and displaced
fluid. In the torque balance equation the last term appears only when the center of mass xm
and the center of buoyancy xb are different. The hydrodynamic force and torque are
defined by

F
H
¼

ð
S

ðr � nÞdS ð2aÞ

T
H
¼

ð
S

ðx� xcÞ � ðr � nÞdS ð2bÞ

and the electrostatic force and torque are defined by

F
E
¼

ð
S

ðrM � nÞdS; ð3aÞ

T
E
¼

ð
S

ðx� xcÞ � ðrM � nÞdS ð3bÞ

Here, xc denotes the hydrodynamic center of the particle, r the hydrodynamic stress
tensor, and rM the Maxwell stress tensor. The integration is over the particle surface S,
for which the outward unit normal vector is denoted by n.
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B. Governing Equations

Since the hydrodynamic condition of the electrolyte solution around a charged particle
affects the electrostatic condition of the solution, the hydrodynamic and Maxwell stresses
cannot be determined independently. The governing equations for the coupled hydrody-
namics and electrostatics are the Stokes equations:

�rp þ �r2
uþ �E ¼ 0; r � u ¼ 0 ð4a; bÞ

for the velocity u and the pressure p, and the Poisson equation:

r
2� ¼ �

�

�
ð5Þ

for the electric field E ¼ �r� and the charge density �. Here, � is the dielectric constant of
the electrolyte solution. The charge density � of the electrolyte solution is given by

� ¼ e
X

i

zini ð6Þ

where e is the elementary charge, zi and ni are valence and number density of the ith ionic
species. The number density ni is governed by the conservation equation:

r � Ji ¼ 0 ð7Þ

Ji ¼ niu� eziniwir�� kTwirni ð8Þ

in which the ion flux Ji is governed by bulk flow, electromigration, and diffusion. The
symbol wi is the ion mobility and kT is the Boltzmann energy. For the Stokes equations
the boundary condition at the particle surface is the condition of the rigid-body motion,
and the fluid velocity approaches an undisturbed electro-osmotic flow field, V, far from the
particle:

ujS ¼ Uþ:� ðx� xcÞ ð9aÞ

uj1 ¼ V ð9bÞ

For the Poisson equation the boundary condition at the particle surface is the distribution
of the surface potential �S, and the potential approaches an undisturbed linear field far
from the particle:

�jS ¼ �SðxSÞ ð10aÞ

�j1 ¼ �E
1
� x ð10bÞ

The hydrodynamic stress r and the Maxwell stress rM are defined by

r ¼ �p�þ �ðruþ ru
y
Þ ð11Þ

rM ¼ �EE�
1

2
�E2d ð12Þ

Here, d is a dyadic unit and � is the viscosity of the fluid.

C. Hydrodynamic Force and Torque

Hydrodynamic force and torque can be conveniently determined after decomposing Eqs
(4a, b) and (9a, b) into two subproblems:
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�rp1 þ �r
2
u1 ¼ 0; r � u1 ¼ 0 ð13a; bÞ

u1jS ¼ Uþ:� ðx� xcÞ; u1j1 ¼ V ð14a; bÞ

�rp2 þ �r
2
u2 þ �E ¼ 0; r � u2 ¼ 0 ð15a; bÞ

u2jS ¼ 0; u2j1 ¼ 0 ð16a; bÞ

The first problem is a classical Stokes problem for a uncharged particle undergoing rigid-
body motion in an arbitrary flow field. Various solution methods are available for several
classes of nonspherical particles [22, 23]. The resulting hydrodynamic force and torque
exerted on the particle depend linearly on U, :, and V, so that

F
H
1 ¼ F

H
1 ðU;:;VÞ ð17aÞ

T
H
1 ¼ T

H
1 ðU;:;VÞ ð17bÞ

The second problem describes the fluid motion due to an electro-osmotic flow around a
stationary particle in the absence of bulk flow. The solutions of the second problem are
difficult to obtain for nonspherical particles. Fortunately, however, the hydrodynamic
force and torque can be determined directly using the reciprocal theorem [21]. The result-
ing hydrodynamic force and torque are given by

F
H
2 ¼

ð
V

�uF � EdV ð18aÞ

T
H
2 ¼

ð
V

�uT � EdV ð18bÞ

Here, the velocity fields, uF and u
T, are dyadic Stokes fields around the particle in the

absence of bulk flow under the boundary conditions:

u
F
jS ¼ d ð19aÞ

u
T
jS ¼ �� � ðx� xcÞ ð19bÞ

Here, � is unit isotropic triadic. The expressions for uF and u
T for spherical and ellipsoidal

particles are available [21, 33].

D. Total Force and Torque

Before we obtain the total force and torque balance equations it is useful to recast the
expressions for the electrostatic force and torque into the volume integrals. Using the
divergence theorem, Eqs (3a, b) can be rewritten as

F
E
¼ �

ð
V

�EdV ð20aÞ

T
E
¼ �

ð
V

ðx� xcÞ � �EdV ð20bÞ

Here, V denotes the fluid volume outside the particle. Combining Eqs (17a,b), (18a,b), and
(20a,b), the most general forms for the total force and torque balance equations are given
by
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0 ¼ F
H
1 ðU;:;VÞ þ

ð
V

�½uF � d � EdV þ ðmp � mf Þg ð21aÞ

0 ¼ T
H
1 ðU;:;VÞ þ

ð
V

�½uT � E� ðx� xcÞ � EdV þ ðmpxm �mfxbÞ � g ð21bÞ

These are a set of two equations for two unknowns, U and :. By solving these equations
the electrophoretic motion of the particle can be determined. To solve Eqs (21a,b) we need
three sets of information: (FH1 ,T

H
1 Þ, ðu

F; uTÞ, and ð�;EÞ. The first and the second sets
require the solutions of the Stokes equations for uncharged particles. The Stokes solutions
for several classes of nonspherical particles are available and various solution methods are
developed for particles of arbitrary shape. The third sets requires the solutions of the
Poisson equation coupled with the ion conservation equations. The determination of �
and E for nonspherical particles under general conditions is difficult. Simplifying assump-
tions are commonly introduced for further analysis for � and E.

When electro-osmotic bulk flow and gravitational settling are not present, Eqs
(21a, b) simplify to

�F
H
1 ðU;:Þ ¼ �A �Uþ �By

�: ¼

ð
V

�½uF � d � EdV ð22aÞ

�T
H
1 ðU;:Þ ¼ �B �Uþ �C �: ¼

ð
V

�½uT � Eðx� xcÞ � EdV ð22bÞ

Since the Stokes equations are linear, ðFH
1 , F

T
1 Þ is linear with respect to ðU;:Þ. The tensor

coefficients A;B, C are the hydrodynamic resistance tensors, which depend only on the
shape of the particle. When the applied electric field is small, the volume integrals in Eqs
(22a, b) are linear to E

1. By inverting Eqs (22a, b) we can then obtain a linear relationship
between ðU;:Þ and E

1. The tensor coefficient of E1 in such a relationship is the electro-
phoretic mobility tensor. The electrophoretic mobility tensor contains information on the
geometry and the electrical condition of the particle. Most electrophoresis theories devel-
oped earlier deal with Eqs (22a,b) rather than with Eqs (21a, b).

E. Equilibrium Double Layer in Weak Field

Without bulk flow and an external electric field the ion conservation equations integrate to

ni ¼ n1i exp �
ezi 

kT

� �
ð23Þ

which is the Boltzmann distribution. Here, n1i is the bulk number density and  is the
double-layer potential in the absence of external electric field. Substitution of Eq. (23) into
the Poisson equation yields the Poisson–Boltzmann equation:

r
2 ¼ �

e

�

X
i

zin
1
i exp �

ezi 

kT

� �
ð24Þ

The Poisson–Boltzmann equation cannot be solved analytically in general. However, when
the double-layer potential is small ðe =kT � 1Þ, we can linearize the equation to obtain

r
2 ¼ �2 ð25Þ

where
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�2 ¼
e2

�kT

X
i

z2i n
1
i ð26Þ

The electric potential �, which appears in Eq. (5), comprises the potentials due to the
double layer and the externally applied electric field. Under general conditions a distinc-
tion between the two is not clear. However, when the externally applied field is small
compared with the fields that occur in the double layer, we can assume additivity of the
potentials:

� ¼  þ� ð27Þ

Here, � denotes the perturbation due to the applied field. When the double-layer potential
is small, the equations for  and � are Eq. (25) and

r
2� ¼ 0 ð28Þ

with the boundary conditions:

 j1 ¼ 0;  jS ¼ 	ðxsÞ ð29a; bÞ

�j1 ¼ �E
1
� x;

@�

@n
jS ¼ 0 ð30a; bÞ

Here, 	 denotes the equilibrium electrokinetic potential. The boundary condition for � on
the particle surface implies that the dielectric constant of the particle is much smaller than
that of the electrolyte solution. Such an assumption for the electrostatic boundary condi-
tion is somewhat restrictive. However, our electrophoresis theory is more general than the
assumption on which the theory is based, for the electrophoretic dynamics of the particle is
independent of the boundary condition for � on the particle surface [24]. Since the exact
value of � on the particle surface has no effect on the electrophoresis analysis, we usually
set �S ¼ 	, i.e., the electric potential on the particle surface remains equal to the equili-
brium electrokinetic potential. Under the condition of weak applied field and the additiv-
ity of potentials, the electrostatic body force �E simplifies to

�E ¼ �r2
ð þ�Þrð þ�Þ ’ �r2 r� ¼ ��2 r� ð31Þ

Here, we neglect the term r
2�r�, which is quadratic in E

1. According to Eq. (31), � and
E are decoupled. The charge density � is entirely governed by the equilibrium double layer,
and the double-layer, and the double-layer potential does not affect the electric field E.

F. Electro-osmotic Bulk Flow

During the electrophoresis experiment the electro-osmotic flow is developed in the capil-
lary because of the motion of counterions near the inner surface of the capillary. The
electrolyte solution in the capillary is either supplied afresh continuously from a reservoir
or confined in a closed cell assembly. In the former setup (open capillary system) the
electro-osmotic flow results in a uniform velocity profile across the capillary so that this
flow does not alter the particle motion significantly. However, in the latter setup (closed
capillary system) the condition of no net flow across the capillary results in a nonuniform
velocity profile, which profoundly affects the velocity and orientation of nonspherical
particles. In practice, closed capillary systems are favored because of their simple setup.

Consider a straight closed capillary of uniform cross-section. The capillary is placed
horizontally with the electric field applied along the horizontal axis of capillary. Constant
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electric field is applied along the x axis (E1
¼ E1

exÞ and the gravity acts along the
negative z axis (g ¼ �gezÞ. For the capillary of either circular of slit type the fully devel-
oped electro-osmotic flow field is given by a one-dimensional parabolic flow field:

V ¼ ð�0 þ �yy
2
þ �zz

2
Þex ð32Þ

The electro-osmotic bulk flow about the center of the particle xc is then given by

V ¼ ð�0 þ �yy
2
c þ �zz

2
cÞex

þ 2�yycðy � ycÞex þ 2�zzcðz � zcÞex

þ �yðy � ycÞ
2
ex þ �zðz � zcÞ

2
ex

ð33Þ

In capillary electrophoresis the thickness of the double layer formed at the inner wall of
the capillary is usually much smaller than the gap distance of the capillary. The electro-
osmotic velocity of the fluid near the cell wall is then given by the Smoluchowski formula:

Ve ¼ �
�	wE1

�
ð34Þ

Here, 	w denotes the electrokinetic potential of the cell wall. The coefficients in Eq. (32) are
then given by

�0 ¼ �
Ve

2
; �y ¼

3Ve

2h2
; �z ¼ 0

for a slit of thickness 2h, and

�0 ¼ �Ve; �y ¼ �z ¼
2Ve

h2

for a circular cylinder of radius h.

III. ELECTROPHORESIS OF SLIGHTLY DEFORMED SPHERE

A. Particle Shape and Electrokinetic Potential Distribution

When the shape of nonspherical particles deviates only slightly from that of a sphere, their
electrophoretic motion can be analyzed using perturbation methods. The surface of a
slightly deformed sphere is represented by

r ¼ a½1þ �f ð#; ’Þ ð35Þ

Here, � is a small parameter and ðr; #; ’Þ are the spherical polar co-ordinates having their
origin at the center of the undeformed sphere with radius a. The shape function f is an
arbitrary function of # and ’. The function f is typically expressed in terms of spherical
harmonics. However, in this work we use the multipole expansion form:

f ð#; ’Þ ¼ Mf
þD

f
� nþQ

f : nn ð36Þ

Only the multipole moments up to the quadrupole moment are included in our analysis.
The first three moments of f are defined by

Mf
¼

1

4�

ð
�

f d� ð37aÞ
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D
f
¼

3

4�

ð
�

nf d� ð37bÞ

Q
f
¼

5

8�

ð
�

ðnn� dÞf d� ð37cÞ

Here, � denotes the solid angle and n the outward unit normal to the sphere. Note that the
quadrupole moment Qf is symmetric and traceless. Although we consider only up to the
quadrupole moments of f , by varying the components of Df and Q

f a wide variety of
particle shapes can be described.

The electrical surface condition of nonspherical particles is usually nonuniform. For
such particles their electrokinetic potentials can be also expressed as functions of # and ’.
Following Eq. (36), the function 	 is expressed as

	ð#; ’Þ ¼ M	
þD

	
� nþQ

	 : nn ð38Þ

Following Eqs (37a–c), the multipole moments of 	 are defined accordingly. Note that the
multipole moments of 	 are defined not over the particle surface but over the solid angle.
Hence, the monopole moment M	 is different from the area average of 	 over the particle
surface. The relationship between M	 and the area average of 	, which is defined by

	av ¼

Ð
S 	dSÐ
S dS

ð39Þ

is given by

	av ¼
M	

1þ 2�Mf þ Oð�2Þ
¼ 1þ 2� Mf

þ
D
	
�D

f

3M	 þ
2Q	 : Qf

15M	

 !
þ Oð�2Þ

" #
ð40Þ

B. Force and Torque Balances

For a small parameter � any field variable q can be expanded by

q ¼ qð0Þ þ �qð1Þ þ �2qð2Þ þ � � � ð41Þ

Using Eqs (22a) and (31), the total force balance equation in the absence of electro-
osmotic bulk flow and gravitational settling is given by

�F
H
1 ¼ ��2

ð
V

ðu
Fð0Þ

� dÞ �  ð0Þ
r�ð0ÞdV þ ���2

ð
V

u
Fð1Þ

�  ð0Þ
r�ð0ÞdV

þ ���2
ð

V

ðu
ðFð0Þ

� dÞ � ð ð1Þ
r�ð0Þ

þ  ð0Þ
Þr�ð1ÞdV þ Oð�2Þ

ð42Þ

The torque balance equation can be obtained in a similar way. The integrations in Eq. (42)
are over the volume outside the undeformed sphere. The first volume integral corresponds
to the result obtained for an undeformed sphere [3]. The next three integrals require the
solutions for uFð1Þ,  ð1Þ, and �ð1Þ. Since the volume integrals in Eq. (42) are all linear with
respect to E

1, we can symbolically denote the sum of three integrals as �a�IF � E
1. For

slightly deformed spheres the hydrodynamic resistance tensor B vanishes, and Eq (22a, b)
simplify to

�A �U ¼ �a�IF � E
1
þ Oð�2Þ ð43aÞ
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�C �: ¼ �a2�IT � E
1
þ Oð�2Þ ð43bÞ

Since the two equations are decoupled, U and : can be determined independently. The
components of A and C for slightly deformed spheres are given by

A ¼ 6�a ð1þ �Mf
Þd �

�

5
Q

f


 �
þ Oð�2Þ ð44aÞ

C ¼ 8�a3 ð1þ 3�Mf
Þd �

3�

5
Q

f


 �
þ Oð�2Þ ð44bÞ

Inverting Eqs (43a, b), we obtain

U ¼
�	0
�

M � E
1

ð45aÞ

: ¼
�	0
�a

N � E
1

ð45bÞ

The electrophoretic mobility tensors M and N are normalized to the Smoluchowski limit.
Here, 	0 denotes the characteristic electrokinetic potential of the particle.

C. Hydrodynamics

The solutions for uF and u
T for slightly deformed spheres are readily available [25]. When

a particle translates with a velocity U in the Stokes flow, the Stokes solution u is linear with
respect to U and we can write u ¼ u

F
�U. Expanding u about r ¼ a, we obtain

ujS ¼ u
ð0Þ
jr¼a þ �u

ð1Þ
jr¼a þ a�f

@uð0Þ

@r

����
r¼a

þ Oð�2Þ ð46Þ

Since ujS ¼ U, the boundary conditions for uð0Þ and u
ð1Þ are given by

u
ð0
jr¼a ¼ U ð47aÞ

u
ð1Þ
jr¼a ¼ �af

@uð0Þ

@r

����
r¼a

ð47bÞ

The zeroth-order solution is the well-known solution for a translating sphere, which is
given by

u
Fð0Þ

¼ d
3

4
�þ

1

4
�3

� �
þ nn

3

4
��

3

4
�3

� �
ð48Þ

where � ¼ a=r. The first-order solution u
ðFð1Þ is given by

P2
k¼0 u

Fð1;kÞ, where u
Fð1;kÞ are

u
Fð1;0Þ

¼ Mf d
3

4
�3 þ

3

4
�

� �
þ Mf

nn �
9

4
�3 þ

3

4
�

� �
ð49aÞ

u
Fð1;1Þ

¼ D
f
� nd

3

4
�4 þ

3

4
�2

� �
þD

f
� nnn �

15

4
�4 þ

9

4
�2

� �

þ ðnD
f
þD

f
nÞ

3

4
�4 �

3

4
�2

� � ð49bÞ
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u
Fð1;2Þ

¼ Q
f

�
6

20
�5 �

1

20
�3 �

3

20
�

� �
þ nQ

f
� n

3

2
�5 �

17

20
�3 �

3

20
�

� �

þQ
f
� nn

3

2
�5 � �3

� �
þQ

f : nn�
3

4
�5 þ

1

4
�3

� �

þQ
f : nnnn �

21

4
�5 þ

15

4
�3

� �
�
1

2
�3ð� � nÞ �Qf

� ð� � nÞ

ð49cÞ

The corresponding solutions for uT are also obtained using a similar method.

D. Electrostatics

The solutions for  ð1Þ and �ð1Þ are determined by solving Eqs (25) and (28). We first
consider the double-layer potential. Expanding  about r ¼ a, we obtain

 jS ¼  ð0Þ
jr¼a þ � 

ð1Þ
jr¼a þ a�f

@ ð0Þ

@r

����
r¼a

þ Oð�2Þ ð50Þ

The boundary condition, Eq. (29b), suggests that the boundary conditions for  ð0Þ and  ð1Þ

are given by

 ð0Þ
jr¼a ¼ 	 ð51aÞ

 ð1Þ
jr¼a ¼ �af

@ ð0Þ

@r

����
r¼a

ð51bÞ

The zeroth-order solution, in terms of the multipole moments of 	 over the solid angle, is
given by [3]

 ð0Þ
¼ M	�e��ðr�aÞ

þD
	
� n�2e��ðr�aÞ K1ð�rÞ

K1ð�aÞ
þQ

	 : nn�3e��ðr�aÞ K2ð�rÞ

K2ð�aÞ
ð52Þ

where the polynomial function Kn is defined by

KnðxÞ ¼
Xn

s¼0

2sn!ð2n � sÞ!

s!ð2nÞ!ðn � 2Þ!
xs

The first-order solution can be obtained in a similar manner. Setting the right-hand side of
Eq. (51b) to �, the multipole expansion form of the solution for  ð1Þ is given by

 ð1Þ
¼ M��e��ðr�aÞ

þD
�
� n�2e��ðr�aÞ K1ð�rÞ

K1ð�aÞ
þQ

� : nn�3e��ðr�aÞ K2ð�rÞ

K2ð�aÞ
þ � � � ð53Þ

Here, the multipole moments of � are given by

M�
¼ M	Mf K1 þD

	
�D

f 1

3
A1 þQ

	 : Qf 2

15
A2 ð54aÞ

D
�
¼ M	

D
f K1 þ D

	Mf
þ
2

5
D
	
�Q

f

� �
A1 þQ

	
�D

f 2

5
A2 ð54bÞ

Q�
¼ M	

Q
f K1 �

1

3
D
	
�D

f dA1 þ
1

2
ðD

	
D

f
þD

f
D
	
ÞA1

þQ
	Mf A2 þ

2

7
ðQ

	
�Q

f
þQ

f
�Q

	
�
2

3
Q
	 : Qf dÞA2

ð54cÞ
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where A1 ¼ ð3K2 � K1Þ=K1, A2 ¼ ð5K3 � 2K2Þ=K2, and Kn ¼ Knð�aÞ. Although the solu-
tion for  ð1Þ contains the multipole moments higher than the quadrupole moment, only the
multipole moments up to the quadrupole moment contribute to the electrophoretic mobi-
lity.

Now we consider the potential �. Expanding @�=@n about r ¼ a we obtain

@�

@n

����
S

¼
@�ð0Þ

@n

����
r¼a

þ �
@�ð1Þ

@n

����
r¼a

� a�ðrf � r�ð0Þ
Þjr¼a þ a�f

@

@r

@�ð0Þ

@n

 !����
r¼a

þ Oð�2Þ

ð55Þ

The boundary condition, Eq. (30b), suggests that the boundary conditions for �ð0Þ and
�ð1Þ are given by

@�ð0Þ

@n

����
r¼a

¼ 0 ð56aÞ

@�ð1Þ

@n

����
r¼a

¼ �af
@

@r

@�ð0Þ

@n

 !����
r¼a

þ aðr�ð0Þ
� rf Þjr¼a ð56bÞ

In addition, Eq. (30a) furnishes the boundary conditions:

�ð0Þ
j1 ¼ �E

1
� x ð57aÞ

�ð1Þ
j1 ¼ 0 ð57bÞ

The zeroth-order solution is given by

�ð0Þ
¼ � r þ

a

2
�2

� �
E
1
� n ð58Þ

The first-order solution is also obtained as a multipole expansion form. Setting the right-
hand side of Eq. (56b) to �, the solution for �ð1Þ is given by

�ð1Þ
¼ �M�a��D

�
� n

a

2
�2 �Q

� : nn
a

3
�3 �O

� : nnn
a

4
�4 ð59Þ

Here, the multipole moments of � are given by

M�
¼ 0; ð60aÞ

D
�
¼ 3E1Mf

�
3

5
E
1
�Q

f
ð60bÞ

Q
�
¼
9

4
ðD

f
E
1
þ E

1
D

f
Þ �

3

2
D

f
� E

1d ð60cÞ

O�
ijk ¼ 2ðE1

i Qf
jk þ E1

j Qf
ki þ E1

k ðQf
ijÞ �

4

5
E1

l ðQf
li�jk þ Qf

lj�ki þ Qf
lk�ijÞ ð60dÞ

E. Electrophoretic Mobility and Examples

Substituting the multipole expansion solutions for uF,  , and � into Eq. (42), we deter-
mine the expression for I

F. The volume integrals are first evaluated by performing the
angular integrations over the solid angle. Subsequent integrations over the radial co-
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ordinate result in an explicit expression for the volume integrals. After a few steps of
algebraic manipulations the expression for IF is obtained by

I
F
¼ M	dH1 þQ

	H2

þ �M	Mf dðK1H1 þ H3Þ þ �M
	
Q

f
ðK1H2 þ H4Þ

þ �D	
�D

f d
1

3
A1ðH1 � H2Þ þ H5


 �
þ �ðD	

D
f
þD

f
D
	
Þ
1

2
A1H2 þ H6

� �

þ �Q	Mf
ðA2H2 þ H7Þ þ �Q

	
�Q

f 2

7
A2H2 þ H8

� �

þ �Qf
�Q

	 2

7
A2H2 þ H9

� �
þ �Q	 : Qf d

2

15
H1 �

4

21
H2

� �
A2 þ H10


 �
ð61Þ

Here, Hn are functions of �a and their definitions are listed in Table 1. The corresponding
expression for IT can be obtained in a similar way. Substituting the expressions for IF and
I
T into Eqs (43a, b), the electrophoretic mobility tensors M and N can be determined. For
spherical particles the expressions for M and N reduce to the results previously obtained
[3]. When � ¼ 0, only M	 and Q

	 contribute to M, and only D
	 contributes to N.

To highlight the main feature of the theory we consider the electrophoretic motion of
axisymmetric particles with axisymmetric electrokinetic potential distributions. When the
particle shape is axisymmetric, the dipole moment of f is parallel to the axis of revolution,
and the quadrupole moment of f is diagonal and traceless. When we denote the unit
directional vector along the axis of revolution as d, Df and Q

f can be expressed as Df
¼

Df
d and Q

f
¼ Qf

dd� Qf =2ðd � dd), respectively. The components of D	 and Q
	 follow
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TABLE 1 Definitions of the Functions HnðxÞ in Eq. (61)

H1ðxÞ ¼ 1þ x þ ð12� x2ÞE5ðxÞ

H2ðxÞ ¼
1

1þ x þ x2=3
�5þ x �

2

5
x2 þ ð30� x2ÞE7ðxÞ


 �

H3ðxÞ ¼ 6½�2þ ð8� x2ÞE5ðxÞ

H4ðxÞ ¼
6

5
½2� ð8� x2ÞE5ðxÞ

H5ðxÞ ¼
3

5ð1þ xÞ
½25� 5x � 4x2 � 15ð10� x2ÞE7ðxÞ

H6ðxÞ ¼
3

10ð1þ xÞ
½25� 5x þ 2x2 � 5ð30� x2ÞE7ðxÞ

H7ðxÞ ¼
2

5ð1þ x þ x2=3Þ
½�50þ 10x þ x3 þ 15ð20� x2ÞE7ðxÞ

H8ðxÞ ¼
1

175ð1þ x þ x2=3Þ
½525� 105x � 43x2 þ 35x3 � 5ð630� 113x2 þ 3x4ÞE7ðxÞ

H9ðxÞ ¼
1

175ð1þ x þ x2=3Þ
½175� 35x � 71x2 þ 35x3 � 5ð210� 127x2 þ 3x4ÞE7ðxÞ

H10ðxÞ ¼
1

175ð1þ x þ x2=3Þ
½�95x2 � 35x3 þ 5ð60x2 � 5x4ÞE7ðxÞ

EnðxÞ ¼

ð1
1

t�nexð1�tÞdt



the same characteristics. Under such conditions for f and 	, the second-order tensor IF is
diagonal and the electrophoretic mobility tensors M and N can be represented by

M ¼ Mkddþ M?ðd � ddÞ ð62aÞ

N ¼ N� � d ð62bÞ

The symbols Mk and M? represent the components parallel and perpendicular to the axis
of revolution, respectively. Combining Eqs (45b) and (62b), we can show that
N � E

1
¼ �Nd� E

1. Thus, : is perpendicular to d and there exists no electrophoretic
rotation about the axis of revolution. In addition, when the axis of revolution d aligns
parallel to the external electrical field, there is no electrophoretic rotation. When axisym-
metric particles possess fore–aft symmetry (e.g., spheroidal particles), N ¼ 0 and the
electrophoretic rotation is not present.

As an illustrative example the electrophoretic motion is analyzed for an axisym-
metric particle which lacks fore–aft symmetry. The orientation of the particle relative to
the applied electric field is described with the aid of Euler angles [26] defined in Fig. 1.
Affixing the body co-ordinates ~xx ~yy ~zz to the particle, the first Euler angle � measures the
angle between the x and ~xx axes after rotating the body co-ordinates about the ~zz the axis.
We set the axis of revolution as the ~zz axis. The second Euler angle � measures the angle
between the z and ~zz axes after rotating the body co-ordinates about the ~xx axis. The last
Euler angle that measures the rotation about the ~zz axis is not necessary for the analysis of
axisymmetric particles. In terms of Euler angles the unit directional vector d is given by

d ¼ sin � sin �ex � sin � cos�ey þ cos �ez ð63Þ

When E
1

¼ E1
ex, Eqs (45a, b) furnish the equations for the time rate of change for xc, �,

and �. After normalizing the length and times scales to a and a�=�	0E
1, respectively, the

set of trajectory equations are given by

_XX ¼ ðMk � M?Þ sin
2 � sin2 �þ M? ð64aÞ

_YY ¼ �
1

2
ðMk � M?Þ sin

2 � sin 2� ð64bÞ
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FIG. 1 Co-ordinate systems for the electrophoretic analysis of nonspherical particles. The co-ordi-
nate system xyz is fixed in the fluid, while the co-ordinate system ~xx ~yy ~zz forms body co-ordinates affixed

to the particle with the ~zz axis as its axis of revolution.



_ZZ ¼
1

2
ðMk � M?Þ sin 2� sin� ð64cÞ

_�� ¼ �N cos � sin� ð64dÞ

_�� ¼ �N cos�= sin � ð64eÞ

We can integrate Eqs (64d–e) to obtain

tan � ¼
C

cos �
ð65Þ

where C is the integration constant. The rotational motion is not periodic. According to
Eqs (64d–e) and (65), _YY ¼ _ZZ ¼ _�� ¼ _�� ¼ 0 when � ¼ � ¼ �=2. Thus, an axisymmetric par-
ticle at arbitrary orientation eventually aligns parallel to the applied electric field and
thereafter the particle translates along the applied electric field without any lateral motion.

A typical trajectory of an axisymmetric particle which lacks fore–aft symmetry is
shown in Fig. 2. The particle shape is given by f ¼ �2 cos#þ cos2 #, for which Mf

¼ 2=3,
Df

¼ �2, and Qf
¼ 4=3. Assuming 	0 ¼ 1, the electrokinetic potential distribution is given

by 	 ¼ 4=3þ cos#� cos2 #, for which M	
¼ 1, D	

¼ 1, and Q	
¼ �2=3. The initial orien-

tation of the particle is ð� ¼ �=6, � ¼ �=2Þ, and we set � ¼ 0:2 and �a ¼ 1. The alignment
of the particle along the electric field occurs over a relatively short time. The electrophore-
tic mobility components M? and Mk for the same particle at arbitrary �a are shown in Fig.
3. The results for spherical particles with the same electrokinetic potential distribution are
also shown. As �a increases, the variation of 	 affects the electrophoretic mobility more
strongly and thus the difference between M? and Mk becomes more pronounced. For an
ensemble of axisymmetric particles with a uniform orientation distribution their average
electrophoretic mobility is given by
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FIG. 2 Trajectory and snapshots for the electrophoretic motion of an axisymmetric particle which

lacks fore–aft symmetry. The electrokinetic potential distribution is given by
	 ¼ 	0ð4=3þ cos#� cos2 #).



Mav ¼
1

3
Mk þ

2

3
M? ð66Þ

As shown earlier [3], the application of Eq. (66) to Mk and M? for spherical particles
considered in Fig. 3 results in the classical result of Henry. However, in practice, when
random Brownian rotation is not strong enough, spherical particles with nonuniform
electrokinetic potential distributions may prefer to align along the electric field. For
such spherical particles the electrophoresis measurement only furnishes the value of Mk.
Thus, proper interpretation of the electrophoresis measurement of such particles requires a
careful analysis.

IV. ELECTROPHORESIS OF SPHEROID

A. Force and Torque Balances

Many nonspherical particles can be modeled as either prolate or oblate spheroidal parti-
cles. The solutions of the Stokes equations for ellipsoidal particles can be obtained using
various methods. The expressions for (uF; uTÞ and (FH1 ;T

H
1 Þ are available in terms of either

ellipsoidal harmonics or singularity solutions [23]. For an ellipsoidal particle with the
semiaxes a � b � c the solutions for ðF

H
1 ;T

H
1 Þ, which are commonly known as the

Faxen relations, are given by

F
H
1 ¼ �A �

ð
E

f1 1þ
c2

2
q2r2

" #
V�UdA;½ ð67aÞ

T
H
1 ¼ �C �

ð
E

f2
1

2
� V�:


 �
dA þ �H :

ð
E

f2



1þ

c2

6
q2r2

�
1

2



rVþ rV

y
�
dA ð67bÞ
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FIG. 3 Normalized electrophoretic mobility components Mk and M? for spheres and the axisym-

metric particles considered in Fig. 2. The electrokinetic potential distributions for both particles are
identical and equal to that used in Fig. 2.



where

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~xx2=a2e � ~yy2=b2c

p
; ae ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � c2

p
; be ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � c2

p

fn ¼
ð2n � 1Þq2n�3

2�aebe

Here, the integration is over the fundamental focal ellipse Eð ~xx; ~yyÞ. Corresponding expres-
sions for prolate and oblate spheroids can be obtained by setting b ¼ c and a ¼ b, respec-
tively. The expressions for the material tensors A;C, and H, which only depend on the
shape of the spheroid, are readily available [23].

Substituting Eqs (67a, b) into Eqs (21a, b), the translational and angular velocities of
an ellipsoid are given by

U ¼

ð
E

f1 1þ
c2

2
q2r2

" #
VdA þ

1

�
A�1:

ð
V

�½uF
� d � EdV þ

ðmp � mf Þ

�
A

�1
� g ð68aÞ

: ¼

ð
E

f2
1

2
� V


 �
dA þ C

�1
�H :

ð
E

f2 1þ
c2

6
q2r2

" #
1

2
rVþ rV

y
h i

dA

þ
1

�
C

�1
�

ð
V

�½uT
� E� ðx� xcÞ � EdV

ð68bÞ

For homogeneous ellipsoidal particles the center of mass and the center of buoyancy are
identical so that the torque due to gravity is not included in Eq. (68b). The surface
integrals over E correspond to nonelectrophoretic contributions due to electro-osmotic
bulk flow, while the volume integrals over V correspond to electrophoretic contributions.
Since the electrophoretic contribution in Eq. (68a) is linear with respect to E

1, we repre-
sent it by introducing the electrophoretic mobility tensor M:

1

�
A

�1
�

ð
V

�½uF � d � EdV ¼
�	0
�

M � E
1

ð69Þ

Here, the electrophoretic mobility tensor M is normalized to the Smoluchowski limit. For
ellipsoidal particles M is diagonal. The evaluation of M requires the solutions for ð�;EÞ.

B. Electrostatics

To determine ð�;EÞ for ellipsoidal particles the solutions for the Laplace equation and the
linearized Poisson–Boltzmann equation are required. The solutions for the Laplace equa-
tion for ellipsoidal particles are readily available in terms of ellipsoidal harmonics. The
solutions for the linearized Poisson–Boltzmann equation are available only for spheroidal
particles in terms of spheroidal wave functions [6]. We first introduce the prolate and
oblate spheroidal co-ordinate systems. The equation for the prolate spheroid is

~xx2 þ ~yy2

c2
þ

~zz2

a2
¼ 1 ð70Þ

We choose the ~zz axis as the axis of symmetry. The prolate spheroidal co-ordinates (�; �; !Þ
are defined by

~xx ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
cos!; ð1 � � <1Þ ð71aÞ
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~yy ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
sin!; ð�1 � � � 1Þ ð71bÞ

~zz ¼ k��; ð0 � ! � 2�Þ ð71cÞ

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � c2

p
. The radial co-ordinate of the point on the spheroid surface, �0, is a=k.

The equation for the oblate spheroid is

~xx2 þ ~yy2

a2
þ

~zz2

c2
¼ 1 ð72Þ

The oblate spheroidal co-ordinates (�; �; !) are defined by

~xx ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
cos!; ð0 � � <1Þ ð73aÞ

~yy ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
sin!; ð�1 � � � 1Þ ð73bÞ

~zz ¼ k��; ð0 � ! � 2�Þ ð73cÞ

The radial co-ordinate of the point on the spheroid surface is c=k.
The general solution of the linearized Poisson–Boltzmann equation in spheroidal co-

ordinates is given by

 ð�; �; �Þ ¼ Rm
n ð�k; �ÞS

m
n ð�k; �Þ

�
cosm!

sinm!

�
ð74Þ

Since spheroidal particles are axisymmetric, the electrokinetic potential distribution for
homogeneous spheroids may be axisymmetric as well. In such cases m ¼ 0, and the solu-
tion can be written as

 ð�; �Þ ¼
X

n

anRnð�k; �ÞSnð�k; �Þ ð75Þ

The radical function Rnð�k; �Þ is expanded in modified spherical Bessel functions of the
first and third kinds. The angular function Snð�k; �Þ, which is given by

S2n ¼
X
r¼0

d2n2rP2rð�Þ ð76aÞ

S2nþ1 ¼
X
r¼0

d2nþ12rþ1P2rþ1ð�Þ ð76bÞ

is expanded in Legendre functions of the first kind. Here, the coefficient dn
r is a function of

�k. Note that S2n and S2nþ1 are even and odd functions of �, respectively. When the
electrokinetic potential distribution is centrosymmetric, only S2n is required for the solu-
tion. The unknown coefficient an in Eq. (75) can be determined using the orthogonality
property of Snð�k; �Þ. When the electrokinetic potential is uniformly constant (	 ¼ 	0Þ, the
solution is given by

 ¼ 	0
X1
r¼0

d2rd

N2r

R2rð�k; �Þ

R2rðk; �0Þ
S2rð�k; �Þ ð77Þ

where

N2r ¼
X1
p¼0

fd2r2pg
2

4p þ 1
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When the electrokinetic charge density is uniformly constant (��@ =@n ¼ rÞ, the solution
is given by

 ¼ �
r�

�

X1
r¼0

�2r

N2r

R2rð�k; �Þ

R0
2rð�k; �0Þ

S2rð�k; �Þ

ð78Þ

where

�2r ¼ 2

ð1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�20 � �

2

q
S2rð�k; �Þd�

The prime sign at the radial function represents the differentiation with respect to the
radial co-ordinate. In the expression for �2r the positive sign is for prolate spheroids and
the negative sign is for oblate spheroids.

C. Electrophoretic Mobility

The volume integral on the left-hand side of Eq. (69) can be evaluated numerically to
determine the electrophoretic mobility tensor M for spheroidal particles. Utilizing the
axisymmetry of a spheroid, we determine the mobility components parallel and perpendi-
cular to the axis of revolution. The values of Mk and M? for prolate and oblate spheroids
ðc=a ¼ 0:1; 0:2; 0:4; 0:6; 0:8Þ are shown in Figs 4 and 5, respectively. The results for spheres
and infinite cylinders are shown as thick lines. The solid lines are for spheroids with
uniform electrokinetic potentials, while the dotted lines are for spheroids with uniform
electrokinetic charge densities. For the latter cases the characteristic electrokinetic poten-
tial 	0 is defined as the potential averaged over the particle surface. When the characteristic
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FIG. 4 Normalized electrophoretic mobility components Mk and M? for prolate spheroids. The
solid lines are for spheroids with a uniform potential, the dotted lines are for spheroids with a

uniform charge density. Starting from the curve right next to Henry’s curve for spheres, the values
of c=a are 0.8, 0.6, 0.4, 0.2, and 0.1. The thick line at the bottom is the curve for an infinite cylinder.



electrokinetic potentials are identical, the electrophoretic mobility of a spheroid with a
uniform surface potential is larger than that with a uniform surface charge density.

When the double layer is very thick compared to the particle size, the double-layer
potential approaches the solution of the Laplace equation. At this limit one can readily
determine Mk and M? for spheroids. The results for prolate spheroids are given by

Mk ¼
1þ e2

2e2
�

1

e ln
1þ e

1þ e

� � ð79aÞ

M? ¼
3e2 � 1

4e2
þ

1

2e ln
1þ e

1� e

� � ð79bÞ

and the results for oblate spheroids are given by

Mk ¼
2e2 � 1

2e2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p

2e cot�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p

e

 ! ð80aÞ

M? ¼
1þ 2e2

4e2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p

4e cot�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p

e

 ! ð80bÞ

These results are for spheroids with uniform electrokinetic potential distributions. For an
ensemble of spheroidal particles with a uniform orientation distribution the average elec-
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FIG. 5 Normalized electrophoretic mobility components Mk and M? for oblate spheroids. The

solid lines are for spheroids with a uniform potential, the dotted lines are for spheroids with a
uniform charge density. Starting from the curve adjoining Henry’s curve for spheres, the values of
c=a are 0.8, 0.6, 0.4, 0.2, and 0.1.



trophoretic mobility can be determined by using Eq. (66). The average mobility curves
obtained from the results in Figs 4 and 5 deviate only slightly from the curve for spherical
particles. It is interesting to note that the substitution of Eqs (79a, b) or (80a, b) into Eq.
(66) results in Mav ¼ 2=3, the exact result for spheres.

D. Electrophoretic Trajectory Analysis

Nonelectrophoretic contributions such as electro-osmotic bulk flow and gravitational
settling strongly affect the apparent motion of spheroidal particles in electrophoresis
experiments. To assess the importance of such nonelectrophoretic contributions to the
motion of spheroidal particles we perform trajectory analysis. The translational and rota-
tional motion of spheroidal particles under such conditions can be studied by integrating
Eqs (68a, b). We assume that the electrokinetic potential distribution is uniformly con-
stant. Starting from Eqs (68a, b), the equations for the rate of change of xc; �; and � are
given by

_XX ¼ A þ BY2
þ CZ2

þ
B

3
qy þ

C

3
qz þ ðMk � M?Þ sin

2 � sin2 �þ M?

�
aG

2
A�1

k � A�1
? Þ sin 2� sin�

� ð81aÞ

_YY ¼ �
1

2
ðMk � M?Þ sin

2 � sin 2�þ
aG

2
ðA�1

k � A�1
? Þ sin 2� cos� ð81bÞ

_ZZ ¼
1

2
ðMk � M?Þ sin 2� sin�� aG½ðA�1

k � A�1
? Þ cos2 � þ A�1

?  ð81cÞ

_�� ¼ �
1

2

r2 � 1

r2 þ 1

 !
BY sin 2� sin 2�þ

2

r2 þ 1
CZðr2 cos2 � þ sin2 �Þ sin� ð81dÞ

_�� ¼ �
2

r2 þ 1
BYðr2 cos2 �þ sin2 �Þ þ

2r2

r2 þ 1
CZ cot � cos� ð81eÞ

where

qy ¼ 1� e2 þ e2 sin2 � cos2 �; qz ¼ 1� e2 sin2 �

for a prolate spheroid, and

qy ¼ 1� e2 sin2 � cos2 �; qz ¼ 1� e2 cos2 �

for an oblate spheroid. Here, e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2=a2

p
is the eccentricity of the spheroid and r is the

aspect ratio of the spheroid, which is defined by the ratio of the lengths of the semiaxes of
the symmetry axis and transverse axis. For prolate spheroids r > 1, while for oblate
spheroids 0 < r < 1. The definitions for the co-ordinates systems and the Euler angles
are identical to those shown in Fig. 1. In Eqs (81a–e) the length and time scales are
normalized. The length scale is the major semiaxis of the spheroid ðX ¼ xc=aÞ and the
time scale is a�=�	0E

1. The dimensionless parameter G is ðmp � mf Þg=a�	0E
1. The

dimensionless constants A;B; and C in Eq. (81a) characterize the electro-osmotic bulk
flow developed in the capillary. Their expressions are given by
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	0

� �
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3

2

	w
	0

� �
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h

� �2
; C ¼ 0

for a slit type, and

A ¼
	w
	0
; B ¼ C ¼ �2

	w
	0

� �
a

h

� �2
for a circular cylinder.

Compared with Eqs (64a–c), previously derived for axisymmetric particles, electro-
phoretic contributions in the translational velocity are identical. The rotational motion is
entirely determined by the electro-osmotic bulk flow, since the electrophoretic rotation is
not present for spheroidal particles with uniform electrokinetic potential distributions.
According to Eq. (81a), the motion of the spheroid along the direction of applied electric
field is governed by four contributions: fluid velocity at the center of the spheroid
(A þ BY2

þ CZ2
Þ, additional contribution due to a quadratic part of the flow field (qy

and qz terms), electrophoretic contribution (Mk and M? terms), and gravitational settling.
The second contribution is linear with respect to B or C; thus it is usually negligible when
a=h is small. The lateral motion of the spheroid can be significant when the difference
between Mk and M? is not small. When all orientations are equally probable the obser-
vables in electrophoresis experiments are the quantities averaged over the Euler angles �
and �. Averaging Eqs. (81a–c), we obtain

< _XX > ¼ A þ BY2
þ CZ2

þ
ðB þ CÞ

9
qa þ

1

3
½Mk þ 2M? ð82aÞ

< _YY > ¼ 0 ð82bÞ

< _ZZ > ¼ �
aG

3
½A�1

k þ 2A�1
?  ð82cÞ

Here, qa ¼ 3� 2e2 for a prolate spheroid and qa ¼ 3� e2 for an oblate spheroid. On
average there is no lateral motion in the Y direction. The averaged motion in the X
direction consists of three parts: electro-osmotic bulk flow contribution, quadratic flow
contribution, and electrophoretic contribution. Gravitational settling does not affect the
averaged motion in the X direction. When we further average Eq. (82a) over the cross-
section of the capillary, the first part in Eq. (82a) drops out. Since the second part in
Eq. (82a) is usually very small, the area averaged form of Eq. (82a) reduces to Eq.
(66).

Typical trajectories of prolate spheroids initially placed in a capillary of slit type are
shown in Fig. 6. To illustrate the role of electro-osmotic bulk flow on the apparent motion
of spheroids the gravitational settling effects are neglected. A prolate spheroid has a major
semiaxis of 2 mm and its aspect ratio is 10. The applied electric field is 500 V/m. The zeta
potential of the spheroids is set to 20 mV. The capillary has dimensions of 1� 3 cm and an
inner gap distance of 0.6 mm. The range of the dimensionless coordinate Y is then
�150 � Y � 150. The absolute value of the zeta potential of the cell wall is set to 100
mV. The double-layer thickness is 10 nm. The initial orientation is fixed at � ¼ 0:5� and
� ¼ 0:3�, thus there is no motion lateral in the Z direction. Although the trajectories
depart significantly from a straight path along the X axis, they occur over a relatively
long time. The magnitude of lateral motion depends strongly on the initial position of the
spheroid. The shear rate of the electro-osmotic flow increases linearly as Y increases from
the center to the cell wall. Accordingly, a spheroid placed at large Y rotates faster than
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that at small Y . Since a spheroid at large Y translates slowly, trajectories at large Y show
waves of high frequency and small amplitude. On the other hand, trajectories at small Y ,
as long as they do not cross over the center plane of the cell, show waves of low frequency
and large amplitude.

In a simple method for isolating the electrophoretic contribution from the observed
particle velocity, one usually measures the velocity of the particle at the stationary level
where the electro-osmotic bulk flow is zero. As long as the particle remains at the sta-
tionary level during the electrophoresis experiment, the electrophoretic velocity can be
determined by dividing its travel distance in the X direction, Xð�Þ, by the travel time, �.
For nonspherical particles, however, Xð�Þ=� depends on � because of the lateral motion
and orientation effects. The plots for Xð�Þ=� for spheroids studied in Fig. 6 are shown in
Fig. 7. As � increases, the calculation of the electrophoretic velocity deviates from the
instantaneous velocity, the value at � ¼ 0, for a given initial orientation. In fact, the
distribution of Xð�Þ=� over the orientation space (�; �Þ varies along �. Consequently, the
averaged electrophoretic velocity of randomly oriented spheroids at � ¼ 0 can be different
from that at nonzero �.

V. CONCLUDING REMARKS

To understand the meaning of the electrokinetic potential properly and to utilize the
electrophoretic measurement data to find their correlations with the surface charge or
potential distribution of the particle we must devise a suitable mathematical model
which incorporates every detail of the electrophoresis experiment. Although such models
are too complex to analyze mathematically, over the last several decades many efforts have
been made to improve the electrophoresis theory so as to make it applicable to a wider
range of experimental systems. This chapter reports one of such efforts to furnish a more
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FIG. 6 Trajectories for the electrophoretic motion of prolate spheroids in electro-osmotic flow

developed in a slit-type capillary. In all cases the initial orientation of the spheroids is � ¼ 0:5�
and � ¼ 0:3�.



sound basis for the interpretation of the electrophoresis measurement data, in particular
for nonspherical particles.

We address two main issues: (1) how to characterize effectively the shape and the
electrokinetic potential distribution for the electrophoresis analysis for nonspherical par-
ticles, and (2) how to deal with nonelectrophoretic contributions that affect the apparent
motion of nonspherical particles. When the shape of nonspherical particles does not
deviate significantly from that of spheres, their electrophoretic mobility can be conveni-
ently determined in terms of the multipole moments. For axisymmetric particles with
axisymmetric electrokinetic potential distributions the explicit expressions for their elec-
trophoretic mobility tensors are derived. Based on the electrophoretic trajectory analysis it
is shown that axisymmetric particles may prefer to align parallel to the applied electric
field. As for the second issue, we discuss the electrophoretic motion of heavy spheroidal
particles suspended in electro-osmotic flow developed in a capillary. The electro-osmotic
flow results in the lateral migration of the particle and strongly affects the particle orienta-
tion. Therefore, to analyze the electrophoresis measurement of such particles the interplay
of electro-osmotic flow and the electrophoretic motion must be carefully examined.
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A Critical Review of Electrokinetics of
Monodispersed Colloids

EGON MATIJEVIĆ Clarkson University, Potsdam, New York

I. INTRODUCTION

There are few techniques used more extensively than electrokinetics in studies involving
colloid dispersions. The information obtained from these measurements is invaluable in
the characterization of fine particles and in the interpretation of various phenomena
observed with such materials.

Two aspects regarding electrokinetics need to be clearly distinguished. The first refers
to the methods of mobility measurements, and the second to the interpretation of data,
paticularly in terms of calculated � potentials. Both these parts are fraught with consider-
able difficulties. Indeed, there is good reason to believe that many reported experimental
data, and even more so the values of the corresponding electrokinetic potentials, are of
doubtful quality. These problems are extensively dealt with in various chapters of this
volume.

Another matter of concern is a common oversimplification of the significance of the
mobility, and especially of the zeta potential, in the explanation of colloid phenomena,
such as dispersion stability and particle adhesion, or of some processes represented, for
example, by the retention in paper processing, etc. Certainly, the particle charge plays an
important role in all mentioned aspects of fine particles, and many others, but the relation-
ships of surface potential to the observed effects are neither straightforward nor easily
quantified. Thus, it is necessary to evaluate carefully each and every case and refrain from
unjustified generalizations.

There is one useful aspect of electrokinetics, not always fully recognized, which deals
with the great sensitivity of the surface charge to extremely small amounts of contami-
nants. The latter may not be assayed even with quite sophisticated analytical techniques,
yet are readily detected by mobility measurements.

A related application is in the use of mobility measurements to follow interactions of
solutes with colloid particles. There is a twofold purpose of such studies: one is to ascertain
that adsorption took place, and the other is intentionally to modify the particle charge.
Numerous reports show that often minute amounts of surfactants, chelating agents, and
other ionic species can greatly affect the magnitude of the surface potential or even reverse
the sign of its charge. However, the latter effects are not the subject of this article.

It is obvious that the use of well-defined and reproducible fine particles offers an
essential advantage in the proper evaluation of electrokinetic effects. Monodispersed col-
loids, which are now available in a variety of chemical compositions, sizes, shapes, and
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structures [1–4] are ideally suited for such studies. The purpose of this review is to sum-
marize the published results attained with uniform inorganic dispersions, and to illustrate
some phenomena and discrepancies. Thus, the chapter focuses on the experimental evi-
dence and not on possible pitfalls in the evaluation of the mobility data in terms of the
calculated � potentials.

II. REPRODUCIBILITY OF MOBILITY MEASUREMENTS

It would be of considerable practical and theoretical interest to have a generally accepted
standard dispersion for electrokinetic evaluations. Originally, polymer latexes appeared as
a possible choice for this purpose, but they proved to be elusive in terms of reproducibility
of the results. Monodispersed spherical inorganic colloids, especially metal oxides, seem to
be an alternative possibility. An additional advantage of such particles is the ease with
which the sign and the magnitude of the surface potential can be varied by simple adjust-
ment of the pH.

One carefully tested dispersion consists of uniform spherical amorphous chromium
hydroxide particles, which are exceedingly simple to prepare [5] and have a convenient
isoelectric point (i.e.p.), making it easy to carry out studies with negatively and positively
charged colloids of the same chemical composition (6–9).

Figure 1 illustrates data obtained with such colloids using two different instruments
(PenKem System 3000 and DELSA, Coulter Electronics) [7]. The consistency of the
mobilities is excellent, especially if one considers that the principles on which the two
instruments are based differ.

Figure 2 displays a series of mobility curves of monodispersed chromium hydroxide
dispersions in the presence of different concentrations of Na2SO4, which resulted in fairly
constant values over a broad pH range at sufficiently high sulfate concentrations [8]. In
view of these results, it was suggested that such dispersions could be used as an electro-
kinetic ‘‘standard,’’ but no acceptance of this proposal has been noted.

III. DETECTION OF IMPURITIES

As outlined in the introduction, one important use of electrokinetics is to detect surface
contaminations. A few example are offered here.

Figure 3 shows two mobility curves for amorphous spherical chromium hydroxide
particles as a function of the pH. The freshly prepared dispersion has an i.e.p. at pH 8.5.
The second set of data is for the same system kept for 3 days in alkaline solutions con-
tained in glass tubes. The significant shift in the mobility is due to a minute amount of
silicates leached from the container and adsorbed on the particle [7].

The mobilities of uniform spheres of hematite (�-Fe2O3) change with repeated rin-
sings with water, displayed by different curves in Fig. 4 [10], until the surface is purified as
given by the solid line. This colloidal hematite was prepared by aging FeCl3 solutions at
elevated temperatures [11]. As a result some chloride was incorporated in the particles,
which was removed from the surface layers by extensive washings. Since these anions are
occluded in the bulk of the precipitated solids and slowly diffuse towards the surface, it
takes a large number of washings to eliminate this contaminant.

The final example deals with monodispersed amorphous aluminum hydrous oxide
particles, which were obtained by forced hydrolysis of aluminum sulfate solution [12]. The
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FIG. 1 � potentials of monodispersed spherical amorphous chromium hydroxide particles as a
function of pH in the presence of different concentrations of sodium perchlorate. Open and solid

symbols represent data taken with the Pen-Kem 3000 and DELSA (Coulter Electronic) instruments,
respectively.

FIG. 2 Electrophoretic mobilities of monodispersed spherical amorphous chromium hydroxide

particles in the presence of 0.01 mol dm�3 NaClO4 as a function of pH at different concentrations
of Na2SO4: none (&); 1� 10�5 (!); 1� 10�4 (*); 4� 10�4 (^); 1� 10�3 mol dm�3 (~).



dispersions so attained showed an i.e.p. at pH 7.2 (Fig. 5). However, on washing with a
basic aqueous solution the curve shifted, yielding an i.e.p. at pH 9.3. Obviously, this
change was due to elimination of the sulfate ions, which were retained during the pre-
cipitation of the particles.

It should be noted that in all the cases described the contaminants were present in
quantities too small to be detected by other techniques.
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FIG. 3 Electrophoretic mobilities of monodispersed Cr(OH)3 particles as a function of pH in

1� 10�3mol dm�3 NaClO4. Purified sample (*) and sample stored for 3 days in alkaline solutions
in a glass container (&).

FIG. 4 Electrophoretic mobilities of spherical hematite (�-Fe2O3) particles (0.12 mm in diameter) as

a function of pH in 1� 10�2 mol dm�3 NaNO3: completely cleaned (35 washing cycles) (————),
after 20 washing cycles (– – – –), and freshly prepared (� � � � �).



IV. SURVEY OF PUBLISHED DATA

Apparently, the only comprehensive review of electrokinetic results for inorganic oxides
and hydroxides was published by Parks in 1965 [13].* The tabulated i.e.p. showed con-
siderable variations, which depended on the method of preparation and treatments of
individual dispersions. For example, reported data for aluminum (hydrous) oxides were
as low as 3.5 and as high as 11, and for iron (hydrous) oxide the values ranged from 1.9 to
9! Furlong and Parfitt [14] listed the i.e.p. for TiO2 from 2.7 to 6.0. Needless to say,
discrepancies in the measured mobilities or in calculated � potentials at the same pH values
for the same compounds varied just as much.

In contrast to the cited review, which was based on measurements mostly obtained
with ill-defined particles, here an attempt is made to summarize electrokinetic data pub-
lished with dispersions consisting of well-defined colloids of narrow size distributions and
of simple and composite natures. In doing so one eliminates at least the possible effects of
polydispersity and of other conditions inherent in less carefully prepared systems. Every
effort is made to compare results using dispersions presumably obtained by the same or
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FIG. 5 Electrophoretic mobilities of spherical amorphous aluminum hydrous oxide particles pre-
pared by aging a 1� 10�3 mol dm�3 solution of Al2(SO4)3 at 988C for 24 h and treated as follows:
~, original sol at room temperature; &, sol freed of the original electrolyte by centrifugation and

redispersed in dilute NaOH solutions; *, pH of the sol adjusted to 9.7 by NaOH, followed by
deionization, and redispersion at various pH values.

* After this article was written, Professor M. Kosmulski (Lublin, Poland) informed the author that
his elaborate tabulation of electrokinetic properties of metal (hydrous) oxides will appear in the

book titled Chemical Properties of Material Surfaces to be published by Marcel Dekker Inc. in
2001.



similar procedures in different laboratories. Preference is given to mobility measurements,
whenever possible, in order to eliminate uncertainties arising from calculations of the �
potentials by individual investigators, which may be based on different assumptions. Data
for a few compounds will be presented in some detail, while the references to other, less
frequently studied materials, are given in Table 1 (see later).

A. Titanium Dioxide

Information on the electrokinetic behavior of titanium dioxide is of particular interest,
because dispersions of this material, consisting of ‘‘monodispersed’’ spheres, have been
prepared by chemical reactions in aerosols and by precipitation in solutions. In the former
method, droplets of titanium(IV) alkoxides are contacted with water vapor, which process
rapidly yields TiO2 spheres with the elimination of alcohol [15]. These particles are very
pure, since no ionic species, which could be incorporated as contaminants, are present in
the reacting system. The transmission electron micrograph in Fig. 6 illustrates one such
product.

Figure 7 compares electrophoretic data for several TiO2 dispersions obtained by the
hydrolysis of Ti(IV) ethoxide using the aerosol process [15–18]. While the i.e.p. is quite
consistent, the mobilities at a given pH and at the same ionic strength, using the same
electrolyte (KNO3), differ significantly. It should be noted that the solid lines refer to
particles which were converted into anatase [18] by mild heat treatment, but they retained
their spherical shape. Furthermore, different designs of aerosol generators were used in the
preparation of TiO2 [15, 16], and the measurements were carried out with different instru-
ments (Rank Mark VIII and DELSA). None of these experimental specifics should
account for the observed discrepancies in the reported mobilities.
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FIG. 6 Transmission electron micrograph of TiO2 particles prepared by the aerosol technique

using droplets of Ti(IV) ethoxide interacted with water vapor.



Figure 8 compares � potentials of a ‘‘high purity’’ spherical colloidal titania (anatase)
prepared by solution precipitation using Ti(IV) ethoxide [19], with ellipsoidal rutile par-
ticles, obtained by the hydrolysis of TiCl4, and thoroughly washed [20]. Again the i.e.p. is
reasonably close and not much different from the value obtained with the ‘‘aerosol’’
samples. However, the � potentials at pH > i.e.p. are substantially lower at the same
ionic strength for the sample precipitated in TiCl4 solution.

Finally, Fig. 9 displays � potentials of the aerosol TiO2 (anatase) sample in 1� 10�1

mol dm�3 aqueous KCl solution and in 30% ethanol/water mixtures in the presence of
different alkali chlorides [21]. There is a considerable effect of alcohol on the surface
potential, which becomes less pronounced as the ionic strength decreases. Similar results
were obtained with methanol/water mixtures [21]. This example points to another combi-
nation of parameters which may greatly affect the electrokinetic properties of a mono-
dispersed system.

B. Iron Oxides

One significant aspect of iron oxides is the availability of ‘‘monodispersed’’ particles of the
same chemical composition, but in a variety of shapes. Thus, hematite (�-Fe2O3) was
obtained as spheres, ellipsoids, rods, cubes, platelets, and some other more complex
morphologies [11, 22–28]. In addition, uniform particles of different composition, such
as akageneite (�-FeOOH), have also been produced [11]. Obviously, it should, in principle,
be possible to investigate the effects of the shape and structure of particles on their
electrokinetic properties.
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FIG. 7 Electrophoretic mobilities of spherical TiO2 particles prepared by the aerosol method from

Ti(IV) ethoxide droplets and converted into anatase at 258C as a function of pH in the presence of
different anions at constant ionic strength � ¼ 1� 10�3mol dm�3

ðNO�
3 : *; Cl : &Þ and at

�� 10�2mol dm�3
ðCl;�Þ, with Naþ as the cation [18]. ð� � � � � � Þ TiO2 particles obtained by

the same technique without subsequent treatment [15]. (- - - -) Particles obtained in a different
aerosol generator [16].
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FIG. 9 � potentials of spherical (aerosol) anatase particles in 1� 10�1 mol dm�3 alkali chlorides as
a function of pH in water and 30% ethanol [21].

FIG. 8 � potentials of spherical TiO2 particles prepared by precipitation in Ti(IV) ethoxide solu-

tions at three different ionic strengths (&, *, ^) [19], and of needle-type rutile obtained by pre-
cipitation in TiCl4 solutions (– – – –) [20].



Figure 10 compares the mobilities as a function of the pH of hematite particles
(�-Fe2O3) of different shapes and of needle-like akageneite (�-FeOOH) [11]. It is surpris-
ing that, despite the variation in the preparation procedures and particle morphologies,
relatively little difference is noted in their electrophoretic behavior. Indeed, considering the
possible experimental errors it would not be justified to draw any conclusions regarding
the effect of the shapes on the electrokinetics of these dispersions. The data that follow will
further support this statement.

Figure 11 displays four sets of mobility data from different laboratories, obtained
with nearly spherical hematite particles of comparable size, prepared by essentially the
same procedure. Two solid symbols refer to the i.e.p. taken from plots of � potential as a
function of the pH. Obviously the value obtained by Kandori et al. [23] must be
erroneous for some reason. The results in Fig. 11 are both surprising and disturbing,
because it is not easy to account for the significant differences in the behaviors of the
supposedly identical, or at least very similar, dispersions. It should be noted that mea-
surements were carried out with different instruments, which should not be responsible
for the observed discrepancies.

No less inconsistency is observed with ellipsoidal hematite, synthesized by using the
same procedure. Figure 12 shows that neither the i.e.p. nor the mobilities at the same pH
agree as reported for these dispersions.
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FIG. 10 Electrophoretic mobilities of different iron(III) hydrous oxide particles as function of pH.

�-FeOOH sols: rods, formed from solution of 0.09 mol dm�3 in FeCl3 and 0.01 mol dm�3 in HCl
aged 24 h at 1008C (– – � � – – � �); �-Fe2O3 sols containing different shaped particles formed in
solutions as given below: cubes, 0.09 mol dm�3 in FeCl3 and 0.01 mol dm�3 in HCl aged 24 h at

1508C (————); ellipsoids, 0.018 mol dm�3 in Fe(No3)3 and 0.05 mol dm�3 in HNO3 aged 24 h
at1008C (– � – �); bipyrimidal, 0.018 mol dm�3 in Fe(ClO4)3 and 0.05 mol dm�3 in HClO4 aged 3
days at 1008C (� � � � �); double ellipsoids, 0.018 mol dm�3 in FeCl3 and 0.05 mol dm

�3 in HCl aged

1 week at 1008C (———), and spheres, 0.0315 mol dm�3 in FeCl3 and 0.005 mol dm
�3 in HCl aged

2 weeks at 1008C (- - - - -).



Finally, Fig. 13 compares data obtained with needle-type �-FeOOH particles of
different length from two laboratories. While the i.e.p. is reasonably close for all samples,
the mobilities differ dramatically above and below this pH value.

C. Aluminum (Hydrous) Oxides

Fewer cases are available with well-defined aluminum (hydrous) oxides than with the
above described systems. However, in view of the importance of these compounds in a
large number of applications, Fig. 14 summarizes the best reported data. There is less
fluctuations in the value of the i.e.p. than, for example, with iron oxides, but still little
reproducibility in the overall mobilities is noted.
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FIG. 12 Electrophoretic mobilities of ellipsoidal hematite (�-Fe2O3): 1. Haq and Matijević [33],

� 400=100 nm; 2. Delgado and González-Caballero [34], � 180=70 nm; 3. Garg and Matijević [35],
� 600=150 nm.

FIG. 11 Electrophoretic mobilities of nearly spherical hematite (�-Fe2O3) particles prepared in
different laboratories: 1. Regazzoni et al. [29], r ¼ 50 nm; 2. Hesleitner et al. [10], r ¼ 120 nm; 3.
Shudel et al. [30], r ¼� 100 nm; 4. Penners et al. [31], r ¼ 40 nm.*, Hesleitner et al. [32], r ¼ 96 nm;

&, Kandori et al. [23], r ¼ 800 nm.
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FIG. 13 Electrophoretic mobilities of needle-type alkageneite (�-FeOOH) particles: (&,*) two
different rod sizes [36]; (	 	 	 	 	 	) retrace of data shown in Fig. 10; (– – –) data from Ref. 37.

FIG. 14 Electrophoretic mobilities of aluminum (hydrous) oxide particles. 1. The same purified
dispersion as in Fig. 5 [12]. 2. Amorphous spherical aluminum hydroxide particles (prepared as in 1)

of r � 260 nm at � ¼ 1� 10�2 mol dm�3 [38]. 3. Spherical aluminum hydroxide particles prepared
by the aerosol technique (Al sec-butoxide droplets hydrolyzed with water vapor); r ¼ 350 nm, � ¼

1� 10�3 mol dm�3 [39]. & and *, �-AlOOH particles prepared by forced hydrolysis of Al(ClO4)3
and AlCl3, respectively [40]. Isoelectric points from plots of � potentials:*, particles prepared as in 1
and 2 [41]; &, �-alumina, r ¼ 10 nm [20].



D. Silica

Monodispersed silica has been prepared over a broad range of modal sizes, i.e., from
several nanometers to several micrometers. The exceedingly uniform particles are
usually obtained by the hydrolysis of tetraethyl orthosilicate (TEOS), following the
process developed by Stöber et al. [42]. Figure 15 displays mobility data determined
by microelectrophoresis of two such dispersions with particles of somewhat different
size [43, 44]. The curve given by triangles was essentially produced with silica particles
of radius r ¼ 400 nm by Hsu et al. [45]. The full circle shows the i.e.p. from plots of
the � potential as a function of the pH for silica of r ¼ 350 nm at an ionic strength of
1� 10�3 mol dm�3 [43, 46]. In another study of Stöber silica of r ¼ 90 nm, the i.e.p.
was reported at pH � 3 [47]. Included also is the curve for nanosized Ludox HS silica,
as determined by the moving boundary technique [48], which yields a much lower i.e.p
at pH < 2.

It is interesting that a finely dispersed quartz (Sikron) of 14 mm in radius had an i.e.p.
at pH 4 [49]. Obviously, the difference in the i.e.p. between the very small (nanosized) and
larger colloidal particles is rather significant.

E. Other Compounds

Electrokinetic data for a number of inorganic monodispersed colloids of various com-
positions have been reported, but mostly in small enough numbers of examples to
justify a comparison. For this reason, Table 1 lists only the i.e.p. for a few such
dispersions with some indication of their morphological properties. This kind of pre-
sentation was also opted because some results were extracted from plots of mobilities,
while others were from � potentials. For details the reader should consult the indicated
references.
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FIG. 15 Electrophoretic mobilities of spherical silica particles prepared by the Stöber method, r ¼
150 nm, at three ionic strengths (*, &, ~) [43] and of r ¼ 100 nm (– – –) [44]. *, i.e.p. of a silica

ðr ¼ 300 nm) from plots of � potentials as a function of pH [46]; (– � – �) Ludox HS silica, r ¼ 15 nm
[48].
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TABLE 1 Isoelectric Points of Some Monodispersed Inorganic Colloids

Compound Particle shape and size i.e.p. Reference

MnO, MnO2 Spheres

(0.5–2.0 mm)
6.0 50

MnO2 Spheres, monoclinic
(0.5 mm, � 3 mmÞ

4.0 51

Co3O4 Cubes 5.5 52
Co(OH)2 Not given 10.5 53

NiO Spherical (� 2 mm) 9.5 54
NiO Platelets (100 nm) 12.7 55

Ni(OH)2 Platelets (100 nm) 9.3 55

CuO Ellipsoids (100 nm long) 7.5 56
CuO Ellipsoids (1 mm long) 5.0 57
Cu(OH)2 Needles (500 nm long) 9.5–10.5 58

ZrO2 Spheres (400 nm) 4.0 59
ZrO2 Hollow spheres (170 mm) 4.5 60
Zr (hydrous) oxide Spheres (20 mmÞ 8 61

Zr (hydrous) oxide Spheres (0.1–1 mmÞ 5.9 62

SnO2 Spheroids (50 nm) 4.2 63
Sn(OH)4 Spheroids (� 200 nm) 4.5 33

Sb2O4 Prizmatic crystals (2 mmÞ 7.5 64

Y(OH)(CO3) Spheres (� 150 nm) 7.5 65, 66

8.6 67

Y2O3 Spheres (� 120 nm) 8.5 68

Y2O3 9.1 67
Y2O3 Hollow spheres 8.5 68

Eu(OH)CO3 Spheres (� 150 nm) 7.5 69
Gd(OH)CO3 Spheres (� 150 nm) 7.5 69

CeO2 Spheres (� 100 nm) 6.0 70
Calcined 5.2

ZnS Spheres (� 300 nm) 5.5 71, 72

Spheres 3.0 73

CdS Spheres (400 nm) 3.5 74

BaSO4 Spheroids (200 mm) 6.5 75



V. COMPOSITE PARTICLES

Electrokinetics may yield useful information with regard to internally or externally com-
posite colloids, as illustrated below.

A. Internally Composite Particles

It has been demonstrated on a number of examples that uniform particles of internally
mixed composition can be obtained by precipitation in solutions containing two or more
different metal salts [76]. Depending on the method of preparation the resulting colloids
can be either internally homogeneous or inhomogeneous. As a rule, if the process is slow
the latter case prevails. As a result the composition of particles varies from the center to
the periphery. Figure 16 illustrates this effect on the mixed cadmium/nickel basic phos-
phate system. Uniform spherical particles were obtained by aging at 808C solutions con-
taining metal sulfate salts, phosphoric acid, urea, and sodium dodecyl sulfate [77]. The
ratio of the two metals changes as the particles grow, with Cd in excess, until the solute
content is exhausted. It is to be expected that the surface charge characteristics should
change accordingly.

Indeed, electrokinetic measurements are indicative of the surface composition, as
shown in the example of monodispersed spherical silica/alumina particles, prepared by the
cohydrolysis of mixed alkoxides [TEOS and Al(t-OBu)4] in different molar ratios [78].
Although in all cases TEOS was in excess in the reacting system and silicon dioxide in the
resulting particles, the mobilities clearly indicated varying surface compositions (Fig. 17).
Thus, particles precipitated in a solution of molar ratio [Si]/[Al] ¼ 4 had an i.e.p. of 9.2,
typical of alumina, while those prepared in a solution of [Si]/[Al] ¼ 8, behaved as pure
silica. Finally, the solids produced in systems of [Si]/[Al] ¼ 6 showed the i.e.p. correspond-
ing to an aluminosilicate surface.

In another example, spherical nickel ferrites were prepared with different [Ni]/[Fe]
ratios, yet all mobilities as a function of the pH yielded a single curve (Fig. 18) [79]. Since
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FIG. 16 Internal composition of mixed nickel basic and cadmium phosphate particles, precipitated

in solutions of initial molar ratios [Cd2þ]/Ni2þ
 ¼ 2:0; 1:0, and 0.5, respectively, as a function of
aging time at 808C [77].



the i.e.p. of NiO and Fe2O3 are quite different, one would expect that the electrokinetic
behavior of these ferrites should systematically shift with the change in the chemical
composition of the particles. However, the experimental evidence indicates that the surface
potentials are independent of the [Ni]/[Al] ratio in these ferrites, which leads to the con-
clusion that the surface chemical composition is essentially the same, while that of the bulk
varies.

In both these examples, electrophoretic mobility measurements offered information
on the chemical properties of particle surfaces in a rapid manner, which would be difficult
or time consuming to achieve by other more sophisticated techniques.
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FIG. 17 Electrophoretic mobilities as a function of the pH of dispersions prepared from solutions
of initial concentration ratio [TEOS]/[Al(t-OBu)3] of 4 (~), 6 (&), and 8 (*) at a constant con-

centration of Al(t-OBu)3 ¼ 2� 10�3 mol dm�3 and the ratio [SO4]/[Al] ¼ 1.5, all aged at 988C for
24 h [78].

FIG. 18 Electrophoretic mobilities of nickel ferrite particles of various chemical composition as a
function of the solution pH [79].



B. Coated Particles

Covering particles with a shell of different chemical compositions is a useful method to
achieve some desirable surface or morphological properties of colloids, which cannot
be obtained directly. For example, by coating ellipsoids of hematite (�-Fe2O3) with a
silica layer, the resulting dispersion will react as the latter, yet the particles will be of
anisometric shape, which cannot be produced with silica by the usual preparation
procedures [80].

Recently, it was shown that inorganic particles can be covered with either inorganic
or organic layers, but also that organic colloids can be enveloped with inorganic shells.
Indeed, the rather diverse cores are readily coated with material of the same chemical
composition. For example, latex, silica, and hematite have been covered with yttrium basic
carbonate, which can be converted into yttrium oxide, using essentially the same proce-
dure [44, 66, 81].

Electrokinetic measurements are again useful in confirming that such coating has
taken place, since the surface charge characteristics of cores and shells are usually differ-
ent. Some example will illustrate such effects.

Figure 19 shows electrophoretic mobilities of spherical hematite particles, of oval-
bumin, and of the same cores covered with a uniform layer of this protein. The coated iron
oxide has not only the same i.e.p., but also the mobilities as a function of the pH are
essentially identical, within experimental error, with those of the pure ovalbumin.
Consequently, the composite particles will exhibit the properties of the protein in terms
of the surface potential and interactions [82].

In another example, hematite particles were covered with Sn(OH)4 [33]. Again, the
coated particles behaved just as the shell material prepared separately, as displayed in
Fig. 20.
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FIG. 19 Electrophoretic mobilities as a function of the pH of spherical hematite (�-Fe2O3) parti-
cles (*), of ovalbumin (1 wt%) (*), and of hematite coated with this protein (&, ~).



Analogous behavior was documented with a number of other systems, such as
hematite coated with chromium hydroxide [36], polystyrene latex coated with yttrium
basic carbonate [68], manganese carbonate coated with nickel carbonate, [85], or titania
coated with polyurea by the aerosol method [16], to mention a few.

VI. CONCLUSIONS

The results of this survey are certainly disturbing. Despite the fact that the comparisons of
the published electrokinetic mobility data refer to reasonably well defined dispersions, the
discrepancies are outside expected experimental errors. The causes of the disagreements
are difficult to pinpoint. While they may be due in some cases to inaccurate measurements,
it is more likely that the differences are caused by minor inconsistencies in the surface
chemistry of presumably identical dispersed particles. It is especially important to recog-
nize how a little contamination may affect the electrokinetic behaviors in a significant
manner.

These results also cause concern regarding interpretations of different colloid phe-
nomena, especially in terms of generalizations based on surface potentials. In most cases
the latter are identified with the � potentials, which are calculated from mobility measure-
ments using various assumptions. Consequently, assigning quantitative significance to
these numbers is even less justified.
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FIG. 20 Electrophoretic mobilities as a function of the pH of hematite cores (~), of Sn(OH)4 (*),
and of hematite coated with Sn(OH)4 (&).



In view of these findings, it is essential to select a ‘‘standard’’ dispersion that
should be evaluated in a number of laboratories with different instrumentation in
order to arrive at some meaningful comparisons. These tests should be carried out
with one sample distributed to different locations and again with the dispersions of
the same material prepared independently by exactly the same procedure in these
laboratories.

On a positive note, the usefulness of electrokinetics is demonstrated when employed
as a tool to detect changes in surface charge characteristics, caused by minor contamina-
tions inherent in the system or by additives intentionally introduced into a dispersion. In
such instances the absolute values of mobilities (i.e., � potentials) are not as essential as are
the relative changes in these parameters. Indeed, the shifts in the magnitude of the poten-
tials or the reversal of the sign of the surface charge may be indicative, at least qualita-
tively, of some changes of particles behavior in adsorption, adhesion, or other processes,
as well as their stability when dispersed in liquids.

Electrokinetic measurements remain to be an indispensable tool, as stated in Section
I, but the results must be treated judiciously.
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15. M Visca, E Matijević. J Colloid Interface Sci 68: 308, 1979.
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57. P McFadyen, E Matijević. J Inorg Nucl Chem 35:1883, 1973.
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9
Towards a Standard for Electrophoretic
Measurements

KUNIO FURUSAWA University of Tsukuba, Tsukuba, Ibaraki, Japan

I. INTRODUCTION

Zeta-potential measurements can provide valuable information necessary for preparing
stable colloidal suspensions in many applications, including food preparation, agriculture,
pharmaceuticals, the paper industry, ceramics paints, coatings, photographic emulsions,
etc. The concept of zeta potential is also very important in such diverse processes as
environmental transport of nutrients, sol–gel synthesis, mineral recovery, wastewater
treatment, corrosion, and many more. The historical prominence of zeta potential, �, in
colloid and surface science has been due to its experimental accessibility via measurement
of the electrophoretic mobility, � which is the terminal velocity of the particle, v, per unit
field strengtht, E:

v ¼ �E ð1Þ

In an externally applied electric field, � can be calculated from the mobility using the
simple Smoluchowski relationship [1]:

� ¼
"�

�
ð2Þ

where " and � are the dielectric constant and viscosity of the medium, respectively. At
present, a continuing problem with the measurement of the electrophoretic mobility,
particularly where quantitative information is required, is the lack of universally recog-
nized standards for interlaboratory comparison and calibration of the various commercial
instruments. This problem is compounded by the observed variability between measure-
ments on similar materials obtained from different laboratories or users [2, 3]. There are
many possible instrumental origins of this variability, including improper alignment of
measurement optics, incorrect determination of the cell position, dirty cell walls, and
deteriorated electrodes. Variations may also occur due to sample-related problems such
as contamination, chemical and dispersion instability, errors in pH measurement, etc. The
research community has long recognized the need for mobility standards to address these
and related problems [4, 5].

The selection of a reference material is not a trivial matter: colloidal systems are
thermodynamically unstable, difficult to prepare reproducibly, subject to contamination,
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and often chemically unstable over long periods. As a consequence of their high surface-
to-volume ratio, finely dispersed systems are particularly subject to physical and chemical
changes by processes such as aging, flocculation, dissolution, photochemical degradation,
and Ostwald rippening. Latex particles are often suggested as model colloids and mobility
standards [6–8], primarily because they can be prepared as monodisperse spheres.
Inorganic materials such as sulfated chromium hydroxide [9] and hematite (�-Fe2O3)
[10] have also been proposed as standards.

In this chapter, the results of the collaborative studies of zeta potential measure-
ments conducted in Japan to seek a suitable standard sample will be introduced first [11,
12]. The measurements were carried out, in addition to those at Tsukuba University, at
nine university laboratories in Japan using different electrophoretic apparatus, which
included the Rank Brother M-2, PEN KEM-501, PEM KEM-3000, and Malvern
Zetasizer-F.

In Section III, based on the above collaborative studies, a new electrophoretic tech-
nique, using a reference sample as a standard, is introduced [13, 14]. The most familiar
method for determining the zeta potential is electrophoresis, which consists of setting up a
potential gradient in the solution. The electrophoretic migration of colloid particles is
always superimposed on the electro-osmotic liquid flow from the cell wall, and the appar-
ent particle velocity observed coincides with the true electrophoretic mobility only at two
special cell depths which are known as the stationary levels. Unfortunately, however, the
velocity gradient of the liquid at the stationary levels is usually large, and thus the
observed velocity of the particles changes rapidly with the cell depth, so that the errors
in electrophoretic mobility measurements may be substantial. However, if the electro-
phoretic measurements are carried out using some reference sample as a standard, the
electrophoretic mobility of the unknown sample can be determined at any cell depth by
substracting the mobility of the reference particles at the same level, because the liquid
flow velocity induced by the electro-osmotic effect of the cell wall comes to the same value
for both kinds of particles under the same experimental conditions. So, if the electro-
phoretic mobility is detected at one-half depth in the cell, the real electrophoretic mobility
is also given at the maximum of the parabolic velocity as a function of the cell depth. At
that point, slight errors in focusing are less important than the usual measurements at the
stationary levels.

Section IV reports on the synthesis of a new reference colloidal dispersion stabilized
only sterically in an aqueous medium, without any electrostatic repulsion [14, 15]. Special
attention is given to the synthesis of the reference particles, which are covered with poly-
mer layers as densely as possible [14] and display a zero zeta potential under a variety of
solution conditions. It becomes apparent that a dense adsorption layer of hydroxypropyl
cellulose (HPC), with a lower critical solution temperature (LCST), formed on latex
particles with a low surface charge density at temperatures higher (60–808C) than the
LCST plays a role in completely shielding the electrostatic effect arising from the surface
charge on the bare particles [15, 16]. Here, the experimental method and the merit of a new
electrophoretic technique based on the use of a reference sample will be explained.

In Section V, a recent joint work [17] in the USA to select and evaluate a colloid
material for use as a mobility standard in electrophoretic light scattering will be described.
A published report summarizing this work concluded that an acidic suspension of well-
aged phosphated goethite (�-FeOOH) would be a suitable reference material for the
determination of electrophoretic mobility. This recommendation was based on such cri-
teria as adjustable mobility over a wide pH range, low solubility, temporal stability, kinetic
stability, sample reproducibility, availability, and sufficient light scattering, among others.
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II. COLLABORATIVE STUDY OF ZETA POTENTIAL MEASUREMENTS IN
JAPAN USING A REFERENCE SAMPLE

In 1970, a group of Japanese surface and colloid chemists, who had engaged in the study
of electrokinetic phenomena and/or colloid stability, formed a committee under the
Division of Surface Chemistry in the Japan Oil Chemist’s Society. This group measured,
compared, and discussed zeta potentials for such samples as titanium oxide, microcap-
sules, silica, and some polymer lattices or silver iodide. Table 1 indicates some examples of
simultaneous measurements of zeta potential for four samples. All these measurements
have been carried out by the microelectrophoretic technique using the respective electro-
phoretic apparatus belonging to each member laboratory. Usually, the mobility measure-
ments were performed at a constant field strength of 4–5 V cm�1, using a rectangular glass
(or quartz) cell, and the mobility was determined at the respective stationary levels in the
cell. The zeta potential was calculated by the Smoluchowski equation (2). As can be seen
from Table 1, the collaborative results for titanium oxide and microcapsule dispersions do
not agree with each other and, in particular, the data for the microcapsule dispersion
indicated a large deviation within some members. On the other hand, the � potential
measured for polystyrene lattices, which were prepared in a surfactant-free system by
the Kotera–Furusawa–Takeda method [6], and silver iodide sol prepared by the usual
way, were very similar among those tested and were reproducible. Furthermore, it is
known from the data for titanium oxide that the zeta potential determined by the stream-
ing potential method is slightly lower than the value obtained by the electrophoretic (EP)
technique.

At the next stage of the collaborative study, simultaneous measurements of � poten-
tial and critical flocculation concentration (c.f.c) were conducted for two standard latex
suspensions (Samples 1 and 2) so as to assess the reliability of each of these measurement
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TABLE 1 Results of Collaborative Studies of Zeta-Potential Measurements for Various Samples

1. Titanium oxide
Laboratory A B C D E F

Method EP SP SP SP EP SP
� (mV) �24:8 �14:8 �8 �21:0 �35:72 �25

2. Polystyrene lattices (EP)
Laboratory A B C D
� (mV) �48 �42:5�46 �47 �42:3

3. Microcapsule (EP)
Laboratory A B C D

� (mV) �27:0 �26:1 �70 �35:4

4. Agl sol (EP)

Laboratory A B C D
� (mV) (pA g 3) þ50 þ66:4
� (mV) (pl 4) �47:5�51 �45

5. Agl sol (EP)
Laboratory A B C

U (mm cm�1 V�1 s�1) �3:675 �3:8 �3:67
� (mV) �44:5 �46 �44:4



techniques and find means for their improvement [12]. Sample 1 was a negative styrene/
styrene sulfonate copolymer latex which was prepared according to the Juang and Krieger
method [18]. Sample 2 was an amphoteric polymer latex synthesized by the Homola
method [19]. These latex samples were employed after purification by ion-exchange treat-
ment and dialysis against distilled water.

The zeta potential measurements were carried out at nine laboratories using different
electrophoretic apparatus, which included the Rank Brother M-2, Pen Kem-501, Pen
Kem-3000 and Malvern Zetasizer-F. As can be seen from Fig. 1 and Table 2, the data
from all the laboratories showed fairly good agreement and displayed possible means for
their improvement:

1. Elevated potential supply (Pen Kem-3000 and Malvern Zetasizer-F) was found
to increase the slope of the zeta potential versus pH curve near the isoelectric
point of Sample 2.

2. Differences between the zeta-potential values reported from each laboratory
indicate a constant deviation over the whole pH range, i.e., data G show rela-
tively high values, while data A indicate low values over the whole pH range.
This tendency suggests that the difference between data G and data A must be
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FIG. 1 Zeta potential versus pH curves for Samples 1 and 2. A, Rank Brother M-2; B, PEM KEM-

500; C, Rank Brothers M-2; D, E, Laser–Doppler method; E, PEN KEM-3000; F, Malvern
Zetasizer-F.



based on the same reason, which can be eliminated completely by using a definite
standard simple.

The c.f.c. values for KNO3, Mg(NO3)2, and La(NO3)3 for Sample 1 were determined
simultaneously by a static method, and the results were compared with those determined
by a kinetic method and dynamic light scattering (LS). These results for the c.f.c. and some
related data are presented in Table 3. The results obtained from the four laboratories by a
static method agreed fairly well, and the order of the magnitudes of the c.f.c. values
determined by the LS technique and the kinetic method was static < LS technique <
kinetic method. Furthermore, it was found that in determining the c.f.c., the solid con-
centration in the medium was an important factor.

III. ELECTROPHORETIC MEASUREMENTS USING A REFERENCE
SAMPLE AS A STANDARD

From the above collaborative measurements on the zeta potential, it was realized that in
determination of the zeta potential of an unknown sample, electrophoretic measurements
using the Sample 1 in the above section as a standard are very useful for obtaining reliable
data. Zeta-potential measurements using (PSSNa) lattices as a standard were conducted.
Sample 1 (2a ¼ 420 nm, �o ¼ 7:0 �C cm�2) was made by incorporating small amounts of
an ionic comonomer, sodium p-vinylbenzene sulfonate, in a polystyrene chain according
to Juang and Krieyer [18].

The electrophoretic mobility measurements in this work were carried out by using a
Zeecom IP-120B zeta-potential analyzer (Chiba, Japan). The apparatus performs automatic
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TABLE 2 Zeta-Potentials of Sample 1 and Isoelectric Points (pH0) of Sample 2

Laboratory A B C D E F G H I

Sample 1 (�, mV) pH ¼ 4 �44:0 �45:0 �48:0 �57:7 �58:0 �53:0 �62:0 �59:0 �44:5
pH ¼ 10 �44:0 �45:0 �48:0 �60:5 �58:0 �54:0 �65:0 �62:0 �46:0

Sample 2 pH0 8.0 6.6 7.8 6.8 7.1 7.6 8.2 7.8 6.5

TABLE 3 Critical Flocculation Concentration (c.f.c) for Sample 1 and Some Related Data

Laboratory

KNO3
c.f.c (M) �a (mV)

Mg(NO3)2
c.f.c (M) �a (mV)

La(NO3)3
c.f.c (M) �a (mV)

A 1:1� 10�1 �40 4:2� 10�3 �35 1:8� 10�4 �19

B 1:01� 10�1 �39:4 4:6� 10�3 �20:9 2:2� 10�4 �3:7
Cb 2:0� 10�1 �28 2:0� 10�2 �23 3:0� 10�4 �11
D 0:7� 10�1 �41 5:4� 10�3 �35 1:9� 10�4 �14

Ac 5:6� 10�2 �15
Dd 1:05� 10�3

a Zeta-potential at c.f.c.
b Data measured by diluted dispersed system.
c Data measured by kinetic method.
d Data measured by dynamic light scattering technique.



tracking of the particles in the center of a 10 cm long electrophoretic cell [14]. The
particle velocities were measured by frequently changing the direction of the field to
minimize possible errors from cell leakage. At least 50 particles were counted in each
measurement.

The apparent electrophoretic mobility ðUappÞ of an unknown colloid sample is
always the sum of two contributions, one of which is the real electrophoretic mobility
Uel and the other is the liquid flow velocity induced by the electro-osmotic effect UosmÞ of
the cell wall, which changes as a parabolic function of the cell depth h:

Uapp ¼ Uel þUosm ð3Þ

Uosm ¼
Uo

2
3
h2

b2
� 1

 !
ð4Þ

where b is the half-thickness of the cell and Uo is the electro-osmotic flow at the cell wall
(h ¼ bÞ. Similarly, the apparent velocity of the reference sample ðU 0

app) is also the sum of
the true electrophoretic mobility ðU 0

elÞ and the electro-osmotic flow velocity ðU 0
osmÞ, i.e.,

U 0
app ¼ U 0

el þU 0
osm ð5Þ

Under the same experimental conditions using a finite electrophoretic cell, so that,
Uosm ¼ U 0

osm, the following relation holds, from Eqs (3) and (5):

Uel ¼ U 0
el ¼ Uapp �U 0

app ð6Þ

Equation (6) indicates that if U 0
el is known exactly, the Uel value of any unknown

sample can be determined from the difference between the two apparent mobilities at any
cell depth. So, if the particle mobility of the unknown sample is determined at the one-half
depth in the cell, the actual electrophoretic mobility is given at the maximum of the
particle velocity as a function of the cell depth:

Uel �U 0
el ¼ UappðmaxÞ �U 0

appðmaxÞ ð7Þ

Figure 2 shows an example indicating the electrophoretic mobility profiles obtained
experimentally for the reference sample (Sample 1) and an unknown sample (SM lattices)
along the cell depth in 10�3 M KCl solution at 258C. SM lattices employed as an unknown
sample were prepared by copolymerization of styrene with 5% methacrylic acid at 708C. It
is apparent that both profiles indicate reasonable parabolic curves and that the curve for
the reference lattices shows a constant mobility at the two stationary levels. Furthermore,
the difference between the two apparent mobilities at the cell center agrees well with the
velocity of the SM lattices at the stationary level.

Figure 3 shows the zeta potential versus pH curves for the SM lattices which have
been determined from the maximum mobilities using Sample 1 as a standard. In Figure 3,
the same relation obtained from the velocities of the SM lattices at the stationary level are
also indicated. As can be seen, both curves agree fairly well over the whole pH range.

All these results indicate that, if we have a reliable colloid sample whose zeta-
potential is exactly determined, the zeta-potential of an unknown sample can be deter-
mined precisely from the measurements of apparent electrophoretic mobility at the cell
center. In that case, slight errors in focusing, i.e., errors due to the depth of view field are
less important, since the velocity gradient near the level of observation is very small.

According to Eq. (4), the zeta potential of the cell wall in contact with aqueous
solutions can be measured by means of the plane interface technique, which involves
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FIG. 2 Examples of electrophoretic mobility profiles of PSSNa lattices (U 0
Þ and SM lattices (U);

h�, stationary level. (&) PSSNa lattices; (*) SM lattices (10�3 M KCl, 258C).

FIG. 3 Zeta-potential versus pH curves of unknown sample (SM lattices) determined by the max-

imum velocity of reference sample (*) and the usual method (*).



establishing the liquid flow velocity–depth profile using reference (polystyrene latex) par-
ticles). The electro-osmotic velocity ðUoÞ obtained by extrapolation of the velocity profile
to the cell wall permits calculation of the zeta potential of the cell wall–solution interface.
The plane interface technique for measuring � at the air–aqueous solution interface pre-
sented by Huddleston and Smith [20] is unique in its use of an open cell, and the zeta-
potential measurement of various solid–solution and air–solution interfaces [21], including
a dissimilar cell system, has been extensively conducted [22].

Here, we would like to emphasize again that the determination of the zeta-potential
of the cell wall can also be possible from the maximum velocity of the reference sample,
instead of from the usual plane interface procedure [20]. According to Eq. (3), U 0

app ¼

U 0
el �U 0

0=2 at h ¼ 0, i.e., from the measured apparent velocity of the reference sample at
the cell center ðU 0

0=2Þ, the zeta potential of the cell wall can be quickly determined, if U
0
el is

previously known.
Figure 4 shows some examples of apparent flow velocity profiles of a standard latex

sample (Sample 1) at various pH values in which both boundaries refer to the glass–
solution interface. A symmetrical parabola was obtained at all pH conditions where the
surface charge of glass is consistent with both sides.

In Figure 5, open circles refer to the zeta potential of the cell wall–solution interfaces
which were determined from the maximum velocity of the reference sample. On the other
hand, full circles in the same figure indicate the results which were obtained by extrapola-
tion of the liquid flow velocity at the cell wall. It was found that both zeta potential series
determined by the two methods agreed very well with each other over a wide range of pH,
and it was realized that our new procedure using U 0

0 was also useful for determining the
zeta potential of the solid–solution interface.
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FIG. 4 Apparent flow velocity profile of standard latex sample at various values of pH (10�3 M
KCl, 258C).



IV. SYNTHESIS OF A REFERENCE SAMPLE WITHOUT ANY
ELECTROSTATIC EFFECT

It will be clearly realized from Section III that, if the electrophoretic measurements are
carried out by using a reference sample without any electrostatic effect as a standard, the
electrophoretic mobility of an unknown sample could be determined by just subtracting
the mobility of the new reference sample at the cell center. Also, the zeta potential of the
cell wall can be quickly determined from the measured electrophoretic mobility at the cell
center, because U 0

el of this sample is zero. As our final goal, syntheses of new reference
particles that are sterically stabilized in an aqueous medium without any electrostatic
effect were studied under various experimental conditions.

It has been reported that the adsorption behavior of hydroxypropyl cellulose (HPC)
with a LCST depends significantly on the adsorption temperature [23]. In Fig. 6, the
molecular structure of HPC and the molecular weights of HPC-H, HPC-M, and HPC-
L are indicated. The maximum adsorption ðAmÞ of HPC at LCST is several times larger
than at room temperature. Furthermore, the high Am values obtained at the LCST are
maintained for a long period at room temperature, and the dense adsorption layer of HPC
shows a strong protective action against flocculation of the particles [24]. These results
suggest that the dense (or thick) adsorption layer of HPC plays a role in the synthesis of a
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FIG. 5 Zeta-potential versus pH curves of cell wall/solution interface. (*) Determined by the
maximum velocity of PSSNa lattices; (*) determined by the plane interface technique.

FIG. 6 Molecular structure of hydroxypropylcellulose (HPC). Molecular weights–HPC-H:

925,000; HPC-M: 303,000; HPC-L: 53,000.



new reference sample for determination of the zeta potential of other colloid systems.
Special attention has been paid to the synthesis of reference particles that are covered
with an HPC layer as densely as possible and display a zero zeta potential under a variety
of solution conditions.

Concerning the adsorption of HPC to the latex surface, it has been established that
this behavior is remarkably influenced by the surface nature of the original lattices; the
lower the surface charge density of the particles (i.e., the stronger the hydrophobic nature
of the surface), the higher the adsorption amount [25]. For the sake of clarity, Fig. 7 shows
adsorption isotherms of HPC-M on the three kinds of lattices (STL, STSL, and SAL-H) at
neutral pH. Latex STSL has a higher surface charge (�o ¼ �9:2 �C cm�2

Þ than STL, and
the charge consists entirely of sulfate groups. The charge density of latex SAL-H
(�o ¼ �18 �C cm�2

Þ is far higher than that of STSL, although it consists of acrylamide
groups and carboxyl groups. From Fig. 7, it is apparent that the higher the surface charge,
the lower the amount of adsorption. The same trend can be detected in Fig. 8, where the
amounts of K2S2O8 (KPS) used as an initiator in the latex polymerization are plotted
against the saturated amounts of adsorbed HPC for the respective latex surfaces. The
surface charge density (�oÞ becomes higher with increasing KPS concentration under the
same polymerization conditions.

The adsorption treatments were carried out as follows. The fresh polystyrene lattices
prepared by the Kotera–Furusawa–Takeda method [6] were treated with HPC-M (or -H
and -L) solutions (0.05–0.08 wt%) at the LCST (45–508C) for 2 h, and the amounts of
HPC adsorbed on the latex surfaces were determined calorimetrically from depletion of
the solution [26]. To complete the HPC adsorption, one portion of the dispersion was then
heated in an oil bath at 50–808C by rotating the adsorption tubes for another 20 h. After
that, the residual HPC remaining in the medium was completely removed by repeated
centrifugation–decantation–redispersion cycles.

In Fig. 9, the experimental results of the second adsorption (heating) process under
different regimes are indicated, where the residual amounts of HPC dissolved in each
solution are plotted against the duration of the heating process as the temperature is
raised to the various upper limits (50–808C) and subsequently reduced to room tempera-
ture (258C). As can be seen from Fig. 9, as the temperature is raised, the residual con-

228 Furusawa

FIG. 7 Adsorption isotherms of HPC-M on three different lattices (488C, pH 5–8). (*) STL
(�o ¼ �1:5 �C cm�2); (&) STSL (�o ¼ �9:2 �C cm�2); (~) SAL-H (�o ¼ �18:0 mC cm�2).



centration of HPC gradually decreases over time and attains final equilibrium values.
Furthermore, the final concentrations of HPC maintain the same values after the tem-
perature in each system is reduced to 258C. These results indicate that raising the medium
temperature contributes to a reduction in the concentration of HPC remaining in the
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FIG. 8 Relationship between the concentration of KPS and the saturated amount of HPC-M at the
LCST.

FIG. 9 Residual concentration of HPC-M (solid lines) and temperatures of the medium (dashed
lines) as a function of time elapsed during temperature raising and reducing. Heating temperature of

the medium: (*) 508C; (~) 608C; (*) 708C; (&) 808C. Latex sample: diameter 401 nm, �o ¼ 0:5 �C
cm�2.



solution and that the thick (or dense) adsorbed layers of HPC built up at elevated tem-
peratures are maintained on the latex surface after the temperatures are reduced to 258C.

Figure 10 shows the relationship between the zeta potentials and the adsorption
amounts of the HPC-coated lattices, which were removed from the adsorption vessels
after various time intervals during the heating process. It is apparent that the negative
�-potential value of the latex suspension decreases with increasing HPC adsorption
amounts and finally attains a real zero when the adsorption amount exceeds 3.0 mg
m�2 as seen in Fig. 10. Also, Fig. 9 indicates that such a high adsorption amount can
be achieved easily with the medium at a high temperature according to the solvency of the
medium; i.e., less solvency leads to greater adsorption on the latex surface. It is expected
that the adsorption layer of HPC formed at the high medium temperature is so dense that
the permittivity of the layer will be nearly zero and brings about a zero zeta-potential of
the composite [27].

Now, according to Eqs (3) and (5), the apparent electrophoretic velocity of the new
reference samples indicates directly the liquid flow velocity ðUref ¼ Uosm), because the
reference particles are suspended without any electrostatic effects. This fact allows us to
determine the Uel value of the unknown sample by substracting the mobility of the refer-
ence particles from the Uapp of the unknown sample at the same level, i.e.,

Uel ¼ UappðmaxÞ �Uref ðmaxÞ ð8Þ

Figure 11 shows examples of the electrophoretic mobility profiles obtained by using
the new reference sample and unknown sample (SM lattices) along the cell depth in a 10�3

M KCl solution. It is apparent that both profiles indicate parabolic curves and that the
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FIG. 10 Relationship between the zeta-potential of HPC-coated lattices and the amount of adsorp-

tion of HPC. Adsorption temperature: (*) 508C; (~) 608C; (*) 708C; (&) 808C. Latex sample:
diameter 380 nm, �o ¼ 0:6 �C cm�2.



curve for the new reference sample shows zero mobility at the two stationary levels.
Furthermore, the difference between the two apparent mobilities at the cell center agrees
with the velocity of the SM lattices at the stationary levels. All these results indicate that
the new reference sample synthesized here is suspended without any electrostatic effects
and serves as a good standard in the determination of the zeta potential of the other
colloid systems.

Figures 12 and 13 show the � values for amphoteric lattices and negative Agl sol
determined by using the new reference sample and the usual technique. It was found that
the zeta potential series determined by the two methods agree very well with each other
over a wide range of pH and KI concentrations.

For extensive application of the reference sample, the stability of the particles is
manifested in a few specific examples. In Fig. 14, the mobility of the reference sample
at the stationary level is plotted against pH and electrolyte concentration where each
sample has been incubated for 24 h at 258C. It is evident that, over the entire ranges,
all series show nearly zero mobility within experimental error and the zero mobility is
especially held in the case of the reference sample treated with HPC-M. These results
induce us to use the reference sample in many fields of colloid science and technology,
because the zeta potential in the new technique can be given at the maximum of the
parabolic velocity as a function of the cell depth. In that way, errors in determining the
zeta potential are minimized and the measurements of � are exact over wide fields of
colloid systems.

The real advantage of this new method may lie in the determination of the electrical
properties of a solid surface. According to Eq. (4), Uosm ð¼ Uref Þ ¼ �Uo=2 at h ¼ 0; i.e.,
from the apparent velocity of the new reference sample measured at the cell center, the zeta
potential of a cell wall can be directly determined from the Uo value. Figure 15 shows �
versus KCl concentration and pH curves of the cell wall measured directly with the usual
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FIG. 11 Electrophoretic mobility profile obtained by using the new reference sample (&) and an
unknown sample (*) in 10�3 M KCl at 258C.



plane interface technique and with our new technique using the electrically neutral sample.
As can be seen, the two zeta-potential series determined by the two methods agree very
well with each other. Our new methods will be more convenient than the conventional
plane interface technique or streaming potential measurements.

V. STANDARD REFERENCE MATERIAL FOR MOBILITY MEASUREMENT
BY ELECTROPHORETIC LIGHT SCATTERING

Over the past few years, electrophoretic light scattering (ELS) has largely replaced such
traditional techniques of mobility measurement as microelectrophoresis and moving-
boundary methods. ELS provides rapid, reproducible, and relevant mobility measure-
ments on dilute suspensions of colloids. Furthermore, an important feature of ELS is
that it can determine the mobility of very small particles, such as proteins, polyelectrolytes,
micelles, and liposomes. In spite of this, a continuing problem in the utilization of ELS,
particularly where quantitative information is required, is the lack of universally recog-
nized standards for interlaboratory comparison and calibration of the various commercial
instruments.

Tejedor-Tejedor and Anderson [28] first suggested phosphated geothite (�-FeOOH)
as a standard material for electrophoresis, and recent joint research supported by the
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FIG. 12 Determination of the zeta-potential of amphoteric lattices in 10�4 M KCl: (*) new
technique; (~) usual technique.



Department of Energy as part of the Ceramic Technology Project [29], and involving
researchers of four other university laboratories, suggested again that phosphated goethite
would serve as an absolute standard zeta potential and mobility measurement by ELS.
This standard reference material (SRM) is a positive electrophoretic mobility standard
containing 500 mg dm�3 microcrystalline goethite (�-FeOOH) and 100 mmol g�1 phos-
phate in 0.05 mol dm�3 sodium perchlorate electrolyte solution at pH 2.5. This SRM is
intended for the calibration and evaluation of ELS instruments and must be diluted prior
to use. A certified mobility value (2.53 �m cm V�1 s�1) was determined from a statistical
analysis of round robin data from five laboratories according to NIST guidelines. The
following is the summary of the joint work to recognize why this material would be
suitable as a reference for determination of electrophoretic mobility [17].

A. Synthesis Procedure for SRM (Microcrystal Goethite Suspension)

Microcrystalline goethite was synthesized by precipitation and aging of a hydrolyzed ferric
nitrate solution (final Fe/ON ¼2.9) in several batches according to the procedure of
Atkinson et al. [30]. The final aged precipitate was washed repeatedly with deionized
water, freeze dried and stored in an air-tight polyethylene bottle until needed. The powder
obtained from several batches yields a BET single-point surface area of 84	 3 m2 g�1. The
resulting particles were acicular with approximate dimensions of 60 nm � 20 nm as
determined from electron microscope images.

The SRM suspension was prepared in the following manner. Freeze-dried powder
(10 g) was dispersed in 2 L of 0.05 mol L�1 sodium perchlorate solution containing 100
mmol potassium dihydrogen phosphate per gram of powder at pH 2.5. This suspension
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FIG. 13 Determination of the zeta-potential of AgI sol in various KI concentrations: (*) new
technique; (~) usual technique.



was aged for 60 days and treated by ultrasonication during the first 10-day period.
Following aging, the suspension was diluted by a factor of 10 with 0.05 mol sodium
perchlorate solution, ultrasonicated, and aged for an additional 19 days. From this sus-
pension, 40 cm3 aliquots were transferred into high-density polyethylene bottles with a
unidisperse system and aged for 1 month. This final 500 mgL�1 goethite suspension con-
stituted the SRM, from which 10 mL aliquots were diluted with deionized water to a
volume of 100 mL prior to analysis. Smaller test suspensions were initially prepared from
the freeze-dried powder. In this case, the suspensions were made up at a solids concentra-
tion of 500 mg L�1, and either KNO3 or NaNO3 was used as supporting electrolyte. The
suspension pH was adjusted as required in the test samples.

B. Characterization and Aging Studies of SRM

The long-term mobility for orthophosphate goethite at pH 2.5 is shown in Fig. 16. This
suspension exhibited excellent stability with respect to mobility, pH, and visible appear-
ance over the 1-year period of this study. Also, scatter in the mobility measurements was
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FIG. 14 Electrophoretic mobilities at stationary level of the new reference samples treated by the

different HPC molecules: (a) electrophoretic mobilities versus KCl concentration curves; (b) electro-
phoretic mobilities versus pH curves. (*) HPC-H; (&) HPC-M; (~) HPC-L.



typically low, with only two out of 49 sets of test measurements exceeding a sample
standard deviation of �0:05 mm cm V�1 s�1. After an initial increase over the first 60
days of aging, the mobility reached a plateau value (2.4–2.5 mm cm V�1 s�1).

The stability of the pH 2.5 orthophosphated goethite (SRM) after dilution from the
500 mg dm�3 stock suspension is shown in Fig. 17. The mean and sample deviation of each
measurement set is plotted as a function of time up to 6 h following dilution. The suspen-
sion was hand shaken prior to each set of measurements, but otherwise untreated during
the period following the initial preparation. A linear regression of these data shows no
apparent trend. The slope is nearly equal to zero and the y-intercept value (2.54 mm cm
V�1 s�1) is virtually identical to the collective mean (2.53 �m cm V�1 s�1). Measurements
made on this suspension after 24 h yield a mean value of 2:50	 0:02 �m cm V�1 s�1. These
results clearly demonstrate that the prepared (diluted) SRM suspension is sufficiently
stable to provide a practical analysis window (approximately 1 day).

Figure 17 (inset) also shows a typical intensity-weighted mobility distribution as
measured by the Malvern ZetaSizer 111 instrument. Note that the signal-to-noise ratio
is quite large, while the full-width at half-height is about 0.3 �m cm V�1 s�1.
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FIG. 15 Zeta-potential versus KCl concentration (a) and pH (b) curves of the cell wall–solution

interface: (*) determined by maximum velocity of HPC-coated lattices; (~) determined by the plane
interface technique.



A further consideration in developing a suitable mobility standard is the effect of
temperature variations expected under normal ambient conditions. As shown in Fig.
18, a linear temperature dependence was found for the mobility of the SRM over the
range 18–288C. The mobility varied by only 002 �m cmn V�1 s�1 per 8C over this
range, and correlated well with the fluidity (1=�) dependence on temperature as pre-
dicted from Eq. (2).
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FIG. 16 Mobility of test batch (*) and SRM (*) as a function of aging time. Samples were aged
in the concentrated form and diluted by a factor of 10 for analysis.

FIG. 17 Mobility of SRM as a function of time following dilution from the stock suspension. Inset
shows a typical intensity-weighted mobility distribution for SRM measured on the Malvern

ZetaSizer III system.



C. Interlaboratories and Different Instrument Evaluation of SRM

In order to determine the reproducibility between different laboratories and instru-
ments, four groups along with NIST (using three well-established commercial instru-
ments) participated in round robin laboratory testing of the present SRM. The
participants, in addition to NIST, included the University of Florida (DELSA 440),
the University of Wisconsin (SYSTEM 3000), Pen-Kem Incorporated (SYSTEM 3000),
and Coulter Corporation (DELSA 440). Randomly selected sample suspensions were
sent to these laboratories with specific instructions for preparation and analysis within
a fixed time.

Figure 19 shows the entire set of mobility data from all participating laboratories,
including NIST, plotted versus bottle number. The dotted lines in this graph represent the
mean and the sample standard deviation. The certified mobility value and uncertainty of
the electrophoretic mobility for SRM have been determined as 2:53	 0:12 �m cm V�1 s�1.
As seen, the variation between laboratories and instruments was found not to be statis-
tically significant. This demonstrates that, if properly analyzed according to a specific set
of instructions under normal laboratory conditions, the SRM will generate consistent and
repeatable mobility values on the instruments employed in this study. Stability during
transport was also a consideration. Round robin results suggested that the transport of
samples does not present a serious problem. In order to test this conclusion further, several
samples used in the round robin were returned to NIST and reanalyzed in NIST. These
samples yielded mobility values within the certified uncertainty.

Perhaps the single most pervasive problem affecting mobility analysis is contam-
ination during sample preparation. This is particularly true of oxides where the surface
sites tend to form complexes with a variety of ionic solution species. Of particular
nuisance are sulfates, phosphates, and organic surfactants. Other contributing factors
are the relatively low concentration of solids and high specific surface area common to
colloidal suspensions; low levels of contaminants can have a relatively large impact on
particle mobility in these systems. The water source used in the cleaning and dilution of
suspensions should be deionized and not simply distilled. For an accurate measurement
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FIG. 18 Temperature dependence of mobility for SRM. Also shown is the fluidity of water (1=�Þ as
a function of temperature.



of SRM, glassware, pipettes, and pH electrodes must be thoroughly clean of potential
contaminants.

Preconditioning of the electrophoretic cell appears to reduce measurement variation
and drifting of values. The origin of this effect is not entirely known, and may involve an
equilibrium with the cell walls. In the case of the present SRM, the effect may be due to
deposition of the positively charged particles on the negatively charged walls. Regardless
of this, preconditioning with the sample for a short period just prior to analysis, followed
by a fresh introduction of sample, is the recommended procedure.

D. Protein and Polyelectrolyte as a Electrophoretic Mobility Standard

One of the features of ELS is that it determines the mobility of very small particles such
as proteins, polyelectrolytes, micelles, and liposomes. At present, definite standard sam-
ples are necessary to check the accuracy of the observed mobility. Protein or polyelec-
trolyte might be suitable for this purpose, because many values have been reported that
were measured by using the Tiselius electrophoretic instrument. In addition, reagents of
high purity are commercially available, and the mobility of protein and polyelectrolyte
can be measured by using an ELS instrument. On the other hand, in the case of
inorganic pigments, mobility fluctuates, depending on the methods of sample synthesis
and preparation. In addition, aggregation and sedimentation often occur during sample
preparation.

A comparison of the mobilities of three protein and polyelectrolyte systems is shown
in Table 4. The mobility of polyelectrolyte of small hydrodynamic radius was measured at
relatively low concentration and the results agreed well with reference values. The iso-
electric point of a protein was also measured and this agreed with the reference value.

In conclusion, some protein and polyelectrolyte systems might be suitable as electro-
phoretic mobility standards, especially in ELS.
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FIG. 19 Round robin results for each of five laboratories, including NIST homogeneity data,
plotted as mobility versus bottle number. The dotted lines represent the unweighted mean and

standard uncertainty for all measurements
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Sample
MW
(�103) Solvent
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a Measured by electrophoretic light scattering instrument.

E: electric field; Rh: hydrodynamic radius; RCA-BSA: reduced carboxyamidomethyl bovine serum albumin;

NaPSS: sodium poly(styrene sulfate).

Solvent 1: 1 mg/mL�1 sodium dodecyl sulfate, 10 mM sodium phosphate buffer (pH 7.0).

Solvent 2: 10 mM NaCl.

The uncertainty, �, is the standard deviation calculated from the results of a least squares fitting for a flow profile
with six data points.

Source: Ref. 31.
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Electrokinetic Phenomena of the Second
Kind
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STANISLAV S. DUKHIN New Jersey Institute of Technology, Newark, New Jersey

I. INTRODUCTION

Classical electrokinetic phenomena (electrokinetic phenomena of this first kind) are caused
by the electrical double layer existing at electrified interfaces. Both the velocity of liquid
along the charged immobile interface (electro-osmosis) and the velocity of a particle
mobile in liquid (electrophoresis) are functions of the surface potential and strength of
the external electric field.

According to Smoluchowski, at low voltage, the velocity of electrokinetic phenom-
ena is a linear function of the strength of the electric field. At larger voltage, deviation
from the Smoluchowski law can be considerable. However, the relative difference between
velocities that have been obtained experimentally and those calculated on the basis of the
Smoluchowski equation never exceed several units [1–3]. The situation changed essentially
during the last decade. New phenomena, called electrokinetic phenomena of the second
kind, were predicted theoretically and discovered experimentally [4–9].

The name highlights a new mechanism underlying these phenomena. If the standard
electrokinetic phenomena are caused by a charge of the usual (or primary) electrical
double layer, the new phenomena are caused by the secondary double layer, which arises
in strong electric fields behind the quasiequilibrium primary double layer and contains an
induced space charge. The large density and thickness of the induced charge create an
extremely high growth of velocities that exceed the velocities of earlier-known phenomena
by a factor of 10 or more. The new phenomena are specially pronounced for particles with
ion type of conductivity, although they are also intense for metals and other materials with
electron-type conductivity, and semiconductors with hole-type conductivity.

The secondary double layer appears to be due to concentration polarization. This
process plays an important role in the electrochemistry of colloids and especially in the
electrochemical macrokinetics of disperse systems [3] and polarization of membranes [10,
11]. However a large induced space charge behind the primary double layer and, as a
consequence, the new electrokinetic phenomena, may appear as a result of concentration
polarization only when certain surface and volume characteristics of contacting phases are
present. The necessary conditions are as follows: (1) electric current through the interface

241



provided by current carriers with the same sign of charge (ions, electrons, or holes);
(2) curved interface; (3) high conductivity of solid phase Ki in comparison with the con-
ductivity of liquid Ke; and (4) the strength of the electric field and particle size satisfying
the condition 2Ea � �cr, where �cr is some critical potential, the value of which depends
on the type of particle conductivity (it equals about 100 mV for an ion-exchange particle
and about 1.5 V for a particle with electron or hole-type conductivity), E is the applied
field strength, and a is the particle radius.

II. ELECTRO-OSMOSIS OF THE SECOND KIND

A. General Notion of Concentration Polarization of Flat Ideally Selective
Membrane

The theory of concentration polarization of a flat ion-exchange membrane was developed
for two cases: weak polarization at low electric field (sublimiting regime) and strong one at
high electric field (overlimiting regime).

1. Low Electric Field

The concentration polarization is maximum in the case of high or ideal selectivity of a
membrane. The electric current passing through an ideally selective membrane placed in
an aqueous solution of electrolyte is brought about only by the migration of counterions.
The transport properties of the membrane and the electrolyte solution are not identical,
therefore the continuity condition for cation and anion fluxes during the transition from
one medium to another cannot be satisfied only by means of their migration in the electric
field.

Electrolyte concentration decreases near the side of a membrane where counterions
enter it from electrolyte. The coions move in the opposite direction, away from the mem-
brane surface. This leads to a decrease in coion concentration because the withdrawal of
coions is not compensated for by their intake from the membrane. In low fields, electro-
neutrality is preserved. The decrease in counterion concentration is equal to the decrease in
coion concentration. This means that there is a diffusion flux from the electrolyte to the
membrane surface, and thus a diffusion layer is formed. The diffusion flux jD is propor-
tional to the decrease in concentration of �C and inversely proportional to the thickness
of the diffusion layer �, which, at low electric field, coincides with the thickness of the
region of concentration polarization L:

jD ¼ D�C=L ð1Þ

where D is the diffusion coefficient of ions (for simplification we suppose that diffusion
coefficients for the anion and cation coincide: Dþ

¼ D�
¼ DÞ.

The concentration decrease in the region of concentration polarization (Fig. 1, curve
1) may be described by the following expression [4], in which ~CC is the dimensionless
concentration, C=C0:

~CCðxÞ ¼ 1�
iðL� xÞ

2FDC0

ð2Þ

where i is the current density, x is the distance from the membrane surface, F is Faraday’s
constant, and C0 is the bulk concentration of electrolyte. The highest concentration
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decrease is �C ¼ C0. Therefore, the highest diffusion flux Eq. (1) is equal to jlimD ¼ DC0=L.
It is called the limiting diffusion flux.

Owing to concentration polarization, the growth of the electric field is accompanied
by a decrease in local conductivity. The increase in electric current then stops. This
phenomenon is known as the limiting current. One can show that the density of the
limiting current is equal to 2FjlimD or

ilim ¼
2FDC0

L
ð3Þ

The potential drop ~��ðxÞ ¼ F�ðxÞ=RT and the charge density ~��ðxÞ ¼ �ðxÞ=C0 in the
region of concentration polarization may be expressed as [4]

~��ðxÞ ¼ ln
CðxÞ

C0

¼ ln 1�
i

ilim

ðL� xÞ

L

� �
ð4Þ

~��ðxÞ ¼

i

ilim

� �2

1�
i

ilim

L� x

L

� �2

��1

L

 !4

ð5Þ

where R is the gas constant, T is the absolute temperature and ��1 ¼ ��1ðC0Þ is the
thickness of the electrical double layer (Debye length).

The expressions presented above are correct for the condition i < ilim (sublimiting
regime). One can see that if i ! ilim and x ! 0, the potential drop � and the charge density
� are close to infinity. This inaccuracy was eliminated by the theory of strong concentra-
tion polarization, which takes into account the deviation from electroneutrality. The
peculiarities of this deviation were analyzed for flat [10–13] and curved [4–7] interfaces.

2. High Electric Field

The main feature of the profiles of ion concentration at strong electric field [10–13] is that
one can distinguish three different regions (Fig. 1, curve 2). The first is a large region with
linear variation of ion concentration and local electroneutrality. This is the diffusion layer
(or the convective-diffusion layer, CDL, in the presence of the liquid flow) with thickness
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FIG. 1 Polarization of a flat ion-selective membrane at low (curves 1) and high (curves 2) electric
field.



�. The second region, absent at low voltage, is a region of approximately constant low
electrolyte concentration CS with thickness S0. Here, the concentration of counterions is
much higher than that of coions, which is very low. This is an induced space charge layer
(SCL) because it is not directly connected with the membrane surface. It is precisely this
charge that causes the electro-osmosis of the second kind. The third region is the quasi-
equilibrium electrical double layer (DL). Since the DL is very thin in comparison with the
thickness of the SCL and CDL, it is not shown in the figure.

At the opposite side of the membrane, the counterions come out of the ion-exchange
membrane and coions move to its surface. As a result, the electrolyte concentration
increases, the electroneutrality is preserved with quite high acuracy, and the space charge
region is absent.

Taking into account that the conductivity of the SCL is 100–1000 times lower than
the conductivity of the electrolyte [10–13] and the conductivity of a membrane is usually
high, the potential drop V on the membrane with three layers of concentration polariza-
tion (DL, SCL, and CDL) takes place mainly in the SCL. An increase in the electric field
leads to the growth of S0 and, as a result, V ! �, where � is the potential drop in the
SCL.

The formation of the SCL, the thickness of which increases with the growth of the
applied potential difference, reduces the thickness of the diffusion layer. At low voltage,
the thickness of the region of concentration polarization is equal to the thickness of the
diffusion layer L ¼ �, while at high voltage L ¼ S0 þ �. Thus, � < L. The thickness of the
DL, ��1, is usually considerably lower than the thickness of the diffusion layer, �, and can
be neglected in the presented evaluation. As a result, the current through the membrane in
a strong electric field preserves its diffusive nature and increases due to the growth of the
SCL S0 and the decrease in thickness of the diffusion layer � (Fig. 1):

i ¼
2FDC0

�
ð6Þ

For � < L, the current density satisfies the condititon i > ilim and this regime is called
overlimiting. It is exactly this regime in which the appearance of electrokinetic phenomena
of the second kind is possible.

The current growth caused by the emergence of the SCL for a flat membrane is not
very large. In the absence of additional factors (thermoconvection [14] or water dissocia-
tion [15, 16]), it makes several tens of percents [10–13]. Traditionally, the name ‘‘over-
limiting regime’’ combines all three factors mentioned above which lead to the growth of
current over ilim [Eq. (3)]. However, for electrokinetic phenomena of the second kind, only
the appearance of an induced space charge and the decrease in thickness of the diffusion
layer are important. Moreover, it will be shown below (Section V) that under conditions of
electrokinetic phenomena of the second kind the role of other factors diminishes.

The theory of concentration polarization of a flat ion-exchange membrane under the
overlimiting regime was developed numerically [10, 11] and analytically [12, 13]. The first
analytical description [12] was used by us to develop the theory of electro-osmosis of the
second kind near a curved interface [4–7]. However, due to rather complicated expressions
[12], the description of electro-osmotic velocity was also difficult. The present chapter
offers a simpler version of this theory, the correctness of which is proved with the help
of analytical theory [13] developed after the first publications on electro-osmosis of the
second kind [4–7].

The substantial simplification of the theory is possible under the condition
I ¼ i=ilim ¼ L=�� 1, when the region of an induced space charge is large and can be
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described in the following way. On the basis of numerical calculations [10, 11] and analy-
tical solution [13], we suppose that the concentration of coions is low and that the current
inside the SCL is provided only by counterions with concentration CsðxÞ

I ¼
i

ilim
¼

F2

RT
DCsðxÞEðxÞ

L

2FDC0

¼
1

2

FL

RT

CsðxÞ

C0

EðxÞ ð7Þ

where EðxÞ is the local value of the strength of the electric field. Simultaneously, the charge
density can be described by the Poisson equation:

d2�ðxÞ

dx2
¼
dEðxÞ

dx
¼ �

4�

"
FCsðxÞ ð8Þ

The equation for EðxÞ can be obtained as a combination of Eqs (7) and (8) as

F

RT

� �2

Eð ~xxÞ
dEð ~xxÞ

d ~xx
¼ �

I

��2
ð9Þ

where the normalized distance ~xx ¼ x=S0 is introduced, and the approximation L � S0,
correct for I � 1, is used. The solution of Eq. (9) is

FEðxÞ

RT

� �2

¼
2I

��2
ð1� xÞ þ const ð10Þ

where the constant can be obtained by the asymptotic method [13]. However, as the
analysis of a more accurate description of an electric field can show [13], the first term
on the right-hand side of Eq. (10) describes almost the whole region of the induced space
charge with 100% exactness. The inaccuracy appears only near the external boundary of
the SCL, x ¼ S0. Taking into account that the size of this nonexact region is about several
percent units of the thickness of the SCL, the constant in the first approximation can be
neglected (const=0). This allows one to simplify the description of the field and potential
distribution and obtain an expression for electro-osmosis of the second kind in a form
considerably simpler than it was done in Ref. 4. Thus, the strength of electric field can be
written:

FEð ~xxÞ

RT
¼
2
ffiffiffi
I

p

��1

ffiffiffiffiffiffiffiffiffiffiffi
1� ~xx

p
¼ E


ffiffiffiffiffiffiffiffiffiffiffi
1� ~xx

p
ð11Þ

and the potential drop as

~��ðxÞ ¼
F�ðxÞ

RT
¼ �i þ

ðx
0

EðxÞdx ¼ �i þ
4

3

ffiffiffi
I

p
S0

��1
ð1� ~xxÞ3=2 � 1
� �

¼ �i þ �


ð1� ~xxÞ3=2 � 1
� � ð12Þ

where �i is the constant of integration that plays the part of an internal potential of ion-
exchange material and depends on polarization processes [4]. The constants E
 and �
 are
given by

E

¼
2
ffiffiffi
I

p

��1
; �
 ¼

4

3

ffiffiffi
I

p
S0

��1

The full potential drop in the SCL is equal to

~�� ¼
F�

RT
¼ ~��ð1Þ � �i ¼

4

3

S3=2
0

��1�1=2
¼
4

3

�

��1
I3=2 ð13Þ
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The local value of the induced space charge can be defined according to Eqs (7) and (11) as

~CCsðxÞ ¼
CsðxÞ

C0

¼
I

1

2

FL

RT
EðxÞ

¼
��1

ffiffiffi
I

p

L
ffiffiffiffiffiffiffiffiffiffiffi
1� ~xx

p ¼
C


sffiffiffiffiffiffiffiffiffiffiffi
1� ~xx

p ð14Þ

with C

s ¼ ��1

ffiffiffi
I

p
=L. Due to the simplification in Eq. (10), the strength of the electric field,

the potential drop, and density of the induced space charge in Eqs (11), (12), and (14)
depend on certain parameters E
; �
;C


s and are functions of distance. This fact is very
important for the development of the theory of electro-osmosis of the second kind. It
allows one to obtain every function, necessary for this theory, in terms of angular and
distance multipliers and, as a result, to use the local flat approximation.

B. General Notion of Polarization of a Spherical Particle with Ionic
Conductivity

In the case of a flat membrane, the regions of concentration polarization near the opposite
sides of a membrane have different properties, although they depend on each other due to
the current through the membrane. The picture is much more complicated for a spherical
particle where the transition from the layer with decreasing electrolyte concentration to the
layer with an increasing one should be accomplished in the presence of electro-osmosis.

At low electric field, the pictures of concentration polarization for spherical con-
ductive and insulating particles are almost antisymmetrical [3]: the regions of decrease and
increase in electrolyte concentration each occupy half the particle surface. Similarly to the
flat ion-exchange membrane, the increase in electric field leads to the appearance of an
induced space charge near one side of a particle and, as a result, to the asymmetry of the
investigated processes.

The scheme of particle polarization under conditions of electro-osmosis of the sec-
ond kind is shown in Fig. 2. This is a cation-exchange particle for which the counterions
are cations. The particle is surrounded by the electrical DL (which cannot be shown on the
scale of the figure) and the region of concentration polarization that includes the induced
space layer ðS0Þ and diffusion layer (�Þ. Near the surface of the hemisphere 0 � � � �=2,
counterions move to and through the conductive particle. Here, the concentration of
electrolyte decreases and an induced space charge appears. Near the opposite part of
the particle surface, similarly to the membrane, the concentration of electrolyte increases
and deviation from electroneutrality is very small. Contrary to the polarization of a flat
membrane, near a conducting particle there are both the normal component of electric
field and the one that is tangential to the particle surface. The normal component provides
current through the particle and forms an induced space charge. The tangential compo-
nent affects the induced space charge and sets in motion not only the charge but also the
liquid where it exists. Hence, electro-osmosis of the second kind appears. Near the oppo-
site side of the particle (without induced space charge), the electro-osmotic flow caused by
the nonequilibrium electrical DL (electro-osmosis of the first kind or classical electro-
osmosis) exists.

The general picture of particle polarization is not only the result of the asymmetrical
appearance of an induced space charge but also the manifestation of asymmetrical hydro-
dynamic flow. The movement of liquid affects the thickness of the CDL. Earlier it has been
established that at weak concentration polarization the thickness of the CDL near the
spherical particle � is inversely proportional to the velocity of liquid [17–20]. Taking into
account that the velocity of electro-osmosis of the second kind near one side of a particle is
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considerably larger than the velocity of classical electro-osmosis near the opposite side, the
thickness of the CDL changes considerably along the particle surface (Fig. 2). In turn, the
change in � strongly affects the current density through the particle [Eq. (6)], resulting in
the change in induced space charge, distribution of electric field, etc.

The density and thickness of an induced space charge and, correspondingly, the
velocity of electrokinetic phenomena of the second kind grow when the strength of the
electric field and particle size increase because the potential drop in the region of concen-
tration polarization depends on these parameters. This can be shown by the simplest
qualitative analysis of potential drop ’AD in the particle with the region of concentration
polarization (between points A and D) and potential drop ’A0D0 in ‘‘free’’ electrolyte
(between points A0 and D0).

’AD ¼ ’AB þ ’BC þ ’CD ð15Þ

where ’AB is the potential drop across the region of concentration polarization with
increasing electrolyte concentration, ’BC is the potential drop across the section of a
particle, and ’CD is the potential drop across the region of concentration polarization
with decreasing electrolyte concentration, which includes the SCL and CDL.

Similarly to the potential drop in a membrane, ’CD is mainly defined by potential
drop � on the SCL. The potential drop ’AB in the region of the increased concentration of
electrolyte satisfies the condition ’AB  ’CD. Finally, the value of potential drop ’BC
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FIG. 2 Scheme of polarization of a spherical particle and potential distribution ’A0D0 ðxÞ in electro-
lyte and ’ADðxÞ across the granule under conditions of electro-osmosis of the second kind.



depends on the correlation between the conductivities of electrolyte Ke and particle Ki.
Under condition:

Ke  Ki ð16Þ

the potential drop ’BC is relatively small and Eq. (15) can be rewritten as

’AD ¼ ’CD � � ð17Þ

The potential drop ’A0D0 between points A0 and D0 located at the same distance from each
other as points A and D, i.e., at a distance approximately equal to 2a, is about ’AD and
equals 2aE because electric field E is homogeneous far from a particle:

’AD � ’A0D0 � 2aE ð18Þ

On comparison of Eqs (17) and (18), the conclusion is reached that

� � 2aE ð19Þ

The evaluation was carried out only for � ¼ 0 (see Fig. 2). Equation (18) shows the
maximum value of potential drop on the SCL, which decreases with the growth of angle �.
However, this evaluation is important because it demonstrates the role of particle size for
the potential drop on the SCL and is useful for the development of a relatively simple
theory of electrokinetic phenomena. As will be shown in the next section, this potential
drop plays the role of ‘‘electrokinetic’’ potential, similar to  potential in classical electro-
kinetic phenomena. However, the new ‘‘electrokinetic potential’’ � is independent of the
surface charge of the particle, typical for the classical electrokinetic phenomena and,
moreover, is a linear function of both particle size and strength of the external electric
field. Therefore, it can reach values which considerable exceed the  potential (e.g., for a ¼

50 mm and a ¼ 500 mm at E ¼ 20 V/cm, the new ‘‘electrokinetic potential’’ � reaches the
value of 200 and 2000 mV, respectively). This means that electrokinetic phenomena of the
second kind strongly depend on the particle size and can reach large velocities even at low
voltage.

It is necessary to stress that a small value of potential drop ’BC means that the
internal potential of ion-exchange particle �i [see Eq. (12)] under condition (16) is approxi-
mately constant. Thus, the condition (16) not only corresponds to the case when the
potential drop on the SCL is maximum but also allows one to simplify the model of
electro-osmosis of the second kind because @�i=@� � 0.

C. Local Flat Model of Electro-osmosis of the Second Kind

The theory of electrokinetic phenomena of the second kind was developed for a thin
polarization layer that satisfies the condition L  a [4–7]. This condition allows us to
use a local flat model that considerably simplifies the mathematical description of the
processes investigated. The velocity of electro-osmosis of the second kind can be obtained
on the basis of the Navier–Stokes’ equation:

�� ~VV ¼ �r�þ rp ð20Þ

where � is the liquid viscosity, ~VV is the liquid velocity, � is the charge density (in the
electrical DL for classical electro-osmosis and in the SCL for electro-osmosis of the second
kind), � is the potential distribution, and p is the pressure.

For a thin nonpolarized DL, the right-hand side of this equation can be reduced only
to the first term, equivalent to the well-known Smoluchowski equation for electro-osmosis,
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and can be used not only for the traditional electrical double layer but also for the SCL.
However, the process of polarization of the DL and the appearance of the SCL change the
pressure near the particle surface, leading to the appearance of a velocity component
related to this pressure that is absent in the Smoluchowski equation. The scheme deve-
loped earlier for the polarization of thin double layer [3, 18–20] can also be used to solve
the problem discussed. In order to obtain the distribution of pressure inside the polarized
layer, it is necessary to apply the divergence operator to Eq. (20) and use the equation of
contintuity of liquid flow r� ~VV ¼ 0. This procedure results in

�p ¼ �r� ð�r�Þ ð21Þ

Neglecting the tangential derivatives in comparison with the normal ones and inte-
grating this equation over the polarized layer (the SCL in the case investigated) allows us
to obtain the second term of Eq. (20) in the following form:

@

@�
pðxÞ ¼

1

2

@

@�
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As a result, the equation for electro-osmosis can be written as a sum of two terms:
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where ~xx ¼ x=a; ~VV� ¼ V�
4��a

"ðRT=FÞ2
. Both terms in Eq. (23) will be calculated indepen-

dently. With Eq. (12), the first term can be rewritten as
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After integration with the boundary conditions:
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@ ~xx
~VV�1ð ~xx ¼ 1Þ ¼ 0 and ~VV�1ð ~xx ¼ 0Þ ¼ 0 ð25Þ

the ‘‘Smoluchowski’’ component of velocity at ~xx ¼ 1 equals:
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Substitution of Eq. (12) into Eq. (23) leads to the differential equation:
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After integration with boundary conditions equivalent to conditions (25), the ‘‘pressure’’
component of electroosmotic velocity at ~xx ¼ 1 equals:

~VV�2ð ~xx ¼ 1Þ ¼ �
3

8
~��

@ ~��


@�
ð28Þ

One can see that the component of velocity caused by pressure has the same sign as
the ‘‘Smoluchowski’’ component. This result is similar to the polarization of nonconduct-
ing particles with large surface conductivity (regime of large Peclet numbers) when both
components of electro-osmotic velocity have the same sign and the pressure component is
rather large [21]. The coincidence of the directions of both electro-osmosis components
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can be proved by simple qualitative considerations. In the case of a cationite (cation-
exchange particle), the cations move along the line of the electric field and enter the
particle near the pole � ¼ 0. The pressure is maximum near this pole because d�=dx
reaches its maximum here and the pressure gradually decreases with the increase in �,
i.e., V�2 is positive. The counterions entering the space charge move partially inside the
particle and partially along its surface, i.e., in the direction of increasing �. Thus, the
Smoluchowski component of the electro-osmotic slip, i.e., V�1, V�1, is positive too. As a
result, the directions of both components coincide. Since the direction of liquid slip cor-
responds to increasing �, the direction of electrophoretic velocity corresponds to decreas-
ing � because the directions of electrophoresis and electro-osmotic slip are reversed. This
result is reasonable because it is shown that the negative particle (cationite) moves in the
direction opposite to the electric field.

Let us consider an anionite in an electric field of the same direction. The anions (in
this case, counterions) enter the field near the pole � ¼ � and produce a space charge in its
vicinity. Thus, the pressure is maximum near this pole and decreases with the decrease in �,
i.e., V�2 is negative. The anions move along the particle surface opposite to the electric
field, i.e., in the direction of decreasing �, so V�1 is negative. The directions of both
components coincide again. Since the direction of electrophoresis is opposite to the one
of electro-osmosis, the anionite particles move towards the external field. The anionite
particle, being a positively charged particle, moves along the lines of the electric field, in
agreement with the definition of the sign of the electric field, namely, that its direction is
the direction of motion of a positive charge.

The total electro-osmotic velocity is equal to the sum of Eqs (26) and (28):

~VV�ð ~xx ¼ 1Þ ¼ ~VV�1ð ~xx ¼ 1Þ þ ~VV�2ð ~xx ¼ 1Þ ¼ �
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Taking into account that the maximum potential drop in the region of the induced
space charge � is evaluated by Eq. (9) as 2aE, and the gradient of this potential along the
particle surface @�




a@� takes values between E and 2E, the conclusion can be reached that the
velocity [Eq. (29)] is between the two limiting values:
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To compare this result with the Smoluchowski expression, one should remember that
for a nonpolarized particle the maximum value of the potential gradient equals
@�


a@� �¼�=2 ¼
3
2E

		 . On the basis of this expression and Eq. (30), it can be concluded that
the ‘‘effective electrokinetic potential’’ eff of electro-osmosis of the second kind takes
values between:

5

6
� < eff <

5

3
� ð31Þ

Roughly speaking, the potential drop in the region of the induced space charge �
plays the role of electrokinetic potential. Thus, accounting for Eqs (19) and (31), the
velocity of electro-osmosis can be described by the expression V � effE, identical to the
one of Smoluchowski where

eff � � � 2Ea ð32Þ

Thus, the velocity of electro-osmosis of the second kind is proportional to particle
size a and squared electric field E2.
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Approximately the same value for the effective electrokinetic potential was obtained
in the first theory of electro-osmosis of the second kind [3]. However, as is seen from Eqs
(26) and (28), about two-thirds of this velocity is due to the induced space charge and the
other one-third is the result of the change in pressure caused by polarization processes. In
order to obtain a more exact value for the coefficient preceding � in Eq. (31), a very
complicated problem of potential distribution around particle should be solved.

For the purposes of simplification, only the velocity component caused by induced
space charge has been analyzed above. The two other components, created by the polar-
ized electrical DL and CDL are considerably smaller. As was shown in Ref. 3, the velocity
component caused by the SCL is higher than the other components under condition � >
250 mV or ~�� > 10. This condition is equivalent to condition � �  because the electro-
kinetic potential of different ionite particles  is about 50–100 mV.

It is necessary to stress that, although for derivation of Eq. (29) the condition Sð�Þ �
�ð�Þ was used, the numerical analysis of velocity under the opposite conditions showed that
Eq. (29) could also be used under condition Sð�Þ � �ð�Þ and even Sð�Þ < �ð�Þ with a high
degree of exactness. This is a result of the similarity between the Smoluchowski formula
and Eq. (29). With decrease in voltage, the effective potential eff turns smoothly into the
classical electrokinetic potential .

D. Potential Distribution Around an Ion-Exchange Particle Under
Conditions of Electro-osmosis of the Second Kind

The description of the potential distribution around a polarized particle requires solving
the system of equations (Poisson, Navier–Stokes, convective-diffusion equations) together
with a set of boundary conditions, and the equations of continuity of electrical and
hydrodynamic fluxes. These equations and conditions include not only all those factors
that are traditionally used to describe concentration polarization of nonconducting par-
ticles but also the strong deviation from electroneutrality behind the DL and the strongly
asymmetrical picture of hydrodynamic flow, considerably complicating the problem inves-
tigated. However, even in the case of nonconducting particles, theoretical difficulties in
developing the theory have been overcome with strong restrictions to generality, for
instance, by imposing conditions of small differentials of concentration or local electro-
neutrality which apply to weak fields [22–24] or strong fields with several additional
restrictions [21].

The attempts to obtain an analytical solution for potential distribution under con-
ditions of electro-osmosis of the second kind are still in development. However, even the
numerical solution of this problem is accompanied by serious difficulties and has been
achieved only for a definite set of parameters [25, 26].

The results of these calculations are shown in Fig. 3 (curves 1–3). The potential
distribution in the range of angles of 0 < � < 708 is close to � cos � and displays more
complicated dependencies for larger angles. Moreover, the deviations from this law for
different curves vary.

Despite the roughness of the approximation of potential distribution, it allows us to
evaluate the possible behavior of angular distribution of velocity [Eq. (27)] as

~VV�ð ~xx ¼ 1Þ � �
5

4
~��2 sin � cos � ð33Þ

This means that the maximum velocity of electro-osmosis of the second kind is
localized at � � 458 instead of � ¼ 908 found for classical electro-osmosis. The absolute
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value of velocity and the position of the maximum velocity are qualitatively in good
agreement with the experimental data (see Section II.E).

The change in sign of potential in Fig. 3 corresponds to the change in current
direction. With the growth of voltage, the distribution of potential becomes more asym-
metrical. This tendency is qualitatively similar to the distribution of the field near a
strongly polarized nonconducting particle [21].

E. Experimental Investigation of Electro-osmosis of the Second Kind

The existence of electro-osmosis of the second kind was proved by means of the direct
observation of liquid near a cationite (cation-exchange resin) surface [9]. The investigated
particle of cationite (granule) was placed on the bottom of an electrophoresis cell and fixed
by a special glass. After switching on the electric field, the liquid movement in the mer-
idional direction appeared. The visualization of the electro-osmotic movement of liquid
was undertaken using dispersed particles (with particle size equal to 2–5 mm) the electro-
migration velocity of which was considerably less than the velocity of the electro-osmotic
flow (the  potential of particles is considerably less than the potential drop in the granule
� ¼ 2Ea).

The observed picture of electro-osmotic flow depends on time. The investigated
processes can be divided into three qualitatively different stages: (I) initial stage, (II)
developed electro-osmosis; and (III) damping of electro-osmotic slip (Fig. 4a, b).

I. During the initial stage, the SCL and CDL are formed and the electro-osmotic
movement of liquid along the particle surface appears. The normal component of the
liquid stream provides continuity of liquid flow and, together with the tangential stream,
forms closed electro-osmotic whirls that cover approximately half the granule surface. An
asymmetrical picture is caused by the rough change in the tangential component of elec-
tro-osmotic velocity along the granule surface. Electro-osmosis of the second kind is many
times larger than the classical electro-osmosis that occurs near the opposite side of the
particle. Due to this considerable difference between electro-osmotic velocities, the stream-
lines of electro-osmotic flow of the second kind form the closed whirls.
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FIG. 3 Potential distribution around a particle at fixed potential drop ~�� between points A and D

(see Fig. 2): ~�� ¼ 50 (curves 1; 10Þ; 100 (curves 2; 20Þ; 200 (curves 3; 30Þ. Curves 1–3 correspond to
numerical calculations; curves 10�30 refer to the approximation ~��ð�Þ ¼ ~�� cos �.



II. Electro-osmotic movement develops in a few minutes after the beginning of the
process. The whirls cover approximately three-quarters of the particle surface. The velo-
city VðtÞ reaches the maximum value Vmax. The most probable mechanism of the growth
in velocity is water desalination near the side of the particle with an induced space charge,
improving condition (16). This statement was checked by the additional measurement of
electro-osmotic velocity under the special nonstationary regime [27]. The growth of velo-
city can be also explained by the nonstationarity of polarization and hydrodynamic flow.
A certain transition time is necessary to reach the stationary distribution of ions and
electric field inside and around the granule and to overcome the inertial properties of
liquid and reach its stationary velocity.

III. Damping of the electro-osmotic stream starts within 7–15 min. Diminution of
electro-osmotic velocity accompanies the extension of the region between whirls and the
decrease of whirl size. This is caused by the sedimentation of small particles to visualize the
flow on the granule [27], forming a layer of 2–5 mm during the above-mentioned time. The
sediment overflows the region of an induced space charge and, as a consequence of the
sediment electrical and hydrodynamic resistance, the electro-osmotic flow is damped.
Velocity damping depends on the concentration of small particles. At greater concentra-
tion, the negative influence of the sediment increases. However, for good visualization, the
concentration should be rather large. As a result, maximum measured velocities (Fig. 4b,
curves 1–3) are lower than the theoretically predicted ones (curves 10�30). At the same time,
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FIG. 4 (a) Three stages of electro-osmotic slip near a cation-exchange particle (KU-2-8). (b)

Experimental electro-osmotic velocity as a function of time, counted from the moment of switching
on of the electric field for C0 ¼ 10�4 mol/L, E ¼ 10 V/cm, and a ¼ 0:42 mm (curve 1), 0.33 mm
(curve 2), and 0.21 mm (curve 3). Curve 0 – electro-osmotic velocity according to Smoluchowski

theory for dimensionless electrokinetic potential ~ ¼ 2:5; curves 10�30: theoretical values according to
stationary model of electro-osmosis of the second kind. (Adapted from Ref. 9.)



they are considerably higher than the velocities (curve 0) calculated for electrokinetic
potential ~ � 2:5 (obtained by the measurement of electrophoretic mobility under condi-
tions that provide linear electrophoresis) according to the Smoluchowski theory.

The tangential component V� of electro-osmotic velocity for different granule sizes,
electric fields, and electrolyte concentrations is shown in Figs 5–7. The measurements were
carried out a distance from the granule surface x ¼ 50 mm and � � 308�508. Figure 5
shows that V� increases linearly with increase in the granule size, although the experi-
mental increase in velocity is slightly less than the theoretical one. It should be stressed
that such linear dependence V�ðaÞ exists at any time (e.g., at 30 or 120 s from the moment
of switching on the voltage). The experimental dependence on the strength of the electric
field V�ðEÞ also corroborates qualitatively the theoretical one (Fig. 6). The experimental
dependence V�ðEÞ has the form of V�ðEÞ � E2:2, whereas the theoretical dependence is
V�ðEÞ �

2. The experimental values agree well with theory if the strength of the electric field
satisfies the condition 2FEa=RT > 50. Unfortunately, the applicability of the theory at
stronger electric fields cannot be analyzed owing to a warming up of the electrolyte and
thermoconvection in the cell. Since the condition (16) can be strictly satisfied only at very
low concentration of electrolyte, the velocity of electro-osmosis strongly depends on elec-
trolyte concentration [9]. The measured velocities increase with the decrease in concentra-
tion and reach saturation at an electrolyte concentration of 10�5 � 10�6 mol/L. Such
saturation can be probably caused by two other factors (see Section V). One of them is
the expansion of the SCL and tangential drift of induced space charge that increases at low
electrolyte concentration. The second factor is water dissociation, which also decreases
with electrolyte concentration.

Figure 7 demonstrates the angular dependence of the electro-osmotic velocity. For
E ¼ 15 V/cm. the maximum of electro-osmotic velocity (curve 1) corresponds to the
maximum of the theoretical angular function sin � cos � (curve 1). For lower electric
field (curves 2 and 3), the maximum is at larger angles (608�708). Taking into account
that for classical electrokinetic phenomena electro-osmosis is maximum at 908, curves 2
and 3 presented in Fig. 7 show a tendency of transition between electro-osmosis of the
second kind and the classical one (see curve 3, calculated according to Smoluchowski’s
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FIG. 5 Electro-osmotic velocity as a function of the particle radius a for C0 ¼ 10�4 mol/L and E ¼

10 V/cm. Curve 1 – Veo;max; curve 2 – Veoðt ¼ 120 s); curve 3 – Veoðt ¼ 30 s); curve 10 – theoretical

dependence; curve 0 – electro-osmotic velocity according to Smoluchowski theory for dimensionless
electrokinetic potential ~ ¼ 2:5. (Adapted from Ref. 9.)



theory). For example, at E ¼ 5 V/cm the dimensionless potential drop on the particle
equals 15 and, according to Ref. 4, the component of velocity related to the DL and
CDL is about one-half of the component related to the SCL. As a result, experimental
curves 2 and 3, being a sum of all components, reach maximum between 458 and 908.

All the results described above were obtained for cation-exchange granules. The
velocity of electro-osmosis near anion-exchange granules is three to four times lower
than for cation-exchange ones. This effect can be explained by the influence of two pro-
cesses. The first of them is water dissociation caused by the catalytic influence of surface
groups or by creation of bipolar contact (Section V). The second one is caused by the
formation of a space charge by macroions of impurities that play the role of counterions
but have lower mobility than ions of the used electrolyte or form an immobile charged
sediment that diminishes the current through the particle and causes hydrodynamic resis-
tance to electro-osmotic flow of liquid.
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FIG. 6 Electro-osmotic velocity as a function of electric field strength for C0 ¼ 10�4 mol/L: a ¼

0:31 mm (curve 1); 0.28 mm (curve 2); 0.26 mm (curve 3). Curve 10 – theoretical dependence for a ¼

0:31 mm; curve 0 – electro-osmotic velocity according to Smoluchowski theory for dimensionless
electrokinetic potential ~ ¼ 2:5. (Adapted from Ref. 9.)

FIG. 7 Tangential component of electro-osmotic velocity as a function of angle for a ¼ 0:42 mm
and C0 ¼ 10�4 mol/L at E ¼ 15 V/cm (curves 1; 10Þ; E ¼ 10 V/cm (curves 2; 20Þ and E ¼ 5 V/cm
(curves 3; 30Þ. 1–3 – experimental curves; 10; 20 – theoretical curve for electro-osmosis of the second
kind, and 30 – theoretical curve calculated according to Smoluchowski theory for ~ ¼ 2:5. (Adapted
from Refs. 9 and 25.)



III. ELECTROPHORESIS OF THE SECOND KIND

When a particle is suspended in an electrolyte, the electro-osmotic movement of liquid is
transmitted to the particle. This results in the appearance of electrophoresis independently
of its nature: either classical electrophoresis or electrophoresis of the second kind.
However, each type of electrophoresis is closely related to the peculiarities of electro-
osmosis causing the movement of a suspended particle. In the particular case of
electrophoresis of the second kind, its velocity should be defined in terms of effective
electrokinetic potential, eff ¼ 2Ea. This means that the most interesting results can be
obtained for large particles, when the measurement of electrophoresis of the second kind is
complicated by rapid particle sedimentation. Indeed, because of this obstacle, electro-
phoresis of the second kind was not discovered earlier. Since the traditional scheme of
an electrophoretic cell was not suitable for large particles, several new methods were
proposed [8, 28].

Electrophoresis of the second kind was also called ‘‘superfast electrophoresis’’ to
demonstrate that its velocity considerably exceeds that of the classical one.

A. Electrophoresis of Ion-Exchange Particles and Fibers

Generally, the electrophoretic velocity can be obtained by integration of electro-osmotic
velocity around the particle. The expression for linear electrophoresis takes the following
form:

~VVef ¼
4

3�

ð�
0

~VVeoð�Þ sin �d� ð34Þ

We will also use this expression to describe electrophoresis of the second kind. However, it
is necessary to stress that, due to another angle distribution of hydrodynamic flow, the
coefficient before the integral can differ a little.

In the investigated case of electrokinetic phenomena of the second kind only the
evaluation of electro-osmotic velocity [Eq. (33)] for the angles 0 < � < 708 is available.
However, taking into account that the velocity for this range of angles is maximum and
the velocity of electro-osmosis near the opposite side of the particle is negligibly small, we
can evaluate the velocity of electrophoresis as
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As is seen from Fig. 3 for the numerical calculation of potential distribution and
from Fig. 7 for the experimental velocity of electro-osmosis, the angular dependence
changes with the field. This results in the appearance of an additional multiplier in the
expression for the velocity of electrophoresis:

~VVef � �
5

9�
~��2f ð ~��Þ ð36Þ

Thus, the velocity of electrophoresis differs from the squared function of the strength
of the electric field. Due to the enlargement of the region of electro-osmosis of the second
kind (Figs 3 and 7), it can be claimed that the velocity of electrophoresis for this range of
field should increase as

~VVef �
~��2þk

ð37Þ
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where k > 0. However, at larger electric fields, the relative role of the tangential processes
increases (Section V), leading to slower growth in the thickness of the induced space
charge and, correspondingly, slower growth in velocity. This means that with the growth
of applied voltage, the parameter k not only can decrease, but also even change its sign.

Figure 8 shows the electrophoretic velocity of different cation and anion exchan-
gers (mean diameter of 750 mm) as a function of the strength of the external field [8].
The cation-exchange particles move towards the anode and the anion-exchange particles
move towards the cathode. When gradients are in the range 75–300 V/cm, the absolute
values of the electrophoretic velocity of different ion-exchanger particles considerably
exceed the velocity of classical electrophoresis. The difference between various plots of
VðEÞ is due to the disparity in the conductivity of the particles. For example, the
conductivity of particles of KU-2-8 is higher than the conductivity of those that corre-
spond to KB-4. The shape of the studied particles also plays an important part. For
instance, the EDE-10-P particles have a plate-like shape, whereas the AB-17 particles are
spherical. The smaller hydrodynamic resistance of the former is responsible for electro-
phoretic velocity higher than that of the latter. It can be seen that the experimental
values (curves 1–5) are lower than the theoretical ones (curve 10, 100). The cause of the
discrepancy will be discussed below.

A detailed investigation of the dependence of electrophoretic velocity on the par-
ticle size and voltage was carried out [8] for particles of KU-2-8, which have high
conductivity and selectivity and satisfy the conditions of electrokinetic phenomena of
the second kind better than other ion exchangers. The data for electrophoretic mobility
as a plot of log U ¼ logðV=EÞ against log E are shown in Fig. 9. It is seen that the small
particles ð1�10 mm) move with almost the same mobility when the field strength is below
20 V/cm. In this range of the field strength and particle size, the electrophoresis follows
the classical patter. When the external field increases, the larger particles begin to move
faster. For smaller particles, a higher E is required for electrophoresis of the second
kind. This correlates with the condition according to which electrokinetic phenomena of
the second kind occur when the potential drop across the space charge region reaches
100–200 mV, i.e., when the effective electrokinetic potential eff becomes higher than the
‘‘classical’’  potential.
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FIG. 8 Electrophoretic velocity as a function of electric field strength for different types of parti-

cles: cation exchangers KU-2-8 (curve 1) and KB-4 (curve 2); anion exchangers AN-1 (curve 3), AB-
17 (curve 4), and EDE-10P (curve 5); 2a ¼ 750 mm. Curves 0; 00 – electrophoretic velocity according
to Smoluchowski theory for ~ ¼ 2:5 and ~ ¼ �2:5; 1; 10 – theoretical curves for electrophoresis of the
second kind for cation and anion exchangers with ideal selectivity. (Adapted from Refs. 8 and 25.)



For particles with diameters 2a ¼ 10�500 mm in fields of 25�200 V/cm, the depen-
dences UðEÞ are close to linear with almost the same slope (about 458), demonstrating the
second-order dependence of electrophoretic velocity on the external field. For larger fields
ð200�1000 V/cm), the curve reaches saturation. As a consequence, the first-order depen-
dence of electrophoretic velocity on the voltage occurs. This could be explained by the
negative value of parameter k in Eq. (37), because the tangential drift of charge becomes
important and the particles move in the regime of large Reynolds numbers (Section V).
Both factors cause a decrease in velocity.

Similar experimental investigations were also carried out for ion exchange fibers [8].
The trends for cylindrically shaped particles are similar to those for spherical particles. In
weak electric field, the mobility of fibers is almost independent of voltage, while with the
increase in applied voltage the electrophoretic mobility starts to rise. For particles and
fibers with the same size in the direction of the field (diameter of spherical particles and
length of fibers), the slope of the curves and the value of electrophoretic mobility are
almost equal. The measurement for nonconducting fibers showed that their electro-
phoretic mobility at high electric field is lower by a factor of several tens than that for
conducting fibers. Moreover, their velocity is independent of the fiber length.

The occurrence of electrophoresis of the second kind is associated with the high
conductivity of the particles [Eq. (16)]. The conductivity of ion-exchange resins depends
on the degree of cross-linkage, the temperature, the type of electrolyte solution, and other
factors. Particularly interesting is the strong dependence of the conductivity on pH that
affects the dissociation of carboxyl groups and, as a result, changes not only the conductiv-
ity but also the sign of ions that provide current through the ion exchanger [29]. This allows
one to undertake analysis of the role of condition (16) the results of which, obtained in Ref.
30, are shown in Fig. 10. The theoretical curve 20 in Fig. 10 was calculated according to
expression (56), evaluating the role of nonzero potential drop in a particle caused by its finite
internal electrical resistance. For numerical calculations, the experimental dependence of
internal conductivity of ion-exchange particle KB-4 on pH [29] was used. As for KU–2-8, it
is known that its conductivity is almost constant over a rather large pH interval that is
reflected by curve 1. Unfortunately, experimental data for its internal conductivity at very
low and high pH are unknown and therefore a theoretical curve cannot be drawn.
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FIG. 9 Electrophoretic mobility as a function of electric field strength for different sizes of particles
KU-2-8: 2a ¼ 1 mm (curve 1); 10 mm (curve 2); 50 mm (curve 3); 100 mm (curves 4; 40Þ; 200 mm (curves

5; 50Þ; 500 mm (curves 6; 60Þ. Curves 1–6: experimental, and 40�60: theoretical dependences. (Adapted
from Refs. 8 and 25.)



To obtain a general notion of the difference between the velocities of electrokinetic
phenomena of the second kind and the classical velocities, it is useful to show the obtained
experimental results for electrophoresis and electro-osmosis in the same figure and com-
pare them with Smoluchowski’s velocity for  potential, measured at low voltage (Fig. 11).
As one can see, experimental (curves 1 and 2) and theoretical (curves 10 and 20) values of
velocity for electrokinetic phenomena of the second kind almost coincide at low voltage.
The difference between the classical velocity curves 100 and 200) and the velocity of electro-
kinetic phenomena of the second kind ð1; 10 or 2; 20Þ is small at low voltage and grows with
its increase. At 1000 V/cm, this difference reaches almost three orders of magnitude
according to theoretical predictions (curves 20 and 200) and about two orders according
to experimental measurements (curve 2) and the theoretical approximation of
Smoluchowski’s law for high voltage (curve 200).
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FIG. 10 Normalized electrophoretic mobility of particles as a function of pH for cation exchangers

KU-2-8 (curve 1) and KB-4 (curves 2; 20Þ at 2a ¼ 750 mm and E ¼ 150 V/cm. Curve 1, 2 – experi-
ment; curve 2 – theory. (Adapted from Refs. 8 and 30.)

FIG. 11 Electro-osmotic (curves 1; 10; 100Þ and electrophoretic (curves 2; 20; 200Þ velocities for cation
exchanger KU-2-8 placed in distilled water at 2a ¼ 600 mm. Curves 1; 2 – experimental values; curves
10; 20 – theoretical ones for electrokinetic phenomena of the second kind. Cuve 100, 200 – linear
velocities of electro-osmosis at � ¼ �=2 and electrophoresis, calculated for ~ ¼ 2:5. (Adapted from

Ref. 25.)



Since the theoretical evaluation of velocity is based on the use of very approximated
distribution of electric field around a particle, the deviation between curves 2 and 20 is rather
large. In addition, the deviation can be explained by the influence of numerous factors that
accompany polarization of a particle in a strong electric field (Section V), particularly by
the negative action of tangential processes and by braking of particles caused by the
influence of walls and the large Reynolds number.

B. Electrophoresis of the Second Kind for Particles with Electron and
Hole-Types of Conductivity

The theory of polarization processes and electrokinetic phenomena of the second kind
for both metallic and semiconducting (with hole-type conductivity) particles is closely
linked to the main features of polarization processes for ion-exchange particles. In all
cases these are unipolar conductors. The current through an ionite particle is ensured by
ions with a charge opposite to that of ionized surface groups of the ionite material (i.e.,
by counterions). In metallic or other particles (e.g., carbon) with electron type of con-
ductivity the current is caused by the electromigration of electrons. In semiconducting
particles, the current is caused by the electromigration of holes. Both electron and hole
types of conductivity are related to oxidation/reduction reactions on the particle surface
that complicate concentration polarization and change the properties of electrokinetic
phenomena.

In spite of the similarity of polarization processes that take place for ion exchangers
and metallic or semiconducting particles, there are also essential distinctions between them
since induced space charges of opposite sign can arise on opposite sides of the particles [5].
The sign of the space charge coincides with the sign of the ions transported from the
electrolyte to the conducting particle surface. However, on the opposite sides of a metal or
semiconducting particle, different electrochemical reactions take place; as a consequence,
ions of opposite sign are transported to these surfaces. Close to the part of the surface
where electron transport is accomplished from the metal to the cations continually trans-
ported from the volume of electrolyte, a cationic space charge appears. An anionic space
charge is formed near the part of the surface where the anion draws of electrons from the
metal surface. Two regions of the induced space charge are also formed inside the particle.
The sign of these charges is opposite to the sign of induced space charges outside of the
particle. The influence of an external electric field on the induced space charges localized
near the particle surface leads to the appearance of electro-osmosis and electrophoresis of
the second kind.

Generally, the magnitude of the induced space charge formed on the opposite sides
of the particle and electro-osmosis provoked by these charges are not symmetrical because
of a number of reasons. One of such reasons is the different type of ions that are oxidized
or reduced on the particle surface, the presence of different admixtures in solution which
affect the oxidation–reduction potential of ions, and the process of dissociation of water,
as well as the surface properties of metallic or carbon particles, etc. All factors modify the
density and the thickness of induced space charges.

The asymmetry of cationic and anionic induced space charges leads to asymmetry in
the electro-osmotic slip: higher induced space charge causes more intensive hydrodynamic
flow. Indeed, the essential asymmetry of the electro-osmotic flow near the opposite sides of
particles suspended in electrolyte allows the movement of particles in electric field. Full
symmetry would have led to mutual compensation of forces affecting the particles and,
consequently, to the immobility of the particle. On the other hand, the considerable
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predominance in the magnitude of the induced space charge of one sign over the induced
charge of the opposite sign leads to the prevalence of forces, which act on the particle from
one of its sides. This determines the direction and the velocity of the particle movement in
strong electric fields.

Electrokinetic phenomena of the second kind require the flow of electric current
through the particles. Through an ion-exchanger particle, current flows at arbitrarialy
small voltage. For particles with electron-type conductivity, electric current through a
particle at low voltage is impossible [31, 32]. It can be realized only at a high voltage
sufficient for electrochemical oxidation–reduction reactions at the particle/solution
interface. Every ion that transfers its charge to the particle surface has its equilibrium
(cathode or anode) potential �c and �a. Current flows through the metallic particle–
solution system only if the potential drop at the interface � exceeds the sum of the two
potential drops �a and �c. This sum is called the voltage of decomposition of the
electrolyte, i.e., �d ¼ �c þ�a. For example, the decomposition voltage of water is
1.23 V.

Moreover, a current should flow along the surface of the particle. Taking into
account that the angular dependence of potential drop on the polarized layer is close to
cos � (Fig. 3), the necessary condition of current at a given angle � is

� cos � � �d ð38Þ

A similar condition was found for polarization processes in period fields [33].
Because a portion of the total potential drop on metallic particles is used for decomposi-
tion of the electrolyte, these materials undergo electrophoresis of the second kind at higher
voltages than those for ion-exchange particles, and their velocity in the first case should be
lower than in the second one by a factor ð2Ea��dÞ

2=ð2EaÞ2. Thus, if the velocity of
electrophoresis of ion-type conducting particles in strong electric fields is described by
Eqs. (36 and 37), the electrophoretic velocity of particles with electron-type conductivity
can be roughly estimated by

~VVef �
5

9�
ð ~��� ~��dÞ

2f ð ~��Þ ð39Þ

This equation is valid when an induced space charge is formed only near one side of
a particle. For electronic conducting particles, the regions of concentration polarization
near the opposite side of a particle contain an induced space charge of the opposite sign.
As mentioned above, this leads to electro-osmotic flow in the opposite direction and
partial compensation of the forces affecting the particle suspended in the electrolyte. As
a result, the electrophoretic velocity of an electron-conducting particle is not only smaller
than the velocity of an ion-conducting particle but also smaller than the velocity, calcu-
lated according to Eq. (39). To analyze the extent of this decrease, it was supposed [28, 34]
that the velocities of electro-osmosis near opposite sides of a particle are related to certain
potentials �1;2, the sum of which �1 þ�2 is equal to ~��� ~��d. At f1ð�Þ � f2ð�Þ � 1, the

velocity of electrophoresis can be evaluated as ~VVef �
Ð�
0

( ~VVeo1 �
~VVeo2Þ sin �d� � ð�2

1 ��2
2Þ,

or by introducing the parameter � ¼ �1=ð�1 þ�2Þ, as

~VVef � ð���dÞ
2
ð2� � 1Þ ð40Þ

Thus, for the antisymmetric picture ð� ¼ 1=2Þ the velocity is equal to zero. When an
induced space charge is formed only near one side of a particle � ¼ 1Þ, the expression
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for electrophoretic velocity corresponds to Eq. (39). For 1=2 < � < 1, the velocity takes
intermediate values and finally, at � < 1=2, the velocity changes its sign.

An optimum case of the manifestation of such asymmetry could be the direct inves-
tigation of electro-osmosis of the second kind. However, as is shown above, the study of
electrokinetic phenomena of the second kind for metallic or semiconductive particles can
be performed only in much stronger electric fields than those required for ion-exchange
particles. The method developed for the visualization of electro-osmotic flow [9] cannot be
used to study electro-osmosis due to intensive thermoconvection in a cell.

The experimental investigation of electrophoresis of the second kind was under-
taken for a particle with both electron-type [28, 34] and hole-type [35] conductivities.
Several experimental curves from Refs 28 and 34 are shown in Fig. 12. The electro-
phoretic velocity of metallic (Al/Mg alloy) and activated carbon particles substantially
exceeds the electrophoretic velocities expected for nonconducting particles, although it is
lower than the velocity of an ionite particle. According to our model, this is due to the
influence of the appearance of an induced space charge near the opposite side of the
particle. In the case of an activated carbon particle, a certain decrease in velocity can be
caused by the porosity of the particle, which leads to additional ion-type conductivity
and creates the possibility of transport of both anions and cations through the particle.
As a result, the induced space charge and, correspondingly, the velocity of electrophor-
esis decrease. Curve 5 for � ¼ 3=5 demonstrates the possible values of particle velocity
according to the theoretical conception.

The upward curvature that can be seen in Fig. 12 indicates that the electrophoretic
velocities of different particles are proportional to the value of the electric field raised to a
power larger than 1 but lower than 2. Taking into account that the velocities obtained are
considerably higher than the possible values of linear velocity, it can be suggested that
these rather large values are caused by the induced space charge. More detailed analysis of
these curves is impossible because of the nonsphericity of the particles (Al/Mg alloy is fiber
shaped, while graphite particles are plate-like) and unknown distribution of charges near
the opposite sides of the particles, which strongly depend on reactions on the particle
surface.
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FIG. 12 Electrophoretic velocity as a function of electric field strength for a cationite particle KU-
2-8 with size 2a ¼ 400 mm (curve 1); graphite particles with size 2a ¼ 400 mm (curve 2); Al/Mg alloy
with size 2a ¼ 300�500 mm (curve 3); activated carbon particles with size 2a ¼ 350�450 mm (curve 4).

The measurements were carried out in distilled water. Curve 5 shows theoretical evaluation of
velocity for � ¼ 4=5. (Adapted from Refs. 8 and 34.)



IV. UNLIMITED GROWTH OF CURRENT UNDER CONDITIONS OF
ELECTRO-OSMOSIS OF THE SECOND KIND

As mentioned above (Section II), electrokinetic phenomena exist due to the appearance of
the induced space layer that decreases the thickness of the diffusion layer, thus causing the
growth of current over its limiting value. Another factor, important for the growth of
current, is a decrease in thickness of the diffusion layer caused by hydrodynamic flow [36].
The mutual influence of both factors intensifies the current through a flat ion-selective
membrane several times [37] and leads to the strong growth of current under conditions of
electro-osmosis of the second kind near a spherical particle [4] or an ion-exchange mem-
brane with heterogeneous conductivity [38–41]. The latter effect was called ‘‘disappearance
of phenomenon of limiting current’’ [4, 7].

The explanation of the phenomenon is very simple. Under conditions of electro-
osmosis of the second kind, the velocity of liquid movement V is proportional to the
square of the electric field strength E2. Taking into account that the thickness of the
CDL near a spherical particle depends on the Peclet number Pe ¼ aV=D or the liquid
velocity V [17–20] as � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
aD=V

p
, one can see that electro-osmosis of the second kind

reduces the thickness of CDL as E�1:

� �
1

E
ð41Þ

Current through a spherical particle is related to the process of polarization and
preserves its diffusion nature similarly to current through a flat interface. However, the
thickness of the CDL [Eq. (41)] decreases, causing the growth of current. Considering Eqs
(6) and (41) it is clear that in the case of a spherical surface the current density is a linear
function of the applied field:

i ¼
2FDC0

�
� E ð42Þ

Thus, a linear rapid growth of current for a spherical interface occurs instead of the
rather small overlimiting current for a flat one. Similar results are possible for a pair of
spherical [7, 42, 43] or cylindrical [43, 44] particles and for a flat ion-selective membrane
with heterogeneous conductivity [38–41].

It is necessary to stress that Eq. (41) was obtained for weak concentration polariza-
tion, when the angular distribution of velocity is close to sinusoidal. In our more compli-
cated case, Eq. (41) describes only a qualitative dependence of current on electric field
strength.

A. Current Through Two Spherical Particles

A special scheme for an experimental cell has been developed to investigate the concen-
tration polarization between two curved surfaces where nonhomogeneity of the electric
field is caused by the geometry of intersurface space [35, 36]. The cell is connected to the
source of current in the regime of desalination in the central chamber between ion-selective
granules (Fig. 13a). For maximum manifestation of concentration polarization and elec-
tro-osmosis of the second kind, the electrode chambers should be filled with an electrolyte
of high conductivity, whereas in the central chamber it is necessary to use an electrolyte
with low conductivity. Under such conditions, the potential drop in the electrode cham-
bers can be neglected. Due to the high conductivity of the ion-exchange material, the
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potential drop in the granules can also be ignored. Thus, the potential drop �0 between the
electrodes takes place totally in the space between the two granules. Hence, a theoretical
analysis of polarization related to the intergranule region can be undertaken. The potential
distribution in the discussed case is simpler than in the case of a single particle (Section II)
because it takes place in a closed space and the analysis of polarization should be carried
out only at one side of each granule.

The potential drop �0 is identical between each symmetrical point on the surface
of the granules (Fig. 13b). However, with the increase of angle �, the distance between
symmetrical points and, correspondingly, the resistance of the liquid grow. As a result,
the current density changes along the surface of the granule from its maximum value on
the line connecting the centers of the granules to zero far from this line. At high
voltage, the induced charge layer appears and the potential drop � on this layer in
an angular function. Thus, there appear the induced space charge and tangential electric
field that cause electro-osmosis of the second kind. If the distance between granules is
much less than their radius, the strength of the electric field behind the boundaries of
the diffusion layer [with thickness �ð�Þ and Sð�  �ð�Þ� can be evaluated as the ratio
between �0 � 2�ð�Þ and hð�Þ � 2�ð�Þ. Expressing the intensity of current outside the
diffusion layers in these terms and representing the current density as a limiting current
for given �ð�Þ, we obtain the following formula for the angular dependence of the
potential drop:

~��ð�Þ ¼
~��0
2
þ 1�

hð�Þ

2�ð�Þ
ð43Þ
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FIG. 13 (a) Scheme of experimental cell for measurement of current through a pair of ion-

exchange granules; closed circles show electro-osmotic flow of liquid. (b) Scheme of ion fluxes and
potential drop between a pair of ion-exchange granules.



where

hð�Þ ¼ h0 þ 2að1� cos �Þ; ~��0 ¼
F�0
RT

ð44Þ

The angle dependence of the electro-osmotic velocity of the second kind is obtained
[7] on the basis of Eq. (29):

V � �ð�Þ
@��Þ

@�
�

m

2

D ~��0
�

sin � ð45Þ

under the restrictions:

hð�Þ

�ð�Þ
 ~��0;

@

@�
ln �ð�Þ 

@

@�
ln hð�Þ ð46Þ

A solution of the convection–diffusion equation [7] shows that the electro-osmotic
mixing of liquid between granules determines the thickness of the CDL and the density of
current as

� ¼
10a

~��0
and i ¼

2FD0C0

10a
~��0 ð47Þ

Thus, the density of current is proportional to the value of applied voltage �0. In the
case when the thickness ðdÞ of walls that limit the electrode chamber is small ðd  aÞ, the
walls do not affect electro-osmosis. Consequently, the current can be calculated as

I � iSg ð48Þ

where Sg ¼ 2�a2 is half the surface of a spherical particle.
The experimental measurements of current were carried out for different combina-

tions of flat and spherical interfaces (membrane/membrane; membrane/granule; granule/
granule). The scheme of the experimental cell with flat and spherical interfaces was similar
to the one presented in Fig. 13a with flat membranes replacing one or both granules. The
mathematical description of the processes in the cell with a granule and a membrane is
quite complicated. While in the case of two granules every granule is responsible for the
structure of its own CDL, in the case of a granule and a membrane, the electro-osmotic
flow of the granule affects the CDL of the membrane. Due to the peculiarities of the
electro-osmotic flow between a granule and a membrane, the thickness of the CDL of the
membrane noticeably changes along its surface [35], and its average value considerably
exceeds the thickness of the CDL of the granule. The area of the membrane surface was 10
times larger than the area of the granule surface. This allowed one to analyze the 10-fold
difference between the density of current through the curved and flat surfaces.

The measured values of current are shown in Fig. 14. The current through two
membranes (curve 1) is quite close to the theoretical value (curve 10). Other things being
equal, the current through two granules (curve 4 in Fig. 14) is considerably higher than the
one through two membranes (curve 1). Nevertheless, the values of current are lower than
they are supposed to be according to the theoretical prediction (curve 40) based on Eq.
(48). This discrepancy can be explained by the action of two factors: the property of the
anion-selective material and the peculiarity of the experimental cell.

The first factor is related to the difference between polarization of cation- and anion-
selective materials: the velocity of electro-osmosis of anion-exchange particles is consider-
ably lower than in cation exchangers (Section II). Thus, the thickness of the CDL is larger
and the possible density of current for an anion-exchange granule is lower than the density
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for the cation exchanger. As a result, this limits the measured current. The calculations
with account of the actual velocity for an anion-exchange particle are shown as curve 400.

The second factor is the deterioration of liquid movement caused by the special tubes
for fixation of particles (Fig. 13a). As a result, the electro-osmotic flow cannot reduce the
thickness of the CDL in the region which becomes considerably larger than the thickness
predicted for a ‘‘free’’ particle. Thus, this part of the granule surface is lost for the high
density of current. The rough evaluation of this factor [35] is shown by curve 4000 in Fig. 14.
On the basis of this, it can be stated that the experimental results are in good agreement
with the theoretical prediction.

The values of current for two versions of the granule/membrane system (Fig. 14,
curves 2 and 3) are close to the ones that are true for current through two membranes (Fig.
14, curve 1). Current through the anion-exchange granule and cation-exchange membrane
(curve 2) is close to the current through the opposite versions of the granule and the
membrane (curve 3).

The change in pH during measurement of current was less than 0.3–0.5. Thus,
contribution of Hþ and OH� ions in fluxes through granules and membranes can be
neglected (see Section V.B).

B. Current Through Two Ion-Exchange Fibers

The models for flat and curved surfaces presented above are based on the notion of the
large conductivity of ion-exchange materials and relatively low conductivity of liquid. This
corresponds to many systems where the investigation of current through an ion-exchange
material is both of scientific and practical interest. At the same time, it is well known that,
due to the low values of the diffusion coefficient, the conductivity of ion-exchange materi-
als cannot be indefinitely large and depends considerably on the conductivity of the liquid
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FIG. 14 Current as a function of applied voltage in different experimental schemes: 1 – two ion-
exchange flat membranes; 10 – theoretical model of limiting current; 2 – anion-exchange granule/
cation-exchange membrane, 3 – cation-exchange granule/anion-exchange membrane; 4 – two ion-

exchange granules; 40– theoretical dependence without complicating factors; 400 – theoretical depen-
dency with account of peculiarities of electro-osmosis near anion-exchange granule; 4000 – theoretical
dependency with account of a stagnant region.



that is used [29]. Therefore, a special experimental scheme for investigation of the combi-
nation of external and internal transport processes was created (Fig. 15).

Two cation- and anion-exchange fibers are set in parallel. On one side, their ends are
inserted into electrode chambers, while on the other side the ends are held with the aid of a
nonconducting material to fix the distance between the fibers. The fibers are connected to
the power source in the regime of desalination. The potential difference �0, established by
the external source, is distributed along and between the fibers. Owing to the action of the
electric field, the cations and anions move to the fibers and through them to the electrode
chambers. As a result, regions of low electrolyte concentration in the space between fibers
near their surfaces appear. In a strong electric field, the thickness of the region of con-
centration polarization is defined by electro-osmosis of the second kind, whereas in a weak
electric field, when electro-osmosis of the second kind is absent or minimal, it is defined by
the velocity of the external hydrodynamic flow or is equal to half the distance between the
fibers in the absence of the external flow.

The curved surface of fibers is similar to the surface of spherical granules. Thus,
electro-osmotic slip of the second kind appears and leads to significant compression of
the CDL: � h=2. Its thickness can be evaluated by Eq. (47) and the current can be
described as

I0 ¼
FDC0

5a
~��0�aL ð49Þ

where a is the radius of the fiber, and L is its length in the desalination chamber. The
current [Eq. (49)] is lower by a factor h=10a than the one that takes place without con-
centration polarization and is greater by ~��0h=10a than in the case of concentration polar-
ization without electro-osmotic slip of the second kind [43, 44].

However, with such intense external diffusion transport (i.e., the transport of ions
outside the fibers), the internal diffusion transport of ions becomes a new limiting factor. If
the conductivity of the fibers is not very large, they are not able to carry away all the
current that can be provided by the ion fluxes to the fiber surface.

The theory of concentration polarization of fibers with arbitrary conductivity was
developed in Refs 43 and 44. For the purposes of simplification of the theory, a few
approximations were used. The object of the study is long fibers, placed in an electrolyte
with low conductivity, with a short distance h between them ðh  LÞ. This allows one to
describe the characteristics of concentration polarization between the fibers by the solution
of a local one-dimensional problem, and to divide the current into two components: the
current in the electrolyte that is perpendicular to the fiber surface and the current in the
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FIG. 15 Scheme of an experimental cell for investigation of polarization of ion-exchange fibers.

C;A: cation- and anion-exchange fibers; h: distance between fibers; L: length of fibers inside the
desalination chamber; x: distance to the free end of the fibers.



fiber that is directed along the longitudinal axis. It is assumed that the properties of the
fibers are similar and, consequently, the potential difference is distributed uniformly
between them.

The normal component of current density is determined by the thickness of the CDL
�ðxÞ specified by the electro-osmotic flow that depends on x. The current along the fiber is
replenished by the normal flux of ions with displacement from x ¼ 0 to x ¼ L. Thus,
longitudinal current at the free end of the fiber is equal to zero and reaches its maximum
value at x ¼ L.

With account of all the above-mentioned assumptions, the distribution of potential
along the fiber was obtained [43, 44] in the following form:

~��ðxÞ ¼
~��0
2

expð�
ffiffiffi
b

p
~xxÞ þ expð

ffiffiffi
b

p
~xxÞ

expð�
ffiffiffi
b

p
Þ þ expð

ffiffiffi
b

p
Þ

ð50Þ

where b ¼
2C0D0L

2

5DiCia
2 is a dimensionless parameter that determines the relative characteristics

of the electrolyte and the fiber; D1;C1 are the diffusion coefficient and the concentration of
the current carriers (counterions) inside the fibers. In the limiting case b  1, Eq. (50) can
be rewritten as ~�� ¼ ~��0=2. Hence, due to the large internal conductivity of the fibers, they
are isopotential. In the opposite limiting case b � 1, when the conductivity of the fibers is
low, the potential changes considerably along the fibers. Its value near the free end of the
fiber is significantly lower than the value ~��0=2 that is given by the power source. It follows
from Eq. (50) that the potential decreases more rapidly, the larger the parameter b, i.e., the
higher electrolyte concentration and the thinner and longer the fiber. However, this means
that the lower the current normal to the fiber surface, the less productively the fiber surface
is utilized.

Considering the potential distribution along the fibers and its corresponding influ-
ence on electro-osmosis of the second kind and local value of current density, the mea-
sured current takes the value:

I1 ¼ Ið ~xx ¼ 1Þ ¼
FD1C1

2L
�a2 thð

ffiffiffi
b

p
Þ
ffiffiffi
b

p
~��0 ð51Þ

Under the assumption thð
ffiffiffi
b

p
Þ �

ffiffiffi
b

p
 1, Eq. (51) leads to I1 ¼ �FD0C0L ~��0=5,

which coincides with Eq. (49). This means that the current in the system is independent
of the coefficient of diffusion and the concentration of the current carriers in the fiber. In
the opposite case, b � 1, the role of internal conductivity is substantial.

The experimental data for current through the ion-exchange fibers at C0 ¼ 0:001
mol/L are shown in Fig. 16. The theoretical curves are calculated for three values of
internal conductivity, because the internal electroconductivity of the ion-exchange mate-
rial strongly depends on the concentration of electrolyte in which it is placed [29].
However, in the case investigated, the fibers are placed in liquid with different concentra-
tions of electrolyte because in the electrode chamber its concentration is considerably
higher than in the central chamber between the fibers. Since the electroconductivity (con-
centration of ions and their diffusion coefficients) could be changed along the fibers,
numerical calculations were carried out for several different internal parameters of fibers,
which, according to different papers, are close to our experimental conditions.

It can be observed that the current is higher than in the case of the granules, this
being explained by the larger surface area of the fiber. However, the latter is approximately
300 times larger than that of the granule, while the current, for instance, at 50 V, is only 15
times higher. This considerable difference can be caused by the lower internal conductivity
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of the fibers. Nevertheless, the most important factor is the radius of the fibers because
both the resistance of the fibers and the parameter b are inversely proportional to the area
of their cross-section. Thus, there is a possibility of current increase due to the larger
surface area of the fibers (�aL for the fibers is noticeably larger than the surface area
2�a2 for the granules), although, at the same time, there is a limiting factor related to the
different area of their cross-sections.

C. Current Through Flat Heterogeneous Membrane

Electro-osmosis of the second kind also appears near a flat interface with heterogeneous
conductivity of different sections [38–41]. Due to the nonuniform conductivity, the lines of
electric current are curved. As a result, the electric field has two components: normal Vn,
and tangential Vt, to the surface. Thus, the conditions for electro-osmosis of the second
kind exist. The normal component of the field Vn creates the region of induced space charge
and the action of the tangential component Vt on the induce space charge leads to the
formation of electro-osmotic whirls. For equal sizes of sections with high and low con-
ductivity, the symmetry of processes occurring in the region near the surface resembles
those at the surface of a spherical particle. This means that, while solving the problem of
formation of electro-osmotic whirls and their effect on current, the basic ideas of the theory
of electro-osmosis of the second kind at the surface of an ion-exchange granule can be used.

It should be noted that the same size of sections with significantly different con-
ductivity is optimum for the appearance of the comparable values of the normal and
tangential components of an electric field. With a greater size of conducting sections,
the tangential components of the electrical field is insignificant. With a greater size of
nonconducting sections, the additional advantage in the value of the tangential component
of the electric field directly at the membrane surface is accompanied by a growth in the
total resistance of the membrane and, correspondingly, by a decrease in the normal
component of the electric field that negatively affects current through the membrane
and the value of the induced space charge.

Another necessary condition for strong electro-osmotic flow is a rather strong elec-
tric field, needed to form a wide region of induced space charge. If the thickness of the
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FIG. 16 Current through two ion-exchange fibers as a function of applied voltage : curve 1 –
experiment; curves 2 – 4 theoretical curves for Ci ¼ 1 mol/L at different values of diffusion coeffi-

cient inside the fibers: Di ¼ 10�8 cm2/s (2), 2� 10�8 cm2/s (3), and 4� 10�8 cm2/s (4).



induced space charge, S0 is much higher than the thickness of the electrical double layer,
��1, and is close to the characterstic dimension d of the sections with different conductiv-
ity, the action of the tangential component of the electric field on the induced space charge
is maximum. It was exactly this case that was described analytically [38, 41]. A more
general case was analyzed with the help of numerical methods [39].

It is necessary to emphasize that the peculiarities of concentration polarization of a
heterogeneous membrane depend on the characteristics of external hydrodynamic flows. It
was shown that, under laminar conditions, the increase in current due to electro-osmotic
convection is small [38, 41]. However, when electro-osmotic convection is combined with
turbulent pulsation, the current growth above the limiting value can be significant.

V. FACTORS AFFECTING VELOCITY OF ELECTRO-OSMOSIS AND
ELECTROPHORESIS OF THE SECOND KIND

The theory of electrokinetic phenomena of the second kind that was presented above does
not take into account many processes, which can complicate concentration polarization
and reduce the experimental velocity in comparison with the theoretical one. A few such
processes are described below.

A. Tangential Drift of Induced Space Charge

The theory of electro-osmosis of the second kind was developed with approximation of
thin CDLs and SCLs. However, the increase in applied electric field leads to different
behaviors of these layers: the thickness of the CDL decreases [Eq. (41)] and that of the
SCL increases as S0 � �1=3 [5]. Thus, the condition S0  a limits the applicability of the
theory for high electric field.

In addition to this, the condition shows the strength of an electric field above which
the velocity of electrokinetic phenomena decreases. Indeed, to simplify the developed the-
ory, the tangential flux of counterions has been neglected. Due to this neglect, the calculated
value of density and thickness of an induced space charge are higher than the real ones. This
means that the theoretical values of electrokinetic velocity are also higher than the real
ones. On the basis of analysis of expressions for tangential and normal components of ion
fluxes [5], the following critical value of the electric field strength is obtained:

FEcr1

RT
¼ ð�aÞ4=5=a ð52Þ

For example, for a ¼ 0:025 cm and C0 ¼ 10�5 mol/L, the critical value of the field is 750
V/cm. This means that at 400–500 V/cm the tangential processes become important.

B. Water Dissociation

According to condition (16), electrokinetic phenomena of the second kind exist at low
electrolyte concentration. This means that, due to concentration polarization, the density
of counterions in the region of an induced space charge may reach the value of 10�7 mol/L
corresponding to local equilibrium of the reaction of water dissociation CHCOH

¼ 10�14

mol2/L [45]. Hydrogen ions and hydroxyl ions cause an increase in electrical conductivity
in the region of an induced space charge and the current through the interface. As a result,
the space decreases [45, 46].
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In the case of flat surfaces, water dissociation increases with electric field [45], while
in the case of curved surfaces, the opposite effect takes place [46, 47]. Owing to electro-
osmosis of the second kind, the density of the induced space charge increases and water
dissociation decreases. The critical electrical strength Ecr2 may be calculated according to
the following expressions [47, 48]:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CHCOH

q
� Cs or

FEcr2

RT
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CHCOH=C0

p �3
ð�aÞ2=2a ð53Þ

The theoretical conclusion about weak water dissociation under conditions of elec-
trokinetic phenomena of the second kind has been corroborated experimentally with the
help of a specially developed method based on the change in color of a particle in response
to the change in pH [47, 48].

Water dissociation caused by the low density of an electrolyte in the region of an
induced space charge exists independently of the nature of a particle material. However,
there is a possibility of existence of another mechanism of water dissociation, i.e., the one
caused by the catalysis of dissociation caused by surface groups of the anion-exchange
material [15, 16]. This leads to an additional decrease in the induced space charge and, as a
result, to lower velocity of electro-osmosis and electrophoresis for anion-exchange parti-
cles as compared to the cation-exchange ones. The second process that decreases the
velocity of electro-osmosis is the concentration of ionized impurities (anions) in the region
of induced space charge [49]. The sediment of macroions forms a bipolar contact with the
material of an anion exchanger, similar to bipolar membranes, usually causing the process
of water dissociation [50].

C. Heat Effects

Heat processes caused by electric current play an important part in the concentration
polarization of ion-exchange membranes. Local warming of liquid in the region of low
electrolyte concentration leads to an increase in ion-diffusion coefficients [51] and to
thermal convection [14]. These factors stimulate the change in ion flows and raise the
concentration near the membrane. As a result, the induced space charge near the mem-
brane decreases or disappears.

Another conclusion follows from the analysis of heat processes near the curved
surface under conditions of electro-osmosis of the second kind [52]. Taking into account
the local warming and heat transfer caused by heat conductivity and electro-osmotic
movement of the liquid, the temperature rise in the region of induced space charge,
�T , may be described by the expression:

�T ¼
FDC0

~��2

30KTa
ffiffiffiffi
m

p
ð9 ~��Þ

1=3��2=3a1=3

4m1=6
þ

KT

DCp

� �1=2
a
ffiffiffiffi
m

p

~��

" #
ð54Þ

where KT is the heat conductivity, Cp is the specific heat capacity, and the parameter m is
equal to 0.2 for an aqueous electrolyte solution. For the large interval of parameters of the
investigated system, �T ¼ 28�58C. This temperature increase leads to thermal convection
along the particle surface with velocity:

VT ¼ �g�TðS0 þ @T Þ
2=2� ð55Þ

where � is the thermal expansion coefficient, g is the acceleration due to gravity, �T ¼ ðKT

=DCpÞ
1=2

ða=
ffiffiffiffi
m

p
~��Þ is the thickness of the thermoconvective layer, and � is the kinematic
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viscosity. The value of velocity may be equal to approximately 10�4 � 10�3 cm/s. Thus, the
velocity of thermal convection is two or three orders of magnitude lower than the velocity
of electro-osmosis of the second kind. This means that the thermal convection in the SCL
cannot significantly affect the induced space charge and change the characteristics of elec-
trokinetic phenomena of the second kind. However, the general thermal convection in the
experimental cell can diminish the accuracy of velocity measurements.

D. High Concentration of Electrolyte

Condition (16) is completely correct only in special cases because the conductivity of a
particle depends on the electrolyte concentration [29]. If Ki is close to Ke, the electro-
osmosis and electrophoresis velocity can be still described by Eq. (29), but the dimension-
less potential drop ~�� in the SCL is less than 2FEa=RT . In this case, the change in
electrolyte concentration leads to a change in velocity [30], approximately given by

VðC2Þ ¼ VðC1Þ
1þ 2

ffiffiffiffi
m

p
KeðC2Þ=KiðC2Þ

1þ 2
ffiffiffiffi
m

p
KeðC1Þ=KiðC1Þ

ð56Þ

where the subscripts 1 and 2 refer to two different solutions of electrolyte.
For example, if KeðC1Þ=KiðC1Þ ¼ 0:001 and KeðC2Þ=KiðC2Þ ¼ 0:2, the change in velo-

city is VðC2Þ=VðC1Þ � 0:85.

E. Large Reynolds Numbers and Influence of Walls of Experimental Cell

At high electric fields, the electrophoretic velocity of large particles corresponds to the
regime of large Reynolds numbers, Re ¼ aV=� > 1. For example, at E ¼ 1000 V/cm, an
ion-exchange particle with radius a ¼ 100 mm moves with velocity 4.5 cm/s (Re ¼ 4:5),
while a particle with radius a ¼ 250 mm moves at 10 cm/s (Re ¼ 25). At the same time,
theoretical evaluation of electrophoretic velocity yields values almost 10 times larger.

This fact can be explained by the influence of the two following factors. The first one
is that, according to the theoretical and experimental investigations in the field of hydro-
dynamics [53, 54], the increase in particle velocity over Re > 1 leads to the growth of
hydrodynamic resistance to particle movement. This means a deviation of the experimen-
tal velocity from the value theoretically predicted on the basis of the hydrodynamics of low
Reynolds number.

The second factor is related to the movement of a particle near the solid walls of the
experimental cell. In order to reduce thermal convection, a distance between walls of about
1–1.5 mm was taken. According to the theory developed for low Reynolds’ numbers [54,
55], the braking of a particle caused by the presence of walls was in this case about 5–10%.
It is obvious that, in the cell used for electrophoretic measurements, the two factors
strengthen each other, leading to a greater decrease in velocity than the one caused by
the influence of separate factors.

The role of walls in electro-osmosis was small because measurements were carried
out near the equator of a large particle, far from walls.

VI. APPLICATIONS

Owing to their considerable intensity, the new electrokinetic phenomena may stimulate the
development of the electrotechnology of disperse systems. Electrophoresis of the second
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kind can be applied to separate particles that have different conductivity and size [56],
while electro-osmosis of the second kind may be of use in intensification of electrodialysis
[7, 42, 43] and electrofiltration [27]. Other interesting possibilities are connected with
investigations of a nonstationary induced space charge and its manifestation in different
technologies [42, 57]. In this respect, the development of further research in electro-osmo-
sis and electrophoresis of the second kind is of great interest.

VII. CONCLUSION

Strong concentration polarization of conducting particles leads to the appearance of a
large induced space charge behind the electrical DL, which considerably changes the main
characteristics of electrokinetic phenomena and current through a particle. The velocity of
electrokinetic phenomena of the second kind strongly depends on the size of a particle and
for large particles exceeds the velocity of the classical phenomena by several dozen times.
The correlation between experimental results and theoretical predictions proves the cor-
rectness of the developed model for strong concentration polarization of conductive par-
ticles and electrokinetic phenomena of the second kind. Owing to the very complicated
problem of potential distribution around a particle, the existing theory has a qualitative
character and can be regarded as only the first level of theory. The second level, leading to
a more accurate theory, is currently under development.

LIST OF SYMBOLS AND ABBREVIATIONS

a radius of a particle or a fiber
C0 electrolyte concentration
Cp specific heat capacity
CS density of induced space charge
CDL convective-diffusion layer
D diffusion coefficient
DL (electrical) double layer
E electric field strength behind the region of concentration polarization
ES electric field strnegth in the region of induced space charge
F Faraday constant
h thickness of a channel
i density of current
i
lim

limiting current
Ke conductivity of electrolyte
Ki internal conductivity of particle or fiber
L thickness of the region of concentration polarization
p pressure
R gas constant
S0 thickness of the region of induced space charge
SCL induced space charge layer
T temperature
U electrophoretic mobility of a solid particle
Vef electrophoretic velocity of a solid particle
Veo electro-osmotic velocity of liquid
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VT thermoconvective velocity of liquid
x distance from a granule surface

� thickness of convective-diffusion layer
�T thickness of thermoconvective layer
� dynamic viscosity of liquid
� angle, calculated from the direction of external electric field
��1 thickness of Debye layer
� charge density
� potential drop in the region of induced space charge
�i internal potential of polarized particle
�0 potential drop between the membranes
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Relaxation Mechanisms of Homogeneous
Particles and Cells Suspended in Aqueous
Electrolyte Solutions

CONSTANTINO GROSSE National University of Tucumán, San Miguel de
Tucumán, and Consejo Nacional de Investigaciones Cientificas y Técnicas, Buenos
Aires, Argentina

I. INTRODUCTION

Dielectric spectroscopy is a powerful tool for studying all kinds of colloidal suspensions:
macromolecules [1–5], micelles [6–8], latex [9–18], lyposomes [19], and cells [20–27].
Among these systems, polystyrene particles and cell suspensions stand out as being the
simplest, which still exhibit all the main relaxations. This makes them ideal study subjects
for analyzing the response of colloidal suspensions to an applied electric field. Such an
analysis constitutes the purpose of this work.

We start with some very basic concepts such as the meaning of a dielectric measure-
ment, the definition of dielectric properties of homogeneous and inhomogeneous materi-
als, and the elementary frequency response. We then define the simplest possible models of
homogeneous particle and cell suspensions and discuss their dielectric behavior. This
presentation if undertaken in two steps: in the time domain, discussing the physics of
the different mechanisms, and in the frequency domain, calculating the parameters of
each relaxation. The aim is to show, as clearly as possible, why these simple models present
such a complicated dielectric behavior, and how can the measurement of this behavior be
used to determine different parameters of the system.

We purposefully ignore many complications found in real suspensions such as the
effects of bound water, static membrane conductance, frequency dependence of the mem-
brane dielectric properties, deviations from perfect spherical geometry, convection effects
in the electrolyte solution, complex interfaces such as the cell wall, anomalous surface
conductivity, high concentrations of particles, different ion valences, more than two types
of ions, and nonlinear effects [28–42]. While their inclusion may be necessary in some
cases, the interpretation of the dielectric spectra always requires a thorough understanding
of the main mechanisms, which we shall consider here.

II. DIELECTRIC MEASUREMENT

The dielectric properties of a material can be defined on the basis of the following idealized
experiment. A measurement cell is made with the sample placed between the parallel plates
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of a capacitor (area A, separation d), Fig. 1. The measurement cell is connected to a
voltage source:

VðtÞ ¼ V0Re ei!t
� �

and the amplitude and phase of the current are measured:

IðtÞ ¼ I0ð!ÞRe ei½!t��ð!Þ�
n o

ð1Þ

The measurement cell is now represented as a parallel circuit made of an ideal
capacitor Cð!Þ and an ideal resistor Rð!Þ, having both the same dimensions as the cell.
Fig. 1. The term ‘‘ideal’’ means that the admittance of the resistor has no imaginary part
while the admittance of the capacitor is purely imaginary:

Y�
ð!Þ ¼ 1=Rð!Þ þ i!Cð!Þ

where the asterisk denotes a complex quantity. Solving either the real or the imaginary
parts of the equation:

I�ðtÞ ¼ Y�
ð!ÞV�

ðtÞ

leads to

1=Rð!Þ ¼ I0ð!Þ cos½�ð!Þ�=V0

!Cð!Þ ¼ �I0ð!Þ sin½�ð!Þ�=V0

The conductivity and the absolute permittivity of the sample are finally defined as

�ð!Þ ¼ d=Rð!ÞA

"ð!Þ ¼ Cð!Þd=A

so that the admittance of the measurement cell becomes

Y�
ð!Þ ¼ ½�ð!Þ þ i!"ð!Þ�A=d

In this expression, the term in square brackets is the complex conductivity of the material:

K�
ð!Þ ¼ �ð!Þ þ i!"ð!Þ ð2Þ

We shall use this representation of the dielectric properties in all that follows.
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III. DIELECTRIC PROPERTIES OF A SUSPENSION

A colloidal suspension is made of particles, which we shall assume for simplicity to be
spherical and identical, suspended in a continuous medium, usually an electrolyte solu-
tion. The complex conductivity of this system depends in a rather complex fashion on
many parameters such as the dielectric properties of the intervening media, the size and
structure of the particles, the volume fraction they occupy, and the way in which they
are distributed in space. The major part of this chapter will be devoted to the determi-
nation of the function K�

s ð!Þ. In this section we shall only deduce the most basic rela-
tions.

The dielectric properties of a suspension can be defined in the following way. We
consider two macroscopic spherical samples with the same radius �, one made of the
suspension, and the other of some homogeneous material, Fig. 2. We now choose the
complex conductivity of this material in such a way that, when immersed in the same
external medium and acted upon by the same external field, the total field outside the two
spheres is also the same. The complex conductivity obtained in this fashion is defined as
being the complex conductivity of the suspension: K�

s ð!Þ.
Since, by hypothesis, the dielectric behavior of the two spheres must always be the

same, we are free to choose the configuration which leads to the result in the simplest
possible way. We therefore consider that both spheres are immersed in the same electrolyte
solution in which the particles are suspended, which is characterized by a complex con-
ductivity K�

e ð!Þ.
A uniform electric field is now applied to both systems:

~EEðr; 	; tÞ ¼ ERe ei!tÞ cosð	Þâar � sinð	Þâa	½ �
�

where r and 	 are spherical co-ordinates, âar and âa	 are the corresponding unit vectors, and
E is the amaplitude of the field. The resulting potential outside the sphere made of the
suspension (left half of Fig. 2) is determined by the sum of the contributions of each of its
particles:

U�
e ðr; 	; !Þ ¼ �Er cosð	Þ þN d�

ð!Þa3E
cosð	Þ

r2
ð3Þ

where N is the total number of particles, a is the radius of a particle, and d�
ð!Þ is its

dipolar coefficient (actually this expression is rigorously valid only far from the sphere
since the particles are not located at its center). This coefficient is a nondimensional
quantity, which is related to, but different from, the dipole moment of a particle.
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In order to obtain the potential for the homogeneous sphere (right half of Fig. 2) it is
necessary to solve Laplace’s equation:

r
2U�

ðr; 	; !Þ ¼ 0

in spherical co-ordinates and taking into account the axial symmetry of the problem. The
appropriate solutions inside and outside the sphere are

U�
s ðr; 	; !Þ ¼ A�

ð!ÞE r cosð	Þ

U�
e ðr; 	; !Þ ¼ �E r cosð	Þ þ B�

ð!Þ�3E
cosð	Þ

r2

where the coefficients A�
ð!Þ and B�

ð!Þ are determined using the following boundary
conditions on the surface of the sphere of radius �:

1. The potential U�
ðr; 	; !Þ must be continuous:

U�
s ð�; 	; !Þ ¼ U�

e ð�; 	; !Þ

2. The radial component of the complex current density must be continuous:

�K�
s ð!Þ

@U�
s ðr; 	; !Þ

@r

����
�

¼ �K�
e ð!Þ

@U�
e ðr; 	; !Þ

@r

����
�

ð4Þ

This last condition follows from the following two conditions:

a. The continuity equation: the difference between the radial components of the
current densities on both sides of the interface is equal to the time derivative of
the field-induced surface charge density:

��eð!Þ
@U�

e ðr; 	; !Þ

@r

����
�

þ �sð!Þ
@U�

s ðr; 	; !Þ

@r

����
�

¼
@��ð	; !Þ

@t
¼ �i!��ð	; !Þ

b. The Gauss equation: the difference between the radial components of the electric
displacements on both sides of the interface is equal to the field-induced surface
charge density:

�"eð!Þ
@U�

e ðr; 	; !Þ

@r

����
�

þ "sð!Þ
@U�

s ðr; 	; !Þ

@r

����
�

¼ ��ð	; !Þ

Multiplying this equation by i! and adding the result to the preceding equation leads to
Eq. (4).

The resulting expressions for the potentials are

U�
s ðr; 	; !Þ ¼ �

3K�
e ð!Þ

K�
s ð!Þ þ 2K�

e ð!Þ
E r cosð	Þ

U�
e ðr; 	; !Þ ¼ �E r cosð	Þ þ

K�
s ð!Þ � K�

e ð!Þ

K�
s ð!Þ þ 2K�

e ð!Þ
�3E

cosð	Þ

r2
ð5Þ

Equating the expressions for the potential outside the left and the right spheres in Fig. 2,
Eqs (3) and (5), leads to the following result for the complex conductivity of the suspen-
sion:

K�
s ð!Þ ¼ K�

e ð!Þ
1þ 2�d�

ð!Þ

1� �d�ð!Þ
ð6Þ
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where

� ¼ Na3=�3

is the volume fraction occupied by the particles in the suspension.
This expression, which has a very general character, shows that the central problem

that must be solved in order to determine the dielectric properties of a suspension is the
calculation of the dipolar coefficient of a single suspended particle. The assumptions used
in its derivation (the particles are spherical, identical, and have identical dipole coeffi-
cients) can usually be removed using an appropriate averaging process.

In practice, the calculation of the dipolar coefficient d�
ð!Þ is only possible for small

values of the volume concentration �, since the interactions among neighboring particles
may then be neglected. For low concentrations, Eq. (6) reduces to

K�
s ð!Þ ¼ K�

e ð!Þ½1þ 3�d�
ð!Þ� ð7Þ

which can be separated into real and imaginary parts using Eq. (2):

�sð!Þ ¼ �eð!Þ þ 3��eð!Þ Re d�
ð!Þ½ � �

!"eð!Þ

�eð!Þ
Im d�

ð!Þ½ �

� �
ð8Þ

"sð!Þ ¼ "eð!Þ þ 3�"eð!Þ Re d�
ð!Þ½ � þ

�eð!Þ

!"eð!Þ
Im½d�

ð!Þ�

� �
ð9Þ

These are the fundamental equations for the calculation of the dielectric properties
of dilute suspensions. They show that the suspension conductivity and permittivity depend
on both the in- and the out-of-phase parts of the dipolar coefficient, and that the out-of-
phase part has a major bearing on the conductivity at high frequencies and on the per-
mittivity at low frequencies.

While the first addend inside the braces in Eq. (8) is proportional to the in-phase part
of the conduction current density, the second term is proportional to the in-phase part of
the displacement current density:

J�
Dð!Þe

i!t
/
@

@t
"eð!Þd

�
ð!Þei!t

� 	
¼ i!"eð!Þd

�
ð!Þei!t

Separating the first and last terms of this expression into real and imaginary parts leads to

Re½J�
Dð!Þ� / �!"eð!ÞIm½d�

ð!Þ�

As for Eq. (9), the first addend inside the braces is proportional to the in-phase part
of the electric displacement, while the second term is proportional to the in-phase part of
the field-induced charge density:

��ð!Þei!t /

ð
�eð!Þd

�
ð!Þei!tdt ¼ �eð!Þd

�
ð!Þ

ei!t

i!

Separating the first and last terms of this expression into real and imaginary parts leads to

Re½��ð!Þ� /
�eð!Þ

!
Im½d�

ð!Þ�

The expressions for the DC conductivity and the limiting high-frequency permittivity
are particularly simple:

�sð0Þ ¼ �eð0Þ þ 3��eð0Þdð0Þ ð10Þ
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"s1 ¼ "e1 þ 3�"e1d1 ð11Þ

where the general condition:

Im½d�
ð0Þ� ¼ Im½d�

1� ¼ 0

was used. Expressions (10) and (11) show that �sð0Þ and "s1 can be obtained by solving
just the DC and the limiting high-frequency problems. On the other hand, in order to
calculate "sð0Þ and �s1, the general frequency dependent solution must be obtained and
the appropriate limit taken (this is not the case if an alternative formalism based on the
calculation of the stored and the dissipated energy is used [43, 44]).

IV. MAXWELL MIXTURE FORMULA

The dielectric properties of any isotropic spherical particle can always be represented by an
equivalent homogeneous particle with radius a and complex conductivity K�

p ð!Þ.
Neglecting any interactions among neighboring particles, its dipolar coefficient can be
deduced from Eq. (5) writing K�

p ð!Þ instead of K�
s ð!Þ and a instead of �:

d�
ð!Þ ¼

K�
p ð!Þ � K�

e ð!Þ

K�
p ð!Þ þ 2K�

e ð!Þ
ð12Þ

The form of this expression shows that the real part of the dipolar coefficient is
always confined inside the following bounds:

�1=2 � Re½d�
ð!Þ� � 1

The limit Re[d�
ð!Þ� ¼ �1=2 corresponds, at low frequencies, to the case when the con-

ductivity of the particle is much lower than the conductivity of the electrolyte solution:
�pð!Þ  �eð!Þ, while Re[d

�
ð!Þ� ¼ 1 applies to the opposite case �pð!Þ � �eð!Þ.

Combining Eqs (6) and (12), leads to the Maxwell mixture formula:

K�
s ð!Þ � K�

e ð!Þ

K�
s ð!Þ þ 2K�

e ð!Þ
¼ �

K�
p ð!Þ � K�

e ð!Þ

K�
p ð!Þ þ 2K�

e ð!Þ
ð13Þ

which was obtained by Maxwell for the DC case [45] and extended by Wagner for alter-
nating fields [46].

The validity of Eq. (13) is limited by the assumptions used for its derivation: the
particles are spherical, isotropic, and identical, and the interactions among neighbors may
be neglected. These conditions are met in two situations for which Eq. (13) is rigorous:

1. When the concentration of particles is low, in which case Eq. (13) reduces to

K�
s ð!Þ ¼ K�

e ð!Þ 1þ 3�
K�
p ð!Þ � K�

e ð!Þ

K�
p ð!Þ þ 2K�

e ð!Þ

� �
ð14Þ

This expression is often used instead of eq. (7) in order to calculate the dielectric properties
of suspensions. Expression (7) has, nevertheless, a more general character (as will be
shown in the description of the low-frequency dispersion). Furthermore, the dielectric
behavior of the dipolar coefficient has often a simpler interpretation than that of the
equivalent complex conductivity of the particle.

2. When there is just a single particle in the center of the sphere of radius �. While
this configuration is not a suitable representation of a suspension, it can be used as a
model for nonhomogeneous particles with central symmetry (a particle with a membrane,
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for example). Therefore, the dielectric behavior of a particle made of a central sphere of
radius a1 and complex conductivity K�

1 ð!Þ, surrounded by a shell of external radius a2 and
complex conductivity K�

2 ð!Þ, Fig. 3, is exactly the same as that of a homogeneous particle
of radius a2 and complex conductivity K�

p ð!Þ given by

K�
p ð!Þ ¼ K�

2 ð!Þ
2ð1� �ÞK�

2 ð!Þ þ ð1þ 2�ÞK�
1 ð!Þ

ð2þ �ÞK�
2 ð!Þ þ ð1� �ÞK�

1 ð!Þ
ð15Þ

where

� ¼ a31=a
3
2

Equation (15), which can also be written in the form of Eq. (13), is rigorously valid for any
value of the volume fraction : 0 � � � 1.

V. SINGLE TIME CONSTANT RELAXATION

The simplest form of the frequency dependence of the dielectric properties of a medium is
called a single time constant, or Debye type, relaxation [47]. This behavior is only found in
a few simple systems such as pure polar liquids, or dilute suspensions of spherical particles
when the conductivity and permittivity of both media are frequency independent and at
least one of them is conductive.

In this last case, the analytic expression for the relaxation can be obtained from Eq.
(14) with the following substitutions:

K�
e ð!Þ ¼ �e þ i!"e

K�
p ð!Þ ¼ �p þ i!"p

This leads to

K�
s ð!Þ ¼ �sð0Þ þ i! "s1 þ

�"s
1þ i!s

� �
ð16Þ

where

�sð0Þ ¼ �e 1þ 3�
�p � �e
�p þ 2�e

� �
ð17Þ
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is the DC conductivity,

"s1 ¼ "e 1þ 3�
"p � "e
"p þ 2"e

� �
ð18Þ

is the limiting high frequency permittivity,

s ¼
"p þ 2"e
�p þ 2�e

ð19Þ

is the relaxation time, and

�"s ¼ 9�
ð"p�e � "e�pÞ

2

ð"p þ 2"eÞð�p þ 2�eÞ
2

ð20Þ

is the relaxation amplitude. If the full form of the Maxwell mixture formula, Eq. (13), were
to be used instead of Eq. (14), Eqs (17)–(20) would have changed, but Eq. (16) would still
hold.

The meaning of the different parameters can be appreciated by combining Eqs (2)
and (16), in order to obtain the conductivity and permittivity of the suspension:

�sð!Þ ¼ �sð0Þ þ
!2�"ss
1þ !22s

¼ �sð0Þ þ
�"s
s

�
�"s=s
1þ !22s

"sð!Þ ¼ "s1 þ
�"s

1þ !22s

The frequency dependence of these expressions is represented in Fig. 4, where

"sð0Þ ¼ "s1 þ�"s
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is the DC permittivity, and

�s1 ¼ �sð0Þ þ�"s=s ð21Þ

is the limiting high-frequency conductivity.
The dielectric behavior expressed in Eq. (16) is determined by some mechanism of

charge redistribution or polarization in the system, and by the corresponding time. In the
case just considered, this mechanissm is the accumulation of field-induced electric charge
on the surface of the particles whereas, for a polar liquid, it is the reorientation of the polar
molecules. The relaxation time is a measure of the time it takes for the charge to build up
or for the molecules to reorient.

Real systems such as cell suspensions, present dielectric spectra that are much more
complex. They can be usually decomposed, nevertheless, in a superposition of single time
constant relaxations, in which each characteristic time is mainly associated with a single
relaxation process. The number of terms in the superposition can be calculated in the
following way [48]. For a system made of particles with dielectric properties characterized
by Np single time constant relaxations, immersed in a medium with Ne relaxation terms,
the number of terms which characterize the suspension is

Ns ¼ Np þ 2Ne þ 1 ð22Þ

This number is reduced by one if both media are insulating. Among these Ns relaxation
times, Ne coincide with the Ne relaxation times of the external medium:

sj ¼ ej

while their original amplitudes are only modified by the volume fraction occupied by the
particles:

�"sj ¼ �"ejð1� 3�=2Þ ð23Þ

These results also hold for the full form of the Maxwell mixture formula, Eq. (13),
except for Eq. (23), which changes to

�"sj ¼ �"ej
2ð1� �Þ

2þ �

VI. CONSIDERED SYSTEMS

In the following sections we shall analyze the dielectric behavior of dilute suspensions of
homogeneous particles and cells. These are the simplest systems that still exhibit the main
relaxation processes usually found in colloidal suspensions. The dielectric properties of the
components of these systems can be represented as follows.

A. Electrolyte Solution

We consider an aqueous electrolyte solution with complex conductivity:

K�
e ð!Þ ¼ �eð0Þ þ i! "e1 þ

"eð0Þ � "e1
1þ i!w

� �
ð24Þ

where the dielectric behavior corresponds to a single time constant process with the
relaxation time w of water. This is usually a sufficiently good approximation [49].
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The frequency dependence of the conductivity and permittivity of the electrolyte
solution, Eqs (2) and (24), is represented in Fig. 5 using the following parameters:

"eð0Þ ¼ 80"0 ð25Þ

"e1 ¼ 4"0 ð26Þ

�eð0Þ ¼ 0:01 S=m ð27Þ

"0 ¼ 8:85� 10�12 Farad=m ð28Þ

w ¼ 9� 10�12 s ð29Þ

As can be seen, the conductivity strongly increases with frequency, rising from the
static value �eð0Þ ¼ 0:01 S/m, which is solely due to ion movement, to a value of the
order of 75 S/m. This increment is due to the reorientation of the permanent dipole
moments of the water molecules under the action of the applied field. At high fre-
quencies their angular velocity is in phase with the field, leading to a high displace-
ment current. At low frequencies it is the polarization which is in phase with the field,
leading to a decrease in conductivity and to a corresponding increment of the permit-
tivity.
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FIG. 5 Permittivity and conductivity of the electrolyte solution. The relaxation frequencies of the

conductivity and permittivity spectra seem to differ due to the logarithmic scale used for the con-
ductivity.



B. Homogeneous Particles

From the dielectric standpoint, a homogeneous particle such as latex, for example, is just
an insulating sphere surrounded by a thin layer that has an enhanced conductivity. The
origin of this layer is mainly in the hydrophilic head groups of molecules that make the
particle and dissociate on its surface, and in the adsorption of ions from the electrolyte
solution. The net charge that the particle so acquires does not contribute directly to the
surface conductivity, since it is fixed, but indirectly by means of the radial field it produces
that attracts counterions from the bulk electrolyte solution.

The particle interior is characterized by a complex conductivity:

K�
i ð!Þ ¼ i!"i

where it is assumed that the particle is perfectly insulating and that its permittivity "i does
not depend on frequency. The dielectric properties of the layer with enhanced ion con-
centration are represented by a surface conductivity �, determined as the additional con-
ductivity multiplied by the layer thickness [50], and assumed to be frequency independent.
All these are usually acceptable approximations.

The dipolar coefficient of a suspended particle can be calculated with the help of Eq.
(12). In order to do this, it is first necessary to determine the complex conductivity of an
equivalent particle: a homogeneous particle with the same radius a and the same dielectric
properties as the original particle together with its surface layer. This can be done by
considering that the particle is surrounded by a thin layer of thickness d, which has an
enhanced static conductivity, and using Eq. (15) with the following substitutions:

� ¼ a3=ðaþ dÞ3 ffi 1� 3d=a

K�
1 ð!Þ ¼ i!"i

K�
2 ð!Þ ¼ �=d þ �eð!Þ þ i!"eð!Þ

The result obtained for d  a is

K�
p ð!Þ ¼ 2�=aþ i!"i ð30Þ

Therefore, the insulating particle surrounded by a layer with surface conductivity �,
behaves as if it had a bulk conductivity equal to 2�=a.

The dielectric properties of the homogeneous particle, which is dielectrically equiva-
lent to the original particle together with its surface layer, are represented in Fig. 6 using
the following parameters:

"i ¼ 2"0 ð31Þ

a ¼ 5� 10�6 m ð32Þ

� ¼ 0; 1:25� 10�8; 5� 10�8; 20� 10�8 S ð33Þ

As can be seen, the frequency dependence of the dielectric properties of the equiva-
lent particle are extremely simple: a constant permittivity value, which does not depend on
the surface conductivity, and a constant conductivity value that is proportional to the
surface conductivity.
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C. Cells

From the dielectric standpoint, the most basic representation of a cell is a conducting
sphere surrounded by an insulating membrane. The whole cell is further surrounded by a
thin layer that has an enhanced conductivity. This layer is due, among other causes, to the
net charge which the interior of a living cell must have in order to establish its membrane
potential. The radial field of this charge attracts counterions for the bulk electrolyte
solution. A radial field is also created by hydrophilic head groups of the lipid molecules
that make the membrane and dissociate on the outer cell boundary. Another contribution
is the layer of glycocalix or wall, surrounding some cells, which is rich in fixed charges that
attract ions from the electrolyte solution.

The inner part of the cell is characterized by a complex conductivity:

K�
i ð!Þ ¼ �ið0Þ þ i! "i1 þ

"ið0Þ � "i1
1þ i!w

� �

where it was assumed that the cell interior is mainly composed of water so that its relaxation
properties are those of water, except for changes in the static and the limiting high-fre-
quency permittivities that are due to the presence of other substances such as lipids.

The dielectric properties of the membrane are characterized by

K�
mð!Þ ¼ i!"m

where it is assumed that it is perfectly insulating and that its permittivity "m does not
depend on frequency. This is usually a good approximation at least for low frequencies,
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FIG. 6 Equivalent permittivity (black symbols) and conductivity (white symbols) of the homoge-

neous particle model, Eq. (30). Squares: � ¼ 0; diamonds: � ¼ 1:25� 10�8 S; circles: � ¼ 5� 10�8 S;
triangles: � ¼ 20� 10�8 S.



less so at high frequencies (gigahertz region) where the permittivity usually shows a fre-
quency dependence. The dielectric properties of the layer with enhanced conductivity are
represented by a surface conductivity �, assumed to be frequency independent.

Finally, the geometric parameters of the cell are its radius a and the thickness of the
membrane h. In order to simplify the discussion, we shall consider that the cell membrane
is thin ðh  RÞ.

The dipolar coefficient of a suspended cell can be calculated with the help of Eq. (12).
In order to do this, it is first necessary to determine the characteristic parameters of an
equivalent particle: a homogeneous particle with the same size and the same dielectric
properties as the whole cell. Its complex conductivity K�

p ð!Þ can be determined using Eq.
(15) for the system made of the internal part of the cell and the cell membrane:

� ¼ ða� hÞ3=a3 ffi 1� 3h=a

K�
1 ð!Þ ¼ K�

i ð!Þ

K�
2 ð!Þ ¼ i!"m

and adding to the result the contribution of the surface conductivity. This leads to

K�
p ð!Þ ¼ i! "ið!Þ þ

"ma=h

1þ i!
"ma

�ið!Þh

2
64

3
75þ

2�

a
¼

¼

!"ma

h

� �2�
�ið!Þ

1þ !2
"ma

�ið!Þh

� �2 þ 2�

a
þ i! "ið!Þ þ

"ma=h

1þ !2
"ma

�ið!Þh

� �2
8>>><
>>>:

9>>>=
>>>;

ð34Þ

At high frequencies, the second addend inside the braces becomes negligible. The
conducting particle surrounded by an insulating membrane behaves then as if the mem-
brane did not exist (it is electrically shorted). On the other hand, at low frequencies, the
conductivity of the equivalent particle reduces to the contribution of the surface conduc-
tivity, while its permittivity attains a very large value determined mainly by the properties
of the membrane.

The dielectric properties of the homogeneous particle, which is dielectrically equiva-
lent to the cell together with its surface layer, are represented in Fig. 7 using the following
parameters:

"ið0Þ ¼ 50"0 ð35Þ

"i1 ¼ 4"0 ð36Þ

�ið0Þ ¼ 1 S=m ð37Þ

"m ¼ 6"0 ð38Þ

a ¼ 5� 10�6 m ð39Þ

h ¼ 10�8 m ð40Þ

� ¼ 0; 1:25� 10�8; 5� 10�8; 20� 10�8 S ð41Þ
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which are reasonable values chosen to produce a spectrum in which all the main relaxa-
tions are clearly visible.

It is apparent that the cell model used leads to two single time constant relaxations,
in accordance with Eq. (22) with Np ¼ 1 (cell interior), Ne ¼ 0 (cell membrane), and one
conductive medium (cell interior). The surface layer does not add any relaxation term
because its influence is calculated at the limit d ! 0 [Eq. (15) with �! 1�.

VII. DIELECTRIC PROPERTIES OF THE CONSIDERED SYSTEMS

The dipolar coefficient of a suspended particle can be obtained using Eqs (12) and (24),
together with either Eq. (30) (for homogeneous particles) or Eq. (34) (for cells). The real
and imaginary parts of d�

ð!Þ, calculated using the same parameters as in Figs 5 and either
6 (for homogeneous particles) or 7 (for cells), are represented in Figs 8 and 9.

While the dielectric properties of the homogeneous particle, which is equivalent to
the real one together with its surface conductivity, are frequency independent (Fig. 6), its
dipolar coefficient varies strongly with frequency in two distinct regions (Fig. 8). The high-
frequency dependence occurs at frequencies higher than the range corresponding to the
dipolar relaxation of water, Fig. 5, and is independent of the surface conductivity. On the
other hand, the lower frequency dependence varies strongly with the surface conductivity.

For a suspended cell, the dielectric properties of the equivalent particle vary with
frequency in two regions (Fig. 7), while its dipolar coefficient shows three relaxations (Fig.
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FIG. 7 Equivalent permittivity (black symbols) and conductivity (white symbols) of the cell model,
Eq. (34). Squares: � ¼ 0; diamonds � ¼ 1:25� 10�8 S; circles: � ¼ 5� 10�8 S; triangles; � ¼ 20�

10�8 S. The relaxation frequencies of the conductivity and permittivity spectra seem to differ due to
the logarithmic scales.



FIG. 8 Real (black symbols) and imaginary (white symbols) parts of the dipolar coefficient for the
homogeneous particle model. Squares: � ¼ 0; diamonds: � ¼ 1:25� 10�8 S; circles: � ¼ 5� 10�8 S;
triangles: � ¼ 20� 10�8 S.

FIG. 9 Real (black symbols) and imaginary (white symbols) parts of the dipolar coefficient for the

cell model. Squares: � ¼ 0; diamonds: � ¼ 1:25� 10�8 S; circles: � ¼ 5� 10�8 S; triangles: � ¼ 20�
10�8 S.



9). The higher frequency one is very similar to that of a homogeneous particles (Fig. 8).
The middle-frequency relaxation occurs at frequencies that are roughly a decade higher for
cells than for homogeneous particles, while its parameters are almost independent of the
surface conductivity. On the other hand, this conductivity has a very strong bearing on the
low-frequency behavior.

The frequency dependencies of the dipolar coefficients of homogeneous particles and
cells will be discussed qualitatively in Section VIII and quantitatively in Sections IX–XI.

The complex conductivity of the suspension can finally be obtained combining the
expression for the dipolar coefficient d�

ð!Þ with Eq. (7). The frequency dependence of the
conductivity and permittivity, Eqs (8) and (9), calculated using the same parameters as in
Figs 5 and either 6 (homogeneous particles) or 7 (cells), and a volume fraction � ¼ 0:1, are
represented in Figs 10 and 11.

In agreement with Eq. (22), the spectra for suspended homogeneous particles, Fig.
10, consist of a superposition of three single time constant relaxations: Np ¼ 0;Ne ¼ 1,
and two conductive media (the third relaxation is barely visible at frequencies of the order
of 1012 Hz).

As for cell suspensions, Fig. 11, although the spectra should consist of a superposi-
tion of five single time constant relaxations, Eq. (22) with Np ¼ 2;Ne ¼ 1, and two con-
ductive media, they actually contain only four terms (the fourth is barely visible at
frequencies of the order of 1012 Hz). The reason for this is the assumption that the
relaxation times of the electrolyte solution and of the cell interior have the same value w.

The expressions for the characteristic parameters of these relaxations are in general
extremely complicated, so that a physical interpretation of the mechanisms involved is
very difficult. Fortunately, in many cases of practical interest, the relaxation times differ
widely. The relaxation processes then become independent of one another, leading to a
simple formulation and interpretation of the characteristic parameters. This is the situa-
tion that will be considered in what follows.

VIII. TIME DOMAIN DESCRIPTION OF THE HIGH-FREQUENCY
RELAXATIONS

There are two ways to analyze the dielectric response of a system: in the time and in the
frequency domains. In the first approach, it is considered that a uniform field is suddenly
applied to the system and its evolution is studied as a function of time. In the second, the
system is studied under the action of an alternating electric field.

We shall first present a qualitative description of the dielectric behavior of the system
in the time domain. Next, we shall quantitatively analyze the different relaxations in the
frequency domain.

When a uniform electric field is suddenly applied to the suspension, different phe-
nomena occur in succession. The first is an extremely strong current pulse that lasts a very
short time: less than 10�15 s. It is due to all the electronic clouds in the system, which move
in response to the perturbation. This current comes to a halt as soon as the orbitals attain
equilibrium with the external field. What remains is a polarization state of the system,
determined by the limiting high-frequency permittivities of the component media: "j1.

At this stage, the field distribution around the homogeneous particle and cell are
represented in Figs 12 and 13, which correspond to suspensions with parameters specified
in Eqs (25)–(29) and either (31)–(33) (homogeneous particles) or (35)–(41) (cells). These
and the following figures have been drawn in such a way that the field line density is
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FIG. 10 Permittivity (black symbols) and conductivity (white symbols) of the homogeneous
particle suspension, Eqs (7) and (12), for a volume fraction � ¼ 0:1. Squares: � ¼ 0; diamonds:

� ¼ 1:25� 10�8 S; circles: � ¼ 5� 10�8 S; triangles: � ¼ 20� 10�8 S. The relaxation frequencies
of the conductivity and permittivity spectra seem to differ due to the logarithmic scales.

FIG. 11 Permittivity (black symbols) and conductivity (white symbols) of the cell suspension, Eqs
(7) and (12), for a volume fraction � ¼ 0:1. Squares: � ¼ 0; diamonds: � ¼ 1:25� 10�8 S; circles: � ¼

5� 10�8 S; triangles: � ¼ 20� 10�8 S. The relaxation frequencies of the conductivity and permit-
tivity spectra seem to differ due to the logarithmic scales.



strictly proportional everywhere to the field strength [51]. The fields inside the suspended
particles have been calculated using the expressions in Appendix 1.

The field is slightly perturbed by the presence of the homogeneous particle, Fig. 12,
since the limiting high-frequency permittivity of the electrolyte solution is assumed to be
larger than the permittivity of the particle. Correspondingly, the field is stronger inside the
particle because of its lower permittivity. The field lines slightly diverge close to the
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FIG. 12 Field lines around the homogeneous particle model after the electronic clouds attain equi-

librium. Also, lines of the in-phase field for frequencies above the gamma relaxation. The field
distribution solely depends on the high-frequency permittivities of the component media: "e1 and "i.

FIG. 13 Field lines around the cell model after the electronic clouds attain equilibrium. Also, lines

of the in-phase field for frequencies above the gamma relaxation. The field distribution solely
depends on the high-frequency permittivities of the component media: "e1, "m, and "i1.



particle, which corresponds to a negative value of the real part of the high-frequency
dipolar coefficient, Fig. 8.

However, the field is not perturbed by the presence of the cell, Fig. 13, since the high-
frequency permittivities of the electrolyte solution and of the cell interior are assumed to
be the same (in general, these values need not be exactly equal to one another so that the
field could be slightly deformed). The field is weaker inside the membrane because of its
higher permittivity, but this difference does not modify the field outside the cell due to the
extremely low volume occupied by the membrane (its thickness has been exaggerated in
Fig. 13 and in the following figures). The unperturbed field lines outside the cell corre-
spond to a zero value of the real part of the high-frequency dipolar coefficient, Fig. 9.

Actually, after the first sudden burst, the current does not stop but continues to flow
at a much lower rate than before, being mainly due to the permanent dipole moments of
the water molecules. Without an applied field, these moments are randomly oriented so
that when the field is applied, they find themselves in a nonequilibrium configuration. In
order to attain equilibrium they have to rotate, meaning that, on average, the positive and
negative charges that make the dipole moments move in opposite directions, contributing
to a current. This current is much weaker than the previous one since there are fewer
charges involved, and because their movement is much slower due to the viscous-type drag
acting on the reorienting molecules. However, the current lasts much longer, due to the
lower speed of the charges and because they move through longer distances. When equili-
brium is attained (with almost, but not totally, random dipole orientations) this current
stops, and what remains is a new polarization state determined by the static permittivities
of the component media "jð0Þ.

At this stage, the field distributions around the homogeneous particle and cell are
represented in Figs 14 and 15. The field lines strongly diverge close to the homogeneous
particle because the permittivity of the particle’s interior is much lower than the static
permittivity of the electrolyte solution. Correspondingly, the field inside the particle is
much stronger than outside. This outer field configuration corresponds to a negative
value of the dipolar coefficient, Fig. 8. The field lines around a suspended cells are
much less deformed since the cell’s inner static permittivity is lower than, but close to,
the static permittivity of the electrolyte solution. Correspondingly, the dipolar coefficient
value is negative but close to zero, Fig. 9.

Again, the current flow does not completely stop but continues at a much lower rate,
being due now to the movement of ions. This current is much weaker than before mainly
because there are so much less ions than water molecules. However, it lasts as long as there
is a field, since it is a conduction current (ions are free) in contrast with the previous two
displacement currents (charges which make permanent dipole moments and electronic
clouds are bound).

Since it is assumed that the homogeneous particle is insulating, ionic current can
only exist in the external medium. Considering that the field direction is towards the right,
this current is directed towards the bulk electrolyte solution on the right-hand side of the
particle. Therefore, a negative surface charge starts to build up on its right side while
positive charge builds up on its left side. This charge distribution produces inside the
particle a field in the same direction as the applied field, increasing the field strength.
Outside the particle, it produces a dipolar field that opposes the applied field on the
symmetry axis, bending the field lines away from the particle. This process goes on until
the normal component of the current density reduces to zero on the surface of the particle.
At this stage, which is represented in Fig. 16, the field-induced surface charge density stops
changing with time, and the system attains a stable state with a field line configuration
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corresponding to an insulating particle inside a conducting medium: the dipolar coefficient
is d ¼ �1=2, Fig. 8. The field-induced charges, which are responsible for the slight differ-
ence between Figs 14 and 16, could not be drawn in this last figure, in view of the very low
value of the charge density (Appendix 1).
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FIG. 15 Field lines around the cell model after the reorientation of the water molecules occurs.

Also, lines of the in-phase field for frequencies above the delta and below the gamma relaxations.
The field distribution solely depends on the low-frequency permittivities of the component media:
"eð0Þ, "m, and "ið0Þ.

FIG. 14 Field lines around the homogeneous particle model after the reorientation of the water
molecules occurs. Also, lines of the in-phase field for frequencies above the delta and below the

gamma relaxations. The field distribution solely depends on the low-frequency permittivities of the
component media: "eð0Þ and "i.



The above description corresponds to the case when there is no surface conductivity.
Its presence modifies the current flow since the enhanced conductivity layer leads to the
appearance of a surface current around the particle. At short times, this current transfers
positive (negative) charges to the right (left) side of the particle. The field of this charge
distribution modifies the current flow around the particle until the final configuration is
reached in which the total current leaving the particle from its right side is equal to the
surface current traversing the particle’s equator towards its right side. Therefore, the state
when the surface charge distribution stops changing with time is attained with a nonvan-
ishing radial component of the field on the particle’s surface. Figure 17 represents the field
distribution for a very high surface conductivity: � ¼ 20� 10�8 S. The field lines in the
electrolyte solution correspond now to a highly conducting particle inside a medium with
low conductivity: the dipolar coefficient strongly increases while the field inside the par-
ticle diminishes due to the shielding provided by the conductive layer. This behavior
illustrates the strong dependence of the low-frequency dipolar coefficient on the surface
conductivity, Fig. 8.

As for the suspended cell, the field intensities inside and outside the membrane
represented in Fig. 15 are comparable, whereas the conductivity inside the cell is assumed
to be much higher than outside it, Eqs (27) and (37). Therefore, the current density
arriving from inside to the right-hand side of the cell is much higher than the one leaving
this side towards the electrolyte solution. As a result, positive charge starts to build up at
the right side of the cell and negative charge on its left side. These charges produce inside
the cell a field in the opposite direction to the applied field, which diminishes the current.
This process goes on until the currents arriving and leaving each side of the cell membrane
become identical.

At this stage, which is represented in Fig. 18, the total charge distribution around the
cell stops changing with time, while the charge densities on the inner and the outer sides of
the membrane continue to increase, both at approximately the same rate. This does not
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FIG. 16 Field lines around the homogeneous particle model after the buildup of the field-induced
surface charge is completed. Also, lines of the in-phase field for frequencies below the delta relaxa-

tions. The field distribution solely depends on the condition that, at low frequencies, the particle is
insulating while the electrolyte solution is conducting.



mean, however, that the fields inside the cell and in the electrolyte solution become con-
stant. On the contrary, due to the finite thickness of the membrane, they continue to
change but at a much lower rate than before.

The reason for this (Appendix 2) is that the charge distributions built on both sides
of the membrane create uniform fields inside the cell, and dipolar fields outside. Since a
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FIG. 17 Same as Fig. 16 but for a strong surface conductivity � ¼ 20� 10�8 S. The field distribu-

tion in the external medium solely depends on the ratio between the particle’s equivalent conductiv-
ity 2�=a and the low-frequency electrolyte solution conductivity �eð0Þ.

FIG. 18 Field lines around the cell model after the current density arriving at one side of the
membrane becomes equal to the one leaving from the other side. Also, lines of the in-phase field

for frequencies above the beta and below the delta relaxations. The field distribution solely depends
on the low-frequency conductivities of the component media: �eð0Þ and �ið0Þ.



dipolar field decreases as r�3, the field on the outer side of the membrane, produced by a
surface charge density located on its inner side, is weaker than the field that this same
charge density would create if it were located on the outer side. On the contrary, since a
uniform field does not vary with distance, the field on the inner side of the membrane is the
same for charge densities located on its inner or outer sides. Because of this, the charge
density on the inner side of the membrane increases at a slightly higher rate than on the
outer side. This has two consequences: first, the field inside the cell progressively decreases
until it vanishes, and second, the field outside the cell changes until it corresponds to that
of an insulating particle inside a conducting medium.

At this stage, which is represented in Fig. 19, the situation is finally stable since the
charge distributions on each side of the membrane attain constant values: the inner one
because there is no current flow inside, and the outer one because there is no radial
component of the current flow outside.

This description corresponds to the case when there is no surface conductivity. At
short times, its presence leads to the appearance of a surface current around the cell, because
of which part of the radial current arriving at, or leaving the cell, does not contribute to the
buildup of a charge density on the outer side of the membrane. This is why the situation
when the total charge distribution around the cell stops changing with time is attained with
field lines converging towards the cell slightly stronger than in Fig. 18. The difference, which
corresponds to a slight increase of the dipolar coefficient, is nevertheless too weak to be
visible in the figure (it is also practically undetectable in Fig. 9). This insensitivity to the
value of the surface conductivity is not a general feature, but is due to the choice of a very
high internal conductivity as compared to the conductivity of the electrolyte solution.

At longer times, the field inside the cell slowly diminishes until the final stable
situation represented in Fig. 20 is attained. This figure differs from the corresponding
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FIG. 19 Field lines around the cell model after the charge densities on both sides of the cell
membrane have finished changing with time. Also, lines of the in-phase field for frequencies
below the beta relaxation. The field distribution solely depends on the condition that the low-

frequency conductivities inside and outside the cell are different from zero whereas the membrane
is insulating.



Fig. 19 in two aspects: first, the external field corresponds now to a conductive particle in a
conductive medium (the radial component of the field does not vanish on the surface since
it leads to a surface current flowing along it), and second, the charge accumulated on each
side of the membrane as well as the field strength inside it are now smaller, since the
conducting layer partially shields the cell.

IX. GAMMA RELAXATIONS

We shall now quantitatively analyze in the frequency domain the relaxations that we have
qualitatively described, starting with the relaxation associated with the reorientation of
water molecules.

The gamma relaxation is found in the giga- to tera-hertz range. It is actually com-
posed of two relaxations, which are due to the frequency dependence of the dielectric
properties of the electrolyte solution and to the difference between the permittivities of the
two media.

At these high frequencies, the field distribution inside the system is determined
exclusively by the permittivities of the components. This does not mean that there are
no currents inside the system. On the contrary, these currents are quite strong but they
lead to negligible charge densities on the interfaces, since their magnitudes are propor-
tional to the period of the field: 1=!, which is very small.

Therefore, the frequency dependence of the dipolar coefficient can be calculated
considering that the components that make the suspension are characterized by the fol-
lowing complex conductivities:

K�
e ð!Þ ¼ i! "e1 þ

"eð0Þ � "e1
1þ i!w

� �
ð42Þ
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FIG. 20 Same as Fig. 19 but for a strong surface conductivity � ¼ 20� 10�8 S. The field distribu-

tion solely depends on the ratio between the particle’s equivalent conductivity 2�=a and the low-
frequency electrolyte solution conductivity �eð0Þ.



for the electrolyte solution,

K�
p ð!Þ ¼ i!"i ð43Þ

for the homogeneous particles, and

K�
p ð!Þ ¼ i! "i1 þ

"ið0Þ � "i1
1þ i!w

� �
ð44Þ

for the cells. This last expression corresponds to the cell model without the membrane,
because at these high frequencies it is electrically shorted, and its permittivity does not
contribute either, due to its very small volume (less than 1% of the volume of the cell).

Combining Eqs (12) and (42) with either Eq. (43) or (44) leads to the dipolar coeffi-
cient that is characterized by a single time constant relaxation:

d�
ð!Þ ¼ d�H þ

d�L � d�H

1þ i!w
"i þ 2"e1
"i þ 2"eð0Þ

ð45Þ

for homogeneous particles, and

d�
ð!Þ ¼ d�H þ

d�L � d�H

1þ i!w
"i1 þ 2"e1
"ið0Þ þ 2"eð0Þ

ð46Þ

for cells. In these expressions, the lower index � denotes the considered relaxation, whereas
the indexes L and H indicate the limiting low- and high-frequency values of the dipolar
coefficient corresponding to this relaxation, Figs 21 and 22.

Because of the factors multiplying w in Eqs (45) and (46), the relaxation time of the
dipolar coefficient is much smaller than the relaxation time of water. This means that, in
the time domain, the field configuration around the homogeneous particle (cell) repre-
sented in Fig. 12 (13) transforms to the one represented in Fig. 14 (15) before the reor-
ientation of the water molecules is completed. Afterwards this reorientation continues,
without further changes in the field distribution (Appendix 3).

At frequencies above this relaxation, the dipolar coefficient for homogeneous parti-
cles has the value:

d�H ¼
"i � "e1
"i þ 2"e1

ð47Þ

which is rather small and negative in the considered case, since it is assumed that the
particle’s frequency-independent permittivity "i ¼ 2"0 is lower than the limiting high-fre-
quency permittivity of the electrolyte solution: "e1 ¼ 4"0. The corresponding value for
cells is

d�H ¼
"i1 � "e1
"i1 þ 2"e1

ð48Þ

which is zero in the considered case, since it is assumed that the high-frequency permittiv-
ities of the cell interior and the electrolyte solution are the same: "i1 ¼ "e1 ¼ 4"0:

At frequencies below this relaxation, the dipolar coefficient for homogeneous particles is

d�L ¼
"i � "eð0Þ

"i þ 2"eð0Þ
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FIG. 21 Real part of the dipolar coefficient of the homogeneous particle model calculated as a
superposition of individual relaxations, each one of which extends from a low frequency ðdjLÞ to a

high frequency ðdjHÞ value. Squares: � ¼ 0; diamonds: � ¼ 1:25� 10�8 S; circles: � ¼ 5� 10�8 S;
triangles: � ¼ 20� 10�8 S.

FIG. 22 Same as Fig. 21 but for the cell model.



which is much more negative than in Eq. (47), since "eð0Þ � "e1 (consequently, the field
lines in Fig. 14 strongly diverge away from the particle). As for cells:

d�L ¼
"ið0Þ � "eð0Þ

"ið0Þ þ 2"eð0Þ

which is relatively small and negative, in view of the assumption that "ið0Þ < "eð0Þ.
Combining the expressions obtained for the dipolar coefficient with Eqs (7) and (24)

leads to the complex conductivity of the suspension, which consists of the sum of two
terms. The corresponding relaxation parameters for homogeneous particle suspensions are

�1 ¼ w ð49Þ

�"�1 ¼ �"eð1� 3�=2Þ ð50Þ

�2 ¼ w
"i þ 2"e1
"i þ 2"eð0Þ

ð51Þ

�"�2 ¼ 9�
�"e"

2
i

2ð"i þ 2"e1Þ½"i þ 2"eð0Þ�
ð52Þ

where

�"e ¼ "eð0Þ � "e1

For cell suspensions, the relaxation parameters are

�1 ¼ w ð53Þ

�"�1 ¼ �"e 1þ 3�
�"i ��"e
�"i þ 2�"e

� �
ð54Þ

�2 ¼ w
"i1 þ 2"e1
"ið0Þ þ 2"eð0Þ

ð55Þ

�"�2 ¼ 9�
ð�"i"e1 ��"e"i1Þ

2

ð�"i þ 2�"eÞð"i1 þ 2"e1Þ½"ið0Þ þ 2"eð0Þ�
ð56Þ

where

�"i ¼ "ið0Þ � "i1

The relaxation time of the main term coincides with the relaxation time of water. It
constitutes the only relaxation whose amplitude is not proportional to the volume fraction
of the particles. The second low-amplitude term has the same relaxation frequency as the
dipolar coefficient, which is typically more than a decade higher.

Above the gamma relaxation, the permittivity of the system is low because of the low
value of the permittivity of the electrolyte solution (and cell interior). On the other hand,
the conductivity is very high because the reorientation of the polar water molecules leads
to a large displacement current that is much larger than the conduction current due to
ionic movement. Below it, the permittivity of the system strongly increases because of the
increase in the permittivity of the electrolyte solution (and cell interior). Correspondingly,
the conductivity becomes much smaller, since the reorientation velocity of the polar mole-
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cules shifts out of phase with the field so that it does not contribute any more to the
conductivity.

X. DELTA RELAXATION

The delta relaxation is found in the high megahertz range. In the frequency range of this
relaxation, the boundary condition across the interface (or membrane) [analogous to Eq.
(4) but applicable to the particle or cell] changes from the continuity of the electric dis-
placement (high frequencies) to the continuity of the current density (low frequencies).
Since these frequencies are below the relaxation frequency of water, the permittivity and
conductivity of the component media can now be considered as being frequency indepen-
dent.

Therefore, the frequency dependence of the dipolar coefficient can be calculated
considering that the components that make the suspension are characterized by the fol-
lowing complex conductivities:

K�
e ð!Þ ¼ �eð0Þ þ i!"eð0Þ ð57Þ

for the electrolyte solution, Eq. (30) for homogeneous particles, and

K�
p ð!Þ ¼ �ið0Þ þ 2�=aþ i!"ið0Þ ð58Þ

for cells. This last expression corresponds to the high-frequency limit of Eq. (34), written
using the static value of "ið!Þ.

Combining Eqs (12) and (57) with either Eq. (30) or (58) leads to

d�
ð!Þ ¼ d�H þ

d�L � d�H

1þ i!
"i þ 2"eð0Þ

2�=aþ 2�eð0Þ

ð59Þ

for homogeneous particles, and to:

d�
ð!Þ ¼ d�H þ

d�L � d�H

1þ i!
"ið0Þ þ 2"eð0Þ

�ið0Þ þ 2�=aþ 2�eð0Þ

ð60Þ

for cells. The frequency dependence of the real parts of these expressions are represented in
Figs 21 and 22.

At frequencies higher than the delta relaxation, the dipolar coefficient for homoge-
neous particles has the value:

d�H ¼
"i � "eð0Þ

"i þ 2"eð0Þ
¼ d�L

and the corresponding distribution of field lines is represented in Fig. 14. At frequencies
lower than this relaxation, the dipolar coefficient usually increases, depending on the value
of the surface conductivity:

d�L ¼
2�=a� �eð0Þ

2�=aþ 2�eð0Þ
ð61Þ

The corresponding distribution of field lines is represented in Fig. 17, while Fig. 16 illus-
trates the situation when � ¼ 0. In this last case, the dipolar coefficient decreases, attaining
the minimum possible value of �1=2.
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The dipolar coefficient for cells has the following value at frequencies higher than the
delta relaxation:

d�H ¼
"ið0Þ � "eð0Þ

"ið0Þ þ 2"eð0Þ
¼ d�L

and the corresponding field line distribution is represented in Fig. 15. At frequencies lower
than this relaxation the dipolar coefficient strongly increases and becomes positive:

d�L ¼
�ið0Þ þ 2�=a� �eð0Þ

�ið0Þ þ 2�=aþ 2�eð0Þ

This happens because it is assumed that the conductivity of the cell interior is much higher
than that of the electrolyte solution, Eqs (27) and (37) (the surface conductivity has almost
no bearing on the dipolar coefficient except when the conductivity of the cell interior is low
or for very small cells). The field distribution in and around the cell is represented in Fig.
18.

While in Figs 14 and 15 the field lines are determined by the permittivities of the
components, they only depend on their conductivities in Figs 16–18. This occurs because
when the frequency is lowered, the currents start to build up appreciable charge densities
on the interfaces. As a result, part of the current density shifts out of phase with the field,
and correspondingly part of the charge density shifts in phase.

Combining the expressions obtained for the dipolar coefficient with Eqs (7) and (57)
leads to the complex conductivity of the suspension. It consists of a single term, with the
same relaxation time as the dipolar coefficient, since the dielectric properties of the elec-
trolyte solution are frequency independent at these frequencies. The relaxation parameters
for homogeneous particle suspensions are

� ¼
"i þ 2"eð0Þ

2�=aþ 2�eð0Þ
ð62Þ

�"� ¼ 9�
½"i�eð0Þ � "eð0Þ2�=a�

2

½"i þ 2"eð0Þ�½2�=aþ 2�eð0Þ�
2

ð63Þ

while, for cell suspensions, they become

� ¼
"ið0Þ þ 2"eð0Þ

�ið0Þ þ 2�=aþ 2�eð0Þ
ð64Þ

�"� ¼ 9�
f"ið0Þ�eð0Þ � "eð0Þ½�ið0Þ þ 2�=a�g2

½"ið0Þ þ 2"eð0Þ�½�ið0Þ þ 2�=aþ 2�eð0Þ�
2

ð65Þ

These parameters only depend on the radius a through the surface conductivity terms,
becoming totally independent of a when � ¼ 0. For cells, the delta relaxation parameters
are almost independent of their size and of the surface conductivity (except for very small
cells with low internal conductivity). Correspondingly, the delta relaxation time for cells is
mainly dependent on the conductivity of the cell interior, which explains the higher relaxa-
tion frequency for cells than for homogeneous particles (Figs 22 and 21, respectively).

The permittivity of the suspension increases because the field is partially excluded
from part of the volume of the system. This process corresponds to the Maxwell-Wagner
relaxation of the homogeneous particle, or the internal part of the cell, together with their
conductive layers, immersed in the electrolyte solution [Eqs (62)–(65) are analogous to Eqs
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(19) and (20)]. The cell membrane is still shorted at these frequencies, so that it does not
contribute to the permittivity value.

XI. BETA RELAXATION

This relaxation is usually found in the low megahertz range and is due to the variation
with frequency of the dielectric properties of the cell, Eq. (34) (there is no beta relaxa-
tion in homogeneous particle suspensions). At low frequencies the membrane ceases to
be shorted, and finally determines a new boundary condition between the internal
medium and the electrolyte solution: there can be no current flow among these
media. For � ¼ 0 this condition reduces to the requirement that the normal component
of the current density on the external boundary of the membrane must vanish. This can
be seen in Fig. 19, where the field lines are represented for frequencies below the beta
relaxation.

The field distribution around the cell at frequencies above and below this relaxation
only depends on the intervening conductivities. Because of this, the frequency dependence
of the dipolar coefficient can be calculated considering a suspension of homogeneous
particles characterized by

K�
p ð!Þ ¼ 2�=aþ i!

"ma=h

1þ i!
"ma

�ið0Þh

ð66Þ

(where the last addend represents the frequency dependence of the conductivity of the
equivalent particle), in a medium with

K�
e ð!Þ ¼ �eð0Þ

Combining these expressions with Eq. (12) leads to

d�
ð!Þ ¼ d�H þ

d�L � d�H

1þ i!
"ma

h

1

�ið0Þ
þ

1=2

�=aþ �eð0Þ

� � ð67Þ

The frequency dependence of the real part of this expression is represented in Fig. 22.
At frequencies higher than the beta relaxation, the dipolar coefficient has the value:

d�H ¼
�ið0Þ þ 2�=a� �eð0Þ

�ið0Þ þ 2�=aþ 2�eð0Þ
¼ d�L

and the corresponding field line distribution around the cell is represented in Fig. 18.
At frequencies lower than this relaxation, the dipolar coefficient strongly decreases:

d�L ¼
2�=a� �eð0Þ

2�=aþ 2�eð0Þ
ð68Þ

because the real part of Eq. (66) reduces to �pð0Þ ¼ 2=�=a, which is the equivalent
conductivity of an insulating particle surrounded by a conducting layer. The field dis-
tribution around the cell is represented in Figs 19 and 20. In the first, the dipolar
coefficient has the value �1=2, which corresponds to an insulating particle in a conduc-
tive medium.
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Combining the expression obtained for the dipolar coefficient with Eqs (7) and (57)
leads to the complex conductivity of the suspension. It consists of a single term with the
same relaxation time as the dipolar coefficient. The relaxation parameters are

� ¼
"ma

h

1

�ið0Þ
þ

1=2

�=aþ �eð0Þ

� �
ð69Þ

�"� ¼
9�

4

"ma=h

1þ
�=a

�eð0Þ

� �2 ð70Þ

which are both proportional to a=h when � ¼ 0.
The permittivity of the suspension strongly increases, because of the high surface

capacity of the cell membrane that becomes fully charged at low frequencies. This incre-
ment is diminished by the surface conductivity that partially shields the cell.

The relaxation time can be interpreted as a product of a resistance multiplied by a
capacity. This capacity is in series with two resistances: that of the internal medium and
that of the external medium plus the surface layer (the coefficient 1/2 is due to the spherical
geometry of the system).

XII. TIME DOMAIN DESCRIPTION OF THE LOW-FREQUENCY
DISPERSION

While the results obtained so far are in qualitative agreement with high-frequency spectra
of real suspensions, they do not reproduce the low-frequency dielectric behavior, which is
generally characterized by an additional high-amplitude dispersion. This dispersion, which
cannot be deduced from Eqs (7) and (12), will be described in the following sections.

The configurations represented in Figs 16 and 19 do not evolve with time, since they
correspond to stable states. On the other hand, Figs 17 and 20 represent configurations
that are nonstable in the usual case when the surface conductivity is mostly due to ions of a
single sign. We shall now describe how these configurations evolve with time.

We first note that the field line distribution outside a homogeneous particle at
frequencies below the delta relaxation, Fig. 17, is exactly the same as the corresponding
distribution for cells below the beta relaxation, Fig. 20. This happens because, at low
frequencies, the dipolar coefficients only depend on the conductivities of both the electro-
lyte solution and the surface layer, Eqs (61) and (68). Because of this, the phenomena that
occur in the electrolyte solution at low frequencies are almost the same for homogeneous
particles and for cells, as long as their surface layers have the same properties. Therefore,
in what follows, we shall limit the discussion to a single case: a suspension of homogeneous
particles. We shall also choose, for definiteness, that the particles have a negative charge,
so that the ions that make the surface conductivity, or counterions, are positive. We begin
with the situation represented in Fig. 23, which corresponds to a very high surface con-
ductivity: � ¼ 20� 10�8 S, the same as in Fig. 17.

The total current that enters the left side of the space represented in Fig. 23 (and
abandons it from the right side) flows entirely within the electrolyte solution. On the other
hand, the total current that traverses the vertical plane located at the center of this figure is
mostly confined to the surface layer. In a stable situation these currents must have the
same value (or there would be a build-up of charge somewhere inside the space represented
in the figure).
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The current transported by each ion type is proportional to its concentration.
However, the relative concentrations of positive and negative ions in the bulk electrolyte
solution and in the surface layer are different: close to the particle there are almost
exclusively positive ions. This means that the fraction of the total current transported
by each ion type in the bulk electrolyte solution is different from the corresponding
fraction transported near the particle.

If, for instance, the valences and diffusion coefficients of both types of ions were the
same, the flow of positive ions entering from the left side the space represented in Fig. 23
would be the same as the flow of negative ions leaving the left side of this same space. On
the other hand, the flow of positive ions traversing from left to right the vertical plane
located at the center of this figure would be much larger than the flow of negative ions
traversing this same plane from right to left.

This means that the number of positive ions arriving per unit time towards the left side
of the particle (or leaving it from its right side) is smaller than the number of positive ions
being transferred per unit time along the particle’s surface from its left to its right side. On
the other hand, the number of negative ions arriving per unit time towards the right side of
the particle (or leaving it from its left side) is larger than the number of negative ions being
transferred per unit time from the right to the left side of the particle. Therefore, the
concentration of ions of both signs increases on the right-hand side of the particle and
decreases on its left side. This process is often referred to as the build up of ‘‘neutral salt
clouds.’’

Although these changes in the ion densities cannot modify in a direct way the electric
field, since the ion clouds are neutral, they do modify the ion flows. This happens because
the current densities depend not only on the electric field but also on the concentration
gradients. The stable situation, which is finally reached, is represented in Figs 24 and 25,
which correspond to positive and negative ions, respectively.
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FIG. 23 Initial field-line distribution for the homogeneous particle model partially shielded by a
high-conductivity layer of counterions ð� ¼ 20� 10�8 S). The separation between the counterions

and the particle’s surface represents the thickness of the double layer. The radial field lines have been
omitted.



In both these figures, the electric field distribution corresponds to a particle with an
equivalent conductivity which is higher (but not by much) than the conductivity of the
electrolyte solution. Positive ions move from the left side of Fig. 24 pulled toward the
particle by the electric field and by the concentration gradient, which tends to curve the
lines of ion flow toward the symmetry axis. Therefore, the motion of these ions is as if they
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FIG. 24 Final field and ion distribution for the homogenous particle model surrounded by a high-
conductivity layer of counterions (� ¼ 20� 10�8 S) and for a totally symmetric electrolyte:

Dþ
¼ D�. Signs inside a diamond represent ions added to, whereas signs inside a square represent

ions subtracted from, the normal electrolyte solution concentration. The vectors show how the
electric potential and the concentration gradients combine to determine the flow of counterions

(thick lines). The counterion layer is not centered because of the dependence of the Debye screening
length on the ion concentration (see text). The radial field lines have been omitted.

FIG. 25 Same as Fig. 24 but for coions.



were following field lines corresponding to a highly conductive particle in a much less
conductive electrolyte solution (except that they move along the surface of the particle and
not right through it). Negative ions moving from the right side of Fig. 25 are pulled toward
the particle by the electric field but are repelled by the concentration gradient. Their
motion is as if they were following field lines corresponding to an insulating particle in
an electrolyte solution.

The final dipolar coefficient of the particle is positive, but rather weak. It is made of
two contributions:

1. Fast part. This dipole coefficient is positive (the dipole points to the right in the
same direction as the applied field) and is due to the redistribution to counter-
ions in the conducting layer. This is the coefficient of the particle just before the
build up of neutral clouds begins. In Fig. 23 it is represented by the nonuniform
distribution of positive ions within the counterion layer.

2. Slow part. The buildup of neutral density clouds is a process that demands a long
time, since ions must be transferred from one side of the particle to the other, but
these clouds, being neutral, cannot contribute directly to a dipole moment. They
are responsible, nevertheless, for its change by means of two mechanisms:
a. A decrement of the fast part of the dipolar coefficient due to the tangential

component of the concentration gradient, which tends to decrease the redis-
tribution of counterions in the conducting layer. The distribution of positive
ions within this layer appearing in Figs 24 and 25 is more uniform than in
Fig. 23 due to this mechanism.

b. The second mechanism is related to the thickness of the counterion layer,
which is of the order of the Debye screening length 1=�, where

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzþeÞ2Cþðz�eÞ2C�

kT"eð0Þ

s

In this expression z� are the valences of the two ion types, and C� are their
concentrations. The thickness of the counterion layer is represented in Figs
23–25 by the distance between the surface of the particle and the positive ion
distribution. On the right-hand side of the particle the concentration of ions
increases, which leads to a decrement of the counterion layer thickness.
Correspondingly, it becomes larger on the left-hand side of the particle
where the ion concentration decreases. These changes mean that the posi-
tively charged hollow sphere made of the counterion layer shift towards the
left with respect to the particle, Figs 24 and 25. Therefore, the charge dis-
tribution composed of the negatively charged particle surrounded by the
positive counterions loses its central symmetry, creating a dipole moment
that points to the left, in the direction opposite to the applied field.

XIII. ALPHA DISPERSION

This high-amplitude dispersion is usually found in the kilohertz range. It occurs because
the conducting layer surrounding the particle is made of ions that have mainly a single
sign. This asymmetry is unimportant at high frequencies, but plays a decisive role at very
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low frequencies. The conducting layer permits the transfer of counterions from one side of
the particle to the other, but excludes the flow of coions.

There is no universally accepted model for this dispersion. The first one, due to
Schwartz [52], was widely used but is now superseded by a series of more realistic models
[53–59]. We shall use here the model of Shilov and Dukhin [53], which was the first one to
provide an analytical solution to the whole equation set that determines the ion movement
around the particle.

This model was developed for charged insulating particles characterized by their �
potential, immersed in an electrolyte solution characterized by its frequency-independent
permittivity, its viscosity, the concentration C ¼ Cþ

¼ C� and valence z ¼ zþ ¼ z� of its
two types of ions, and their diffusion coefficients D�. In a framework of the so-called
standard model that was used, the � potential coincides with the equilibrium electrical
potential on the surface of the particle.

In terms of these parameters, the conductivity of the electrolyte solution is

�eð0Þ ¼ �þe ð0Þ þ �
�
e ð0Þ

��e ð0Þ ¼
Cz2e2D�

kT
!

Cz2e2D

kT
¼
�eð0Þ

2

where k is the Boltzmann constant, T is the absolute temperature, and Einstein’s equation
relating the ion mobilities and diffusion coefficients was used. In this, and in the following
expressions, the right-hand term following the arrow corresponds to the simplest case of a
fully symmetric electrolyte: Dþ

¼ D�
¼ D.

The surface conductivity is not considered as an independent parameter, but is rather
calculated as a function of the � potential:

� ¼ �þ þ ��

�� ¼
2��e ð0Þ

�

e
�
ze�

2kT � 1

" #
!
�eð0Þ

�

e
�
ze�

2kT � 1

" #
ð71Þ

This last expression is only valid when the radius of the particle is much larger than the
Debye screening length:

�a � 1 ð72Þ

The low-frequency dielectric behavior of the system is calculated by solving the
Poisson and Navier–Stokes equations in the electrolyte solution, together with the equa-
tions for the ion flows, including conduction, diffusion, and convection terms. For the
sake of simplicity, we shall neglect here the contribution of convection to the flows of ions.
This simplification introduces an error of the order of 15% in the dispersion amplitude
[60], but greatly simplifies the results and makes them independent of the fluid viscosity.
The expression for the dipolar coefficient, obtained under the assumption (72), has a
frequency dependence that does not correspond to a single time constant relaxation,
being substantially broader:

d�
ð!Þ ¼ d�H þ

d�L � d�H

1þ i W2S
1þWþiW

ð73Þ
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where

S ¼
2ðRþ 2Þ

ðRþ þ 2ÞðR� þ 2Þ
!

Rþ 2

2 R 1�
2

�a

� �
þ 1

� �

R�
¼

2��

a��e ð0Þ
!

4

�a

e
�
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" #
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a�eð0Þ
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Dþ �D�
þ R� D�

Dþ þD�
!

Rþ

2
þ
R�

2
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!
a2ðDþ þD�Þ

4DþD�

r
!

ffiffiffiffiffiffiffiffiffiffi
!

a2

2D

r

The frequency dependence of the real part of Eq. (73) is represented in Figs 21 and 22.
At frequencies higher than the � dispersion, the dipolar coefficient has the value:

d�H ¼
R� 1

Rþ 2
¼ d�L

which is associated with the fast part of the dipole moment, and corresponds to an
insulating particle surrounded by a conducting layer with surface conductivity � and
immersed in an electrolyte solution with conductivity �eð0Þ. The corresponding field line
distribution around the particle is represented in Figs 17 and 23.

At frequencies lower than this dispersion, the dipolar coefficient decreases due to the
slow part of the dipole moment, which is associated with the buildup of neutral ion clouds
around the particle and is always negative:

d�L ¼ d�H �
3DþD�

ðDþ þD�Þ
2

ðRþ
� R�

Þ
2

ðRþ 2ÞðRþ þ 2ÞðR� þ 2Þ
¼

Rþ
� 1

Rþ þ 2

Dþ

Dþ þD�

þ
R�

� 1

R� þ 2

D�

Dþ þD�
! d�H �

3R

4ðRþ 2Þ

Rþ 8=�a

Rð1� 2=�aÞ þ 1

ð74Þ

The corresponding field line distribution around the particle is represented in Figs 24 and
25, which differ from Fig. 23 in the following aspects (all these figures correspond to the
same surface conductivity � ¼ 20� 10�8 S and in Figs 24 and 25 it was further assumed
that Dþ

¼ D�
Þ. The counterion distribution around the particle is more uniform in Figs 24

and 25, which means that it gives rise to a weaker dipolar field than in Fig. 17. It also leads
to a stronger uniform field inside the particle. The counterion layer is furthermore shifted
to the left. This does not further increase the field inside the particle, but produces outside
it the field of a dipole oriented opposite to the applied field, weakening even more the
resulting dipolar field.

Combining the expression obtained for the dipolar coefficient with Eqs (7) and
(57) leads to the complex conductivity of the suspension. The dispersion amplitude has
two terms corresponding to the real and imaginary parts in Eq. (9). Neglecting the first,
as usually done in view of the low frequencies corresponding to this dispersion, it
reduces to
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�"� ¼
9�"eð0Þ

4
�2a2

ðRþ
� R�

Þ
2

ðRþ þ 2Þ2ðR� þ 2Þ2
!

9�"eð0Þ

16
�2a2

RðRþ 8=�aÞ

½Rð1� 2=�aÞ þ 1�2
ð75Þ

A relaxation time cannot be strictly defined since this is not a single time constant
process. A characteristic time, calculated as the reciprocal of the angular frequency at
which the permittivity increment is half the value of �"� is, approximately:

� ¼
a2ðDþ

þD�
Þ

4DþD�
!

a2

2D
ð76Þ

The above results simplify in the usual case when the surface conductivity is not too
low: Rþ

� R�;R�
 1, so that

Rþ
¼ R

Dþ
þD�

Dþ
! 2R

With these approximations, the limiting low-frequency value of the dipolar coefficient, Eq.
(74), becomes

d�L ¼
R� 1

Rþ 2
�

3R2D�

2ðRþ 2Þ½ðRþ 2ÞDþ þ RD��
¼
1

4

R
2ð2Dþ

�D�
Þ

Dþ �D�
� 2

Rþ 1

!
R� 1

Rþ 2
�

3R2

4ðRþ 2ÞðRþ 1Þ
¼
1

4

R� 2

Rþ 1

ð77Þ

while the dispersion amplitude simplifies to

�"� ¼
9�"eð0Þ

16
�2a2

R

Rþ
2Dþ

Dþ þD�

2
664

3
775
2

!
9�"eð0Þ

16
�2a2

R

Rþ 1

� �2
ð78Þ

This expression shows that while the value of �"� increases with the charge of the particle
or its surface conductivity, it is bounded:

�"� �
9�"eð0Þ

16
�2a2

XIV. DIELECTRIC SPECTRUM

The relaxation parameters deduced in the preceding sections can be used now to obtain the
permittivity and conductivity expressions for the suspension, valid over the whole fre-
quency range.

In doing this, it should be noted that although the individual treatment of each
relaxation leads to limiting values of the dipole coefficient which couple among neighbor-
ing relaxations, Fig. 21:

d�L ¼ d�H; d�L ¼ d�H

and Fig. 22:

d�L ¼ d�H; d�L ¼ d�H; d�L ¼ d�H
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this does not occur with the limiting values of the conductivity or permittivity calculated
using Eqs (10) and (11). Therefore, the permittivity increment of the delta relaxation for
cell suspensions, for example, cannot be calculated as a difference between the limiting
high-frequency permittivities of the beta and delta relaxations:

�"� 6¼ 3�"eð0Þðd�H � d�HÞ

Analogously, the conductivity increment of this same relaxation cannot be calculated as a
difference between the limiting low frequency conductivities of the gamma and delta
relaxations:

�"�=� 6¼ 3��eð0Þðd�L � d�LÞ

This means that Eqs (10) and (11) only provide the correct values for the DC
conductivity and the limiting the high-frequency permittivity when used with the full
expression of d�

ð!Þ: an expression that comprises all the relaxations of the system. They
also provide approximate values for these parameters when used with expressions of the
dipolar coefficient corresponding to the lowest and the highest frequency relaxations,
respectively [Eqs (73) and (45)]. Nevertheless, when used with an expression of the dipolar
coefficient corresponding to any given relaxation, Eqs (10) and (11) provide parameters
that would only be correct if the system did not have any other relaxations (Appendix 4).

The approximate expressions for the permittivity of suspensions of homogeneous
particles and cells, valid over the whole frequency range are, respectively:

"sð!Þ ¼ "e1 þ 3�"e1d�Hþ

þ
�"�1

1þ !2�12
þ

�"�2
1þ !2�2

2
þ

�"�
1þ !2�

2
þ

�"�ð1þWÞ

ð1þWÞ
2
þW2ð1þWSÞ2

ð79Þ

"sð!Þ ¼ "e1 þ 3�"e1d�Hþ

þ
�"�1

1þ !2�1
2
þ

�"�2
1þ !2�2

2
þ

�"�
1þ !22�

þ
�"�

1þ !2�
2
þ

�"�ð1þWÞ

ð1þWÞ
2
þW2ð1þWSÞ2

ð80Þ

The first two addends in these expressions represent the limiting permittivity of the
suspensions at high frequencies, Eqs (11) and (47) or (48). The following addends corre-
spond to the different single time constant relaxations, and are expressed as functions of
their relaxation times, Eqs (49), (51), and (62), or (53), (55), (64), and (69), and amplitudes,
Eqs (50), (52), and (63), or (54), (56), (65), and (70). The last addends correspond to the
low-frequency dispersion term, and were obtained by combining Eq. (73), written as:

d�
ð!Þ ¼ d�H þ ðd�L � d�HÞ

ð1þWÞ
2
þW2

ð1þWSÞ

ð1þWÞ
2
þW2ð1þWSÞ2

� i
SW2

ð1þWÞ

ð1þWÞ
2
þW2ð1þWSÞ2

" #

ð81Þ

with Eq. (9). Since the frequencies corresponding to this relaxation are much lower than
�eð0Þ="eð0Þ [this quotient is of the order of the characteristic frequency of the delta relaxa-
tion, Eqs (62) or (64)] the first addend inside the braces in Eq. (9) was neglected.

The approximate expressions for the conductivity of suspensions of homogeneous
particles and of cells, valid over the whole frequency range are, respectively:
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2
þ
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ð1þWÞ
2
þW2ð1þWSÞ2

ð83Þ

The first two addends in these expressions represent the DC conductivity of the
suspensions and were obtained using Eqs (10) and (81). The following addends correspond
to the different single time constant relaxations, and were obtained using Eq. (21), which
relates the permittivity and conductivity increments. The last addend corresponds to the
low-frequency dispersion term, and was obtained combining Eqs (8) and (81). In view of
the low values of the frequencies corresponding to the alpha dispersion, the second addend
inside the braces in Eq. (8) was neglected (actually, for very high frequencies, this second
addend becomes dominant and finally diverges, which is due to the use in this model of a
hypothesis of local equilibrium which ceases to be valid).

The permittivity and conductivity spectra for homogeneous particle and for cell
suspensions, Eqs (79), (82) and (80), (83), are represented in Figs 26 and 27.
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FIG. 26 Permittivity (black symbols) and conductivity (white symbols) of the homogeneous par-
ticle suspensions with a volume fraction � ¼ 0:1. Squares: � ¼ 0; diamonds: � ¼ 1:25� 10�8 S;

circles: � ¼ 5� 10�8 S; triangles: � ¼ 20� 10�8 S. The relaxation frequencies of the conductivity
and permittivity spectra seem to differ due to the logarithmic scales.



XV. CONCLUSION

In the preceding sections, we examined individually the main relaxations that make the
dielectric spectrum of homogeneous particle and cell suspensions. Such a treatment is
approximate, and only valid when the relaxation times of the different mechanisms greatly
differ (this was purposely the case in the systems considered). The validity of this approx-
imation can be appreciated comparing the exact dipolar coefficient spectra [Eqs (12) and
either (30) or (34)] with their approximate forms [either Eqs (45) and (59) or Eqs (46), (60),
and (67)], Figs 28 and 29. The low-frequency dispersion has not been included in this
comparison since there is no single model that comprises the high-frequency relaxations
together with the low-frequency dispersion.

As can be seen, the agreement is very good for homogeneous particles and generally
good for cells, less so in the frequency range between the delta and the beta relaxations.
This is indeed the most critical range, and the approximation becomes unacceptable for
smaller cells. Therefore, in many cases, these two relaxations must be treated together as a
whole [61].

Our approximate results clearly show which is the information on the system para-
meters that can be extracted from the interpretation of the dielectric spectra.

1. Gamma relaxation, either Eqs (49) and (50) or (53) and (54).
The characteristic frequency of this relaxation is essentially fixed, since it depends

neither on the particle size nor on its dielectric properties. Its parameters give no informa-
tion about the dielectric properties of the homogeneous particle but they make it possible
to determine the permittivity change in the cell interior. This determination is usually
difficult because the cells only contribute a small fraction to the total relaxation amplitude,
and because of the presence of bound water.
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FIG. 27 Same as Fig. 26 but for cell suspensions.



FIG. 28 Real part of the dipolar coefficient of the homogeneous particle model calculated using
approximate expressions corresponding to the individual relaxations (symbols), compared to the
exact solution (full lines). Squares: � ¼ 0; diamonds: � ¼ 1:25� 10�8 S; circles: � ¼ 5� 10�8 S;

triangles: � ¼ 20� 10�8 S.

FIG. 29 Same as Fig. 28 but for the cell model.



The interpretation of the second low-amplitude relaxation [either Eqs (51) and (52) or
(55) and (56)] is even more problematic, mainly because in the terahertz region the elec-
trolyte solution starts to show deviations from the single time constant relaxation beha-
vior, Eq. (24) [62].

2. Delta relaxation, either Eqs (62) and (63) or (86) and (65).
For homogeneous particles, the characteristic frequency of this relaxation mostly

depends on the surface conductivity and on the particle’s size. Its parameters provide
the best information about the surface conductivity.

As for cells, the characteristic frequency of this relaxation mostly depends on the
conductivity of the cell interior and is almost independent of the cell size. Its parameters
provide information about the conductivity of the cell interior and its surface conductivity.
The interpretation is often subject to great uncertainties because of the neighboring beta
relaxation which has a much greater amplitude. A possible solution to this problem is in
the measurement of the electrorotation speed [60, 63], which is proportional to the ima-
ginary part of the dipolar coefficient. As shown in Fig. 9, the imaginary part is comparable
in size for the delta and beta relaxations.

3. Beta relaxation, Eqs (69) and (70).
This relaxation provides the most straightforward interpretation mainly due to its

large amplitude and because it is the only relaxation which depends on properties of the
cell membrane. Its relaxation time and amplitude are almost proportional to the cell radius
so that the determination of the membrane capacity strongly improves for large cells. For
very small cells, the alpha, beta, and delta relaxations come close to one another, making
any meaningful interpretations almost impossible. Other difficulties, which are present
even for large cells, have their origin in the conductivity of the cell membrane and in
the diffusion effects close to its surface [30, 34].

4. Alpha dispersion, Eqs (75) and (76).
This dispersion is related to a series of important properties of the suspended particle,

mainly its charge or � potential and its surface conductivity. For homogeneous particles,
the main difficulty is of an experimental nature: low-frequency dielectric measurements are
extremely difficult to perform due to electrode polarization and because suspensions are
almost totally resistive at low frequencies [�ð!Þ  1 in Eq. (1)]. As for cell suspensions,
there is a further difficulty related to the description of the surface conductivity which, for
real cells, can strongly deviate from Eq. (71).

These caveats notwithstanding, dielectric measurements provide rich information
about the properties of suspended particles, information that is often inaccessible by
any other technique. Meaningful interpretations generally require precise measurements
over a broad frequency range and always a good understanding of the different relaxation
mechanisms.

APPENDIX 1

The fields inside a suspended particle and the field-induced charge densities on the inter-
faces can be expressed in the following way as a function of the dipolar coefficient.

For homogeneous particles, the potential in the two media has the form:

U�
e ðr; 	; !Þ ¼ �Er cosð	Þ þ d�

ð!Þa3E
cosð	Þ

r2

318 Grosse



U�
i ðr; 	; !Þ ¼ �A�

i ð!ÞEr cosð	Þ

The condition of the continuity of the potential across the boundary determines the field
inside the particle:

A�
i ð!Þ ¼ 1� d�

ð!Þ

while the Gauss equation (discontinuity of the normal component of the electric displace-
ment) determines the surface charge density:

��e ð!Þ=E ¼ "eð!Þ½1þ 2d�
ð!Þ� � "iA

�
i ð!Þ ¼ "eð!Þ � "i þ d�

ð!Þ½"i þ 2"eð!Þ�

For cells, the potential in the three media has the form:

U�
e ðr; 	; !Þ ¼ �Er cosð	Þ þ d�

ð!Þa3E
cosð	Þ

r2

U�
mðr; 	; !Þ ¼ �A�

mð!ÞEr cosð	Þ þ B�
mð!ÞEa

3 cosð	Þ

r2

U�
i ðr; 	; !Þ ¼ �A�

i ð!ÞEr cosð	Þ

The continuity of the potential across the inner and outer sides of the membrane leads to
the following equations:

�A�
mð!Þ þ B�

mð!Þ ¼ �1þ d�
ð!Þ

�A�
i ð!Þð1� 3gÞ ¼ �A�

mð!Þð1� 3gÞ þ B�
mð!Þ

where:

1� 3g ¼ ð1� h=aÞ3

(it is worth noting that this last expression does not correspond to a series expansion, so
that it is not restricted to the assumption that the membrane thickness is small as com-
pared to the cell size). The continuity of the normal component of the complex current
density across the inner side of the membrane provides the third equation:

K�
i ð!ÞA

�
i ð!Þð1� 3gÞ ¼ K�

mð!Þ½A
�
mð!Þð1� 3gÞ þ 2B�

mð!Þ�

These expressions lead to the following results:

A�
i ð!Þ ¼

K�
mð!Þ½1� d�

ð!Þ�

K�
mð!Þ þ g½K�

i ð!Þ � K�
mð!Þ�

A�
mð!Þ ¼

½K�
i ð!Þ þ 2K�

mð!Þ�½1� d�
ð!Þ�=3

K�
mð!Þ þ g½K�

i ð!Þ � K�
mð!Þ�

B�
mð!Þ ¼

½K�
i ð!Þ � K�

mð!Þ�½1� d�
ð!Þ�ð1� 3gÞ=3

K�
mð!Þ þ g½K�

i ð!Þ � K�
mð!Þ�

The field-induced surface charge densities can be finally obtained using the Gauss
equation on both sides of the membrane:

��i ð!Þ=E¼ "m½A
�
mð!Þ þ 2B�

mð!Þ=ð1� 3gÞ� � "ið!ÞA
�
i ð!Þ¼

½K�
i ð!Þ"m � K�

mð!Þ"ið!Þ�½1� d�
ð!Þ�

K�
mð!Þ þ g½K�

i ð!Þ � K�
mð!Þ�
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��e ð!Þ=E ¼ "eð!Þ½1þ 2d�
ð!Þ� � "m½A

�
mð!Þ þ 2B�

mð!Þ�

¼ 3"eð!Þ �
fK�

i ð!Þ"m þ 2K�
mð!Þ"eð!Þ þ 2g½K�

i ð!Þ � K�
mð!Þ�½"eð!Þ � "m�g½1� d�

ð!Þ�

K�
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mð!Þ�

APPENDIX 2

In order to clarify the charging process of the cell membrane, we shall first consider a
spherical surface in air, with radius a and a surface charge density:

�ð	Þ ¼ �0 cosð	Þ

This configuration produces the following internal and external potentials:

Uiðr; 	Þ ¼
�0
3"0

r cosð	Þ

Ueðr; 	Þ ¼
�0a

3

3"0

cosð	Þ

r2

Therefore, the fields just inside and outside the poles of two concentric surface charge
densities with radii a� h and a, immersed in a uniform field E are

Eiða� h; 0Þ ¼ Eiða� h; �Þ ¼ E �
�i þ �e
3"0

Eeða; 0Þ ¼ Eeða; �Þ ¼ E þ
2�i
3"0

1þ
3h

a

� �
þ
2�e
3"0

where it is assumed that h  a.
Considering that these charge densities are created by the fields on both sides of an

insulating membrane, they must obey the following continuity equations:

d�iðtÞ

dt
¼ �ið0Þ E �

�iðtÞ þ �eðtÞ

3"0

� �

d�eðtÞ

dt
¼ ��eð0Þ

E þ 2�iðtÞ

3"0
1�

3h

a

� �
þ
2�eðtÞ

3"0

� �

To first order in h=a, the solutions of these equations are

�iðtÞ ¼ k1e
�t=1 þ k2 1þ

h

a

6�eð0Þ

�ið0Þ þ 2�eð0Þ

� �
e�t=2 þ

3"0Ea

2h
ð84Þ
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�ið0Þ
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� �
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� �
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where k1 and k2 are coefficients determined by the initial �ið0Þ and �eð0Þ values, and

1 ¼
3"0

�ið0Þ þ 2�eð0Þ
1þ
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� �
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The first, very short relaxation time corresponds to the delta relaxation. During the
whole beta relaxation process ðt � 1Þ, Eqs (84) and (85) show that the current flow just
inside the membrane is slightly larger than just outside it. Correspondingly, at the end of
this process, the total charge density on the outer side of the membrane is slightly smaller
than on its inner side:

�i1 ¼
3"0Ea

2h

�e1 ¼ �
3"0Ea

2h
1�

2h

a

� �

This qualitative relationship is necessary since �e1, together with E, must produce inside
the cell the same field strength as �i1. Nevertheless, this smaller charge density produces
outside a dipole field stronger than the inner distribution since its radius is larger.
Together, the two distributions lead to a dipolar coefficient equal to �1=2.

APPENDIX 3

The reason why the relaxation time �2 of the dipolar coefficient is shorter than the
relaxation time w of water is due to the presence of a spherical boundary around the
supended particle. To simplify the discussion, we shall consider the simplest system with
this kind of boundary: a spherical drop of water in air.

When a step field is applied to this system, the polarization PðtÞ increases at a rate
that is approximately proportional to the difference between its equilibrium and its present
values:

dPðtÞ

dt
¼

½"ið0Þ � "0�EiðtÞ � PðtÞ

w
ð86Þ

whereEiðtÞ is the field inside the system. For a sphere,EiðtÞ is related to the external fieldE by

EiðtÞ ¼ E �
PðtÞ

3"0
ð87Þ

which means that the internal field decreases as the polarization increases. Therefore, the
difference between the two terms on the right-hand side of Eq. (86) changes more rapidly
than if EiðtÞ were constant, which leads to a faster rate of change for the polarization.
Combining Eqs (86) and (87) leads to

dPðtÞ

dt
¼

½"ið0Þ � "0�E

w
�
½"ið0Þ þ 2"0�PðtÞ

3"0w

This expression shows that the polarization of a spherical sample has a relaxation time:

 ¼
3"0

"ið0Þ þ 2"0
w

which is shorter than the relaxation time of a continuous sample filling the space between
the plates of the condenser to which the step voltage is applied.
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APPENDIX 4

We consider, for sake of simplicity, that the particles in a suspension have dipolar coeffi-
cients characterized by just two relaxation processes:

d�
ð!Þ ¼

�L

1þ i!L
þ

�H

1þ i!H
þ d1 ð88Þ

We further assume that the high-frequency relaxation occurs at frequencies that are low
compared to the dipolar relaxation of water (H � wÞ. Under these conditions, the per-
mittivity of the suspension can be calculated using Eq. (9), considering that the dielectric
parameters of the electrolyte solution are frequency independent: K�

e ð!Þ ¼ �eð0Þ þ i!"eð0Þ.
This leads to

"sð!Þ ¼ "eð0Þ þ 3�"eð0Þ
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�eð0ÞL
"eð0Þ

� �
1þ !22L

þ

�H 1�
�eð0ÞH
"eð0Þ

� �
1þ !22H

þ d1

8>><
>>:

9>>=
>>; ð89Þ

If the two processes are considered separately, the expression for the dipolar coeffi-
cient corresponding to just the high-frequency relaxation term reduces to

d�
¼

�H

1þ i!H
þ d1 ð90Þ

so that the permittivity expression becomes

"sð!Þ ¼ "eð0Þ þ 3�"eð0Þ
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8>><
>>:

9>>=
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The corresponding expressions for just the low-frequency relaxation term are

d�
ð!Þ ¼

�L

1þ i!L
þ�H þ d1 ð92Þ

"sð!Þ ¼ "eð0Þ þ 3�"eð0Þ

�L 1�
�eð0ÞL
"eð0Þ

� �
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>>:
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As can be seen in Fig. 30, the full expression for the dipolar coefficnet, Eq. (88), is
equal at high frequencies to the high-frequency term, Eq. (90) and, at low frequencies, to
the low-frequency term, Eq. (92). On the other hand, Fig. 31 shows that although the full
permittivity expression, Eq. (89), is equal at high frequencies to the high-frequency term,
Eq. (91), it differs at low frequencies from the low-frequency term, Eq. (93).

A similar situation arises with the conductivity spectrum. Combining Eqs (8) and
(88) leads to the following expression for the conductivity of the suspension:
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FIG. 30 Real (black symbols) an imaginary (white symbols) parts of the dipolar coefficient for a
hypothetical suspension, Eq. (88), characterized by the following parameters: �L ¼ �0:2;
�H ¼ 0:9; d1 ¼ 0:1; 2�L ¼ 0:01; 2�H ¼ 0:0001. Squares: low-frequency term; diamonds: high-fre-
quency term; thick lines: full expression.

FIG. 31 Permittivity of the hypothetical suspension, Eq. (89), characterized by the dipolar coeffi-
cient parameters specified in Fig. 30 and by "eð0Þ ¼ 80"0 and �eð0Þ ¼ "eð0Þ=

ffiffiffiffiffiffiffiffiffiffi
LH

p
. Squares: permit-

tivity corresponding just to the low-frequency terms, Eq. (93); diamonds: same but for just the high-
frequency term, Eq. (91); thick line: full permittivity expression.



�sð!Þ ¼ �eð0Þ þ 3��eð0Þ �L þ�H þ d1 þ

�L!
22L

"eð0Þ

�eð0ÞL
� 1

� �
1þ !22L

þ

�H!
22H

"eð0Þ

�eð0ÞH
� 1

� �
1þ !22H

8>><
>>:

9>>=
>>;

ð94Þ

Considering separately the two relaxation terms, Eq. (90) for the high-frequency process
leads to

�sð!Þ ¼ �eð0Þ þ 3��eð0Þ �H þ d1 þ

�H!
22H

"eð0Þ

�eð0ÞH
� 1

� �
1þ !22H

8>><
>>:

9>>=
>>; ð95Þ

while the conductivity expression calculated using the low-frequency term, Eq. (92), results
in

�sð!Þ ¼ �eð0Þ þ 3��eð0Þ �L þ�H þ d1 þ

�L!
22L

"eð0Þ

�eð0ÞL
� 1

� �
1þ !22L

8>><
>>:

9>>=
>>; ð96Þ

Again, Fig. 32 shows that the full conductivity expression, Eq. (94), only coincides at
low frequencies with the low-frequency term, Eq. (96), but does not coincide at high
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FIG. 32 Conductivity of a hypothetical suspension, Eq. (94), characterized by the dipolar coeffi-
cient represented in Fig. 33 and by "eð0Þ ¼ 80"0 and �eð0Þ ¼ "eð0Þ=

ffiffiffiffiffiffiffiffiffiffi
LH

p
. Squares: conductivity

corresponding just to the low-frequency term, Eq. (96); diamonds: same but for just the high-
frequency term, Eq. (95); thick line: full conductivity expression.



frequencies with the high-frequency term, Eq. (95). This figure was drawn using the
dipolar coefficient spectrum represented in Fig. 33, since there is no single set of para-
meters for which the differences being discussed are clearly visible both in the permittivity
and the conductivity plots.

Figures 31 and 32 permit us to conclude that, in order to construct the full permit-
tivity (conductivity) spectrum from the component relaxation terms, the highest (lowest)
frequency term must be used together with just the frequency-dependent part of the
remaining terms.
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I. FREQUENCY DEPENDENCE OF INDUCED DIPOLE MOMENT OF
DISPERSED PARTICLES, AND ADMITTANCE OF SUSPENSIONS:
GENERAL FEATURES

The phenomena that result from the action of external electric fields on dispersed systems
are currently used in many methods of characterization of dispersed particles, as well as in
technology. The response of a dispersed system to an applied electric field may have
different physical natures. The most important ones for the characterization of suspended
particles are the purely electrical and the electromechanical responses.

The measurable values associated with the purely electrical response to an harmonic
electric field are the absolute permittivity " and conductivity k of the system. In order to
simplify the following considerations, it is convenient to represent the time dependence of
the harmonic external field EðtÞ, having a frequency !, by means of the complex multiplier
ei!t:

EðtÞ ¼ E � ei!t ð1Þ

The well-known advantage of this representation is that all the field-induced magnitudes
Xða; �; . . . ; tÞ also have this same time dependence (in the linear approximation with
respect to the external field):

Xða; �; . . . ; tÞ ¼ Xða; �; . . . ; !Þ � ei!t ð2Þ

If any of the magnitudes X had a relaxation at a frequency close to !, it would be out of
phase with respect to the external field. In the representation used, this corresponds to the
appearance of an imaginary part of Xða; �; . . . ; !Þ and also to a frequency dependence of
Xða; �; . . . ; !Þ. Here, � is the electrokinetic or zeta potential, and a is the particle dimension.
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Correspondingly, the full electric response of the disperse system can be character-
ized by the value of its complex permittivity:

"�ð!Þ ¼ "ð!Þ �
ikð!Þ

!
ð3Þ

It should be emphasized that the permittivity "ð!Þ and conductivity kð!Þ are real functions
of the frequency.

The contribution �"� of the dispersed particles to the complex permittivity of a dilute
suspension is determined by the superposition of the long-range electric fields of the
polarized particles together with their double layers:

�"�ð!Þ ¼ "�ð!Þ � "�mð!Þ ¼ 4�"
�
mð!Þ

1

V

X
i

d�i
E

ð4Þ

Here, d�i is the effective induced dipole moment of particle i (summation index) and V is
the volume of the suspension. The function:

"�mð!Þ ¼ "m �
ikm
!

ð5Þ

represents the complex permittivity of the dispersion medium. The effective induced dipole
moment d�i appears in the expression for the electric potential distribution �

�
e , valid in the

electroneutral electrolyte solution outside the double layer of the particle:

��e ¼ �Er cos 	 þ
d�i
r2
cos 	 ð6Þ

The first term on the right-hand side of this expression is the potential of the homogeneous
external field, and 	 is the angle between the radius vector of the point and the direction of
the field. The second term in Eq. (6) represents the long-range potential distortion pro-
duced by all the polarized inhomogeneities inside a closed surface situated in the electro-
neutral solution, and enclosing the particle together with its double layer. It must be
emphasized that the value of d�i characterizes the effective induced dipole moment of
the whole system, including the particle and the surrounding layer of solution bearing
the diffuse part of its electric double layer.

Equation (4) can be written in the following more familiar form (see, e.g., Ref. 1):

�"� ¼ 4�n"�m
d�

E
ð7Þ

where d� is the effective induced dipole moment averaged over all the particles and n is the
number of particles per unit volume of the suspension. The value of d� only coincides with
the effective induced dipole moment of every particle in the case that all the particles are
identical.

The contribution of the particles to the permittivity �" and conductivity �k of the
suspension can be expressed through the real and imaginary parts of Eq. (7):

�"þRe�"� ¼ 4�n "mRe
d�

E
þ
km
!
Im
d�

E

� �
ð8Þ

�k ¼ �! Im �"� ¼ 4�m kmRe
d�

E
� !"mIm

d�

E

� �
ð9Þ

The ratio of effective induced dipole moment to the external field strength


�i ¼
d�i
E

; 
� ¼
d�

E
ð10Þ
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is denoted as the polarizability, rather than the effective polarizability, for conciseness, and
following the usage in other works [1, 3, 4] dealing with the double-layer polarization.

If the frequency ! is far away from any polarization dispersion range, the time
variations of the induced dipole moment d� are almost in phase with the time variation
of external field E and hence, in accordance with Eq. (10), the polarizabilities 
�i and 


� are
both almost purely real magnitudes. Inside a dispersion frequency range, the induced
dipole moment is out of phase with respect to the external field, so that both 
�i and 


�

are essentially complex.
It can be seen from Eqs (7) and (8) that both the real and imaginary parts of the

complex polarizability contribute to the permittivity �" and the conductivity �k. However,
in order to answer the question on which of the contributions [Reð
�Þ or Im(
�Þ� is the
most important, and under which conditions, it is necessary to introduce an important
concept dealing with a point in the frequency scale. This point corresponds to the reci-
procal of the relaxation time of the electrolyte solution:

!el 	
1

�el
	
km
"m

ð11Þ

The value of �el characterizes the time required for the screening of charges and electric
field perturbations in the electrolyte solution. Its role in the time dimension is similar to
that of the Debye screening length RD 	 1= in the length dimension.

The angular frequency !el, Eq. (11), divides the frequency scale into two ranges (see
Fig. 1):

! < !el ð12Þ

and

! > !el ð13Þ

In the left-hand range, where the frequencies are low with respect to !el, Eqs (5) and (11)
show that the absolute value of the imaginary part of the complex permittivity of the
electrolyte solution, "�m, exceeds the real part. Therefore, in this frequency range the
major part of the total current is made of conduction current (determined by ion move-
ment), whereas the displacement current (related to the polarization of the medium)
contributes with a smaller part. At very low frequencies, where Eq. (12) becomes a
strong inequality, the conduction current represents the overwhelming part of the
total current.

Let us consider that the polarizability of the dispersed particles is characterized by
two relaxation processes, one with characteristic frequency !l, far in the left-side range:

!l 	
1

�l

 !el 	

1

�el
ð14Þ

and the other with characteristic frequency !h far in the right-side range:

!h 	
1

�h
� !el 	

1

�el
ð15Þ

The particle is made of a nonconducting medium so that, besides these two disper-
sion bands, it will necessarily exhibit the usual Maxwell-Wagner dispersion with the well-
known polarizability expression:


MW ¼ a3
"�pef � "

�
m

2"�m þ "�pef
ð16Þ

Suspensions in Alternating External Electric Field 331



FIG. 1 Left characteristic features of the spectrum of particle polarizability [Re(
Þ=a3 and
Reð
Þ=a3] for three relaxation processes of particle polarization (see text). Right: associated spectra
of the specific dielectric increment (�"="mÞ and conductivity increment ð�k=kmÞ of suspensions.
(a): "p="m ¼ 1=2 > kpef=km; (b): "p="m ¼ 1=40 < kpef=km. Parameters: "m ¼ 80"0; km ¼ 2:4� 10�3

S/m; kp ¼ 0; kper=km ¼ 2�=akm ¼ 0:2;!l ¼ 10
�2:5!el;!h ¼ 10

2:5!el.



Here, the effective complex permittivity of the particle:

"�pef ¼ "p �
i

!

2�

a
ð17Þ

includes not only the value of the inner permittivity "p, but also the contribution of the

surface conductivity �, by means of an equivalent inner conductivity kpef ¼
2�

a
[2].

The real and imaginary parts of 
MW vary with frequency in the central part of Fig.
1, since the characteristic frequency of the Maxwell–Wagner relaxation is almost always
close to 1=�el: The low- and high-frequency limits of 
MW have the following values:


MWjl ¼ a
3 kpef � km
2km þ kpef

ð18Þ


MWjh ¼ a
3 "p � "m
2"m þ "p

ð19Þ

The characteristic frequency of the Maxwell–Wagner dispersion for nonconducting par-
ticles with a surface conductivity that is not very high, practically coincides with !el.
Therefore, assuming that the strong inequalities (14) and (15) hold, we may consider

MWji as being the high-frequency limit of the polarizability for the low-frequency disper-
sion, and 
MWjh as the low-frequency limit of the polarizability for the high-frequency
dispersion. Considering, for simplicity, that simple Debye type functions describe the
frequency dependence of both the low- and high-frequency relaxation processes:


�jl ¼ 
MWjl þ
Gl

1þ i!�l
ð20Þ


�jh ¼ 
MWjh þ
Gh � i!�h
1þ i!�h

ð21Þ

where Gi and Gh are, respectively, the amplitudes of the low- and high-frequency disper-
sions.

Under these assumptions, the full frequency dependence of the polarizability is
described by the following expression:


� ¼
Gl

1þ i!�l
þ a3

"�pef � "
�
m

2"�m þ "�pef
þ
Gh � i!�h
1þ i!�h

ð22Þ

Plots of the frequency dependence of both the real and imaginary parts of 
�, of the
contribution of the particles to the permittivity ð�"Þ and conductivity ð�k�Þ of the suspen-
sion (curves labelled 3), and of the components of these magnitudes ("mRe

d�

E (curve 2) and

k
! Im

d�

E (curve 1) for �"
�; km Re

d�

E
(curve 2) and !"mIm

d�

E
(curve 1) for �k�), calculating

using Eqs (8)–(10) and (22), are represented in Fig. 1. It can be seen that in the left-hand

frequency range !

km
"m

� �
, the relative contribution of the particles to the permittivity is

very large and surpasses by many times their relative contribution to the conductivity. This
corresponds to a well-known feature of the LFDD (low-frequency dielectric dispersion)
phenomenon. The physical mechanism of this dispersion, first described in Ref. 3, consists
in the conversion of the conductive current into a very large (at low frequencies) electro-
static induction, due to the action of the out-of-phase field created by the slow [4] polar-
ization of the particles.
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In the right-side range ð!
 km="mÞ, Fig. 1 shows a very large variation in the
conductivity and a comparatively small variation in the permittivity of the suspension,
caused by the high-frequency dispersion of the induced dipole moment of the particles.
This high-frequency conductivity dispersion (HFCD) is in a certain sense the symmetrical
phenomenon of LFDD. Due to the low-frequency relaxation process, the out-of-phase
dipole moment produces an out-of-phase conductive current, which is indistinguishable
phenomenologically from an in-phase displacement. This gives rise to a very high permit-
tivity at low frequencies. Analogously, due to the high-frequency relaxation process, the
out-of-phase dipole moment produces an out-of-phase polarization, which is indistin-
guishable phenomenologically from a conductive current, since its time derivative is in
phase with the field. This gives raise to a very high conductivity at high frequencies.

Both at very low and very high frequencies, the major influence of the presence of the
particles on the suspension properties is determined by the imaginary part of the complex
polarizability:

�" � 4�n
km
!
Im
� for ! ffi !i 
 !el ð23Þ

�k � 4�n!"mIm

� for ! ffi !h � !el ð24Þ

It is finally worth noting that the usual relaxation type of the frequency dependence
of the admittance components – i.e., a monotonic decrease (increase) of the permittivity
(conductivity) with increasing frequency – requires, in view of Eqs (8), (9), (23), and (24),
Im(
�Þ to be positive (negative) for the low-frequency (high-frequency) dispersion:

Im
� > 0 for ! ffi !i 
 !el ð25Þ

Im
� < 0 for ! ffi !h � !el ð26Þ

As for the vicinity of !el, the contributions of both Re(

�
Þ and Imð
�Þ to the

components of the complex admittance have comparable values, so that both signs of
Imð
�Þ are possible for the usual behavior of these components. The sign of Imð
�Þ in
the Maxwell–Wagner dispersion depends on the ratios of the conductivities and dielec-
tric permittivities of the two intervening media. If the particle-to-medium permittivity
ratio ep=em is greater (smaller) than the corresponding conductivity ratio

kpef
km

¼ kp þ
2�

km

� ��
km, the sign of Im(


�) is negative (positive) (cf. Fig. 1a and Fig.

1b). Another interesting feature of the Maxwell–Wagner dispersion is that, in spite of a
very large absolute value and sign variations of Imð
�Þ, the frequency dependence of
both components of the admittance is very small and always of the usual type. This
occurs because of an almost complete compensation of the contributions of Imð
�Þ and
Reð
�Þ to both the permittivity [Eq. (8)] and conductivity [Eq. (9)] amplitudes.

II. GENERAL FEATURES OF ELECTROROTATION SPECTRA:
DISCREPANCIES BETWEEN THE TRADITIONAL THEORY AND LOW-
FREQUENCY EXPERIMENTAL RESULTS

A widely used and investigated kind of electromechanical response of dispersed particles
to an external electric field is electrophoresis. While there is no direct relation between this
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phenomenon and the admittance of a suspension in the general case, the theory of the
volume diffusion mechanism of the LFDD [1, 3] established that the diffuse part of the
electrical double layer (EDL), which is responsible for electrophoresis, has also a very
important role in LFDD (the so-called �-dispersion). There is, however, another kind of
electromechanical response that is a close relative of the phenomenon of dispersion of the
admittance of a suspension. It is the phenomenon of electrorotation, which we will con-
sider here.

Electrorotation is best described as the slow (of the order of units of rad/s) rotation
of suspended particles under the influence of an external electric field that rotates with an
angular velocity in the range 104�109 rad/s (or 103�108 Hz). Electrorotation is caused by
relaxation process taking place during the polarization of the particle, the bulk solution,
and the interface. If the frequency of the rotating field becomes comparable to the reci-
procal of the characteristic time of at least one of the relaxation processes contributing to
the polarization of the particle, an angle forms between the induced dipole moment and
the external field. The interaction of the electric field ~EE with the nonparallel dipole moment
~dd�i of the particle results in a torque ~MMi [5]:

~MMi ¼ 4�"m½ ~dd
�
i �

~EE� ð27Þ

where the factor relates the induced dipole moment to its effective value ~dd�i , which appears
in Eq. (6).

The angle between the induced dipole moment and the external field vectors, which
arises in a rotating field, is equal to the phase difference between the complex induced
dipole moment and external alternating field. Therefore, the torque [Eq. (27)] can be
expressed in accordance with Eq. (10) by means of the imaginary part of the complex
polarizability:

Mi ¼ �4�"2 Im
�i ð28Þ

In the framework of the traditional approach of the electrorotation theory [5–15], this
torqueM is the only cause for the field-induced angular speed �Mi of electrorotation of a
spherical particle:

�Mi ¼
Mi

8��a3
¼ �

"mE
2Im
�i
2�a3

ð29Þ

where � is the viscosity of the bulk solution.
The negative sign in this formula shows that for positive values of Im(
�i Þ (the

induced dipole moment leads in phase the external field so that the induced dipole moment
vector ~dd�i rotates ahead of vector ~EE), the torque ~MMi tends to rotate the particle in the
direction opposite to the field rotation, causing the so-called counterfield electrorotation.
Correspondingly, if Im(
�i Þ is negative, the induced dipole moment vector lags the rotating
field, leading to cofield electrorotation.

The rotational velocity of colloidal particles is usually recorded as a function of the
frequency of the applied rotating field, leading to electrorotation spectra. The above
considerations show a close relationship [5,7] between these spectra and those correspond-
ing to the permittivity of the suspension, since both are determined [in the framework of
the applicability of Eq. (29), see below] by the same characteristic: the effective induced
dipole moment of a polarized particle and its surrounding double layer. This line of
reasoning is in good agreement with many experimental findings obtained at high enough
frequencies of field rotation [5, 7–15].
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However, even using the traditional approach based on Eq. (29), there are some
essential differences in the character of the information that can be deduced from admit-
tance and electrorotation spectroscopies. The characteristic feature of electrorotation
spectra is that they reflect the frequency dependence of Im(
�i Þ only, while admittance
spectra depend on both Im(
�i Þ and Re(


�
i Þ. Furthermore, Figs 1a and 1b show that in the

frequency range of the Maxwell–Wagner dispersion, the contributions of Im(
�i Þ and
Re(
�i Þ almost fully compensate each other in the case of nonconducting particles.
Therefore, electrorotation spectra appear to be much more sensitive to the particle para-
meters that determine the Maxwell–Wagner polarization as, for example, the permittivity
of nonconducting particles suspended in electrolyte solution, than admittance spectra. If
the particle is inhomogeneous with regard to its conductivity and dielectric parameters,
several minima and maxima can be observed in an electrorotation spectrum, each one
corresponding to a specific dispersion process.

Another distinguishing feature of electrorotation spectra is that they are deter-
mined by the induced dipole moment of a single rotating particle, while the permittivity
of a suspension is a macroscopic property that depends on the average induced dipole
moment of the suspended particles. This is why the electrorotation technique may be
considered as a dielectric spectroscopy technique applicable at the single-particle level. It
has been shown that the obtaining of electrorotation spectra is especially suitable for
studying the biological cell membrane and the dialectric properties of the cell interior
½8; 10; 11; 13�18�.

It is important to note that while Eqs (8) and (9) are always valid for sufficiently
diluted suspensions, there are some important cases when relation (29) is not applicable
for the description of particle electrorotation. The incompleteness of the traditional
approach based on this equation becomes apparent by comparing measurements of
low-frequency electrorotation with the most general features of the permittivity dispersion
corresponding to the lowest frequency range (see Figs 1a and 1b). The generally measured
behavior of �"ð!Þ consists of a monotonic decrease with increasing frequency. This beha-
vior corresponds (see Eq. (25)] to a positive sign of Im(
�i Þ and hence, according to Eq.
(29), to a counterfield peak of the low-frequency electrorotation. On the other hand, recent
measurements of electrorotation at the lowest attainable frequencies [Eq. (25)] clearly
show a cofield peak of electrorotation. Such a behavior was first reported [5] in 1987 by
Arnold et al. for polymer latex particles suspended in electrolyte solutions, i.e., precisely
for the systems for which the low-frequency admittance dispersion was extensively studied
[19–21], always showing the usual behavior (decreasing permittivity and increasing con-
ductivity with increasing frequency). This strange behavior of the low-frequency electro-
rotation was later confirmed for many different systems [12, 15, 22, 23]. The observations
of cofield electrotation together with the usual frequqency dependence of the admittance
components at low frequencies clearly pointed at an essential restriction in the applicabil-
ity of Eq. (29).

The physical cause of this restriction, clarified in Ref. 24, is the following. When the
medium surrounding the particle is an electrolyte solution, a significant part of the field-
induced charges are located in the external Debye atmosphere, i.e., within the hydrody-
namically mobile liquid. Therefore, a significant part of the total torque is applied to the
liquid within the Debye atmosphere rather than directly to the particle, inducing a rotation
of the Debye atmosphere with respect to the particle’s surface. Consequently, besides using
Eq. (29) to determine the joint rotation of the particle together with its Debye atmosphere,
it is necessary to determine the relative rotation of the particle with respect to its Debye
atmosphere. Instead of being determined by the total induced dipole moment, this relative
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motion is produced by torques applied to the particle and to its double layer. These
torques are equal in absolute value but opposite in sign so that the total torque is zero.

This new component of electrorotation constitutes a rotational analog of electro-
phoresis: a rotation of the particle with respect to its double layer without the action of a
total torque just as in electrophoresis, where there is a relative translation of the particle
with respect to its double layer without the action of a total force.

The effect on the electrorotation spectra of this relative rotation of a particle and its
double layer is especially important when a relatively small total torque is the result of two
large opposite torques applied to the inner and outer parts of the double layer. This is
precisely the case for both known mechanisms of the LFDD: the concentration polariza-
tion (volume diffusion mechanism of double-layer polarization) and the Schwarz mechan-
ism (surface diffusion mechanism of double-layer polarization).

Quantitatively, the contribution of this new factor to electrorotation is up to now
only considered [24, 25] for the limiting case of a very thin souble layer, i.e., when the
Debye screening length RD ¼ 1= is very small as compared to the radius a of the spherical
particle:

a ¼
1

Rd
� 1 ð30Þ

When this condition is fulfilled, the angular velocity �S can be expressed in terms of the
rotational component of the electro-osmotic slip velocity of the outer surface of the double
layer with respect to the surface of the particle. The local value of this velocity, �S, at any
given point of the quasiflat [due to Eq. (30)] particle surface is expressed as a function of
the tangential component of the electric field, ES, by the well-known Smoluchowski for-
mula:

�S ¼ �
"m�

�
ES ð31Þ

Here it is important to note that the local value of the � potential includes both the
equilibrium (field-independent) component �0 and the field-induced part ��:

� ¼ �0 þ �� ð32Þ

The rotational component of the electro-osmotic slip arises as a result of the tan-
gential component of the electric field acting on the field-induced component of the zeta
potential, ��, whenever the symmetry axis of the ES distribution forms a finite angle with
that of the �� distribution. This angle arises due to the relaxation of the double-layer
polarization, which causes a phase difference between the ES and �� distributions.

The distribution of � along the surface may be represented in the usual form:

� 	 �0 þ �� ¼ �0 þ K
�Ea cos 	 ð33Þ

where K� is a field-independent quantity, characteristic of the polarization of the particle
surface. It can be considered as the complex amplitude of the field-induced variation of the
� potential. The distribution of ES follows from Eqs (6) and (10):

ES ¼
1

r

@�

@	

����
r¼a

¼ � 1�

�i
a3

� �
E sin 	 ð34Þ

Equations (33) and (34) show that the axes of symmetry of �� and ES rotate synchro-

nously with E ¼ E0e
i!t and are directed, respectively, as K�Ea ¼ K�E0ae

i!i and
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� 1� 
�i
a3

� �
E ¼ � 1� 
�i

a3

� �
E0e

i!t. Therefore, they form finite phase angles both with E and

with one another.

There are two pairs of mutually orthogonal components of the rotating axes:

Ea ImK�; �ERe 1�

�i
a3

� �
¼ �E 1�Re


�i
a3

� �

and

EaReK�; �E Im 1�

�i
a3

� �
¼ Re


�i
a3

Both pairs contribute, in accordance with Eq. (31), to the tangential movement of the
outer surface of the double layer with respect to the particle’s surface, which leads to
rotating electro-osmotic slip velocity �S (in a plane containing the center of the particle
and the rotating field vector):

�RS ¼ �
"ma

2�
E2
Im
�

a3
ReK�

þ 1�
Re
�

a3

� �
ImK�

� 	
ð35Þ

The factor 12 in this expression appears because of the difference between the rotation of
the outer surface of the double layer as a whole and the general angle dependence of the
local �S value [24, 25].

The angular velocity of the particle with respect to the liquid at the outer surface of
the thin double layer is, Eq. (35):

�S ¼ �
�RS
a

¼
"m
2�
E2
Im
�

a3
ReK�

þ 1�
Re
�

a3

� �
ImK�

� 	
ð36Þ

The total angular velocity of electrorotation, observed experimentally, is represented by
the superposition of two contributions:

� ¼ �M þ�S ð37Þ

. The traditional �M caused by the action of the total torque acting on the particle
together with its double layer and expressed in Eqs (27) and (28). It is a function
of just one characteristic magnitude of the polarized particle: the imaginary part
of its polarizability.

. The new �S, caused by the rotational electro-osmotic slip of the particle with
respect to the double layer Eqs (36) and (33), which depends on two character-
istic magnitudes of the polarized particle: its polarizability and the complex
amplitude of the field-induced variation of the � potential. This new contribution
explains the very strong quantitative and qualitative discrepancies between
admittance and electrorotation spectra observed at very low frequencies.

We will now discuss the admittance and electrorotation spectra for two models of
double-layer polarization: the volume diffusion model, based on the so-called standard
model of the kinetic properties of the double layer, and the surface diffusion model, based
on the concept of a diffusion-controlled polarization of the dense part of the double layer,
and without any exchange (or with a hindered exchange) between the dense and diffuse
parts of the double layer.

We will use these two models of the double-layer kinetics together with a single
model for the volumetric properties of the disperse particle and electrolyte solution. The
suspended particle is represented by an insulating sphere of radius a, while the surround-
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ing electrolyte solution is characterized by its viscosity �, absolute permittivity "m, the
valencies of its ions z�, their diffusion coefficients D�, and their concentrations far from
the particle C�

ð1Þ. We will consider that there are only two types of ions and that there
are no ion pairs.

III. LOW-FREQUENCY DISPERSION OF INDUCED DIPOLE MOMENT AND
AMPLITUDE OF FIELD-INDUCED ZETA POTENTIAL IN FRAMEWORK
OF THE STANDARD MODEL OF THE THIN EDL

A. Induced Dipole Moment

According to the standard model [26], which was used in the great majority of works on
the theory of double-layer polarization, e.g., Refs 27–34, we consider that the particle has
a uniform surface charge density � in the dense part of the EDL. We assume, as is usually
done, that the viscosity, the diffusion coefficients, and the permittivity have constant
values everywhere outside the charged surface of the particle. These assumptions are
equivalent to the equality of the potential change across the diffuse part of the double
layer and the � potential. We further assume that the ions belonging to the dense part of
the double layer are immobile. This makes it possible to identify the surface of the particle
with the boundary between the condensed and the diffuse parts of the double layer, the
surface potential with the potential at this boundary, and the surface charge with the
charge inside this boundary.

The problem of double-layer polarization consists in finding the solution to the well-
known equation system that includes: the material balance equations for the ionic com-
ponents (superscripts ‘‘+’’ and ‘‘�’’ for cations and anions, respectively); the Nernst–
Planck equation for the ion flows ~jj� under the action of the electric potential �, ionic
concentration ðC�

Þ gradients, and of the convection velocity of the solution ~��; the Poisson
equation, in which the bulk charge density is expressed in terms of the concentrations of
cations and anions; and the Stokes equation, containing the volume force created by the
action of electric field on the bulk charge density:

r � ~jj� ¼
@C�

@t
ð38Þ

~jj� ¼ �D�
rC�

�
e

kT
D�C�z�r�þ C�~�� ð39Þ

r
2� ¼ �

eðzþCþ
� z�C�

Þ

"m
ð40Þ

�r2~��� rP ¼ ðzþCþ
� z�C�

Þer� ð41Þ

This equation system can be simplified by using the principle of local equilibrium,
which permits us to consider that every volume element that is sufficiently small is in
equilibrium, despite the fact that the whole volume is in a nonequilibrium state. This
principle makes it possible to characterize the distribution of nonequilibrium fields in
the medium surrounding the polarized particle by the distribution of parameters in a
so-called virtual electrolyte solution. This virtual solution can be defined for every point
~rr of the ‘‘real’’ nonequilibrium system (including points inside the double layer), as an
electroneutral solution with parameter values chosen in such a way that it is in equilibrium

Suspensions in Alternating External Electric Field 339



with the ‘‘real’’ solution at the considered point. It must be emphasized that, in general,
the ‘‘real’’ solution is not electroneutral, for example, for points ~rr inside a diffuse part of
the EDL.

The parameters of the ‘‘real’’ solution are: electric potential �ð~rrÞ, cation and anion
concentrations C�

ð~rrÞ, and hydrostatic pressure Pð~rrÞ. The parameters of the electroneutral
virtual solution are: electric potential �ð~rrÞ, electrolyte concentration nð~rrÞ, and hydrostatic
pressure pð~rrÞ. Both sets of parameters differ from one another by the so-called quasiequi-
librium potential �qeqð~rrÞ, the quasiequilibrium excesses of cation and anion concentrations

�qeqð~rrÞ, and the quasiequilibrium excess of pressure �:

� ¼ �þ�quq ð42Þ

C�
¼ z�nþ 
�qeq ð43Þ

P ¼ pþ� ð44Þ

The following relations between the values nð~rrÞ, �qeqð~rrÞ, 

�
qeqð~rrÞ, and �ð~rrÞ provide the

thermodynamic and mechanical local equilibrium between any given macroscopically
small volume of electrolyte solution at the point ~rr, and the corresponding virtual solution
(see, e.g. Ref. 35):


�qeq ¼ z
�nð~rrÞ exp �

z�e�qeq
kT

 !
� 1

" #
ð45Þ

� ¼ RTnð~rrÞ z� exp �
zþe�qeq
kT

� �
� 1

� �
þ zþ exp

z�e�qeq
kT

� �
� 1

� �� 	
ð46Þ

These expressions look like the well-known equilibrium relations for the excesses of
ion concentrations and of hydrostatic pressure in the equilibrium EDL when the electro-
lyte concentration value outside the double layer is n. The difference between the equili-
brium and the nonequilibrium systems is that in the latter the parameters of the virtual
solution � and n are position dependent, whereas for the former these parameters are
constant throughout the system. This position dependence of the parameters of the virtual
solution is a sufficient condition for nonequilibrium. Therefore, the equations of irrever-
sible thermodynamics (particularly the Nernst–Planck and Navier–Stokes equations) can
only contain gradients of these parameters and cannot include any gradients of quasie-
quilibrium distributions (particularly, no gradients of the field-induced component of
�qeq). Taking this into account, the substitution of Eqs (42)–(46) into Eqs (39)–(41)
leads to the following form of the basic equation set of the problem:

r � ~jj� ¼ �
@C�

@t
ð47Þ

j� ¼ ð1þ g�Þ ð�D�
rn� z�

e

kT
D�nr�þ n~��Þ ð48Þ

r
2
ð�þ�qeqÞ ¼ �

e

"m
nzþz�ðgþ � g�Þ ð49Þ

�r2~��� rp� kTðz�gþ � zþg�Þ ~rrnð~rrÞ � ezþz�ðgþ � g�Þr� ¼ 0 ð50Þ
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where

g� ¼ exp �
ez��qeq
kT

 !
� 1 ð51Þ

A very important simplification of this equation set arises in the case of a weak
external field, using an expansion in successive powers of the field strength [35]. Since
r�ð~rrÞ, rnð~rrÞ, and rpð~rrÞ do not contain field-independent terms, restricting our considera-
tion just to the first-order terms in the electric field strength, all the field-dependent terms
of the coefficients of these gradients can be dropped. As a result, all the coefficients in the
equation set only depend on the equilibrium potential distribution �eq, and hence Eqs
(47)–(50) should be solved using the following expression for g�:

g� � g�0 ¼ exp �
ez��eq
kT

 !
� 1 ð52Þ

In the electrolyte solution outside the double layer, the equilibrium potential vanishes:
�eq ¼ 0, so that the approximation of local electroneutrality applies even for an alternat-
ing external field [3]. Therefore, wherever �eq ¼ 0, one may consider C

�
¼ z�n. Making

the substitutions:

�eq ¼ 0;C
�
¼ z�n ð53Þ

in Eqs (47), (48), and (52) leads, in view of Eqs (1) and (2), to the following equations for
the dimensionless distributions of electric potential ~�� and electrolyte concentration ~nn out-
side the double layer:

r
2 ~�� ¼

i!

Def
�� ~nn ð54Þ

r
2� ~nn ¼

i!

Def
� ~nn ð55Þ

where

Def ¼
DþD�

ðzþ þ z�Þ

Dþzþ þD�z�
ð56Þ

� ¼
D�

�Dþ

Dþzþ þD�z�
ð57Þ

Here, the field-induced ð�nÞ and field-independent or equilibrium ðNÞ parts of n are deter-
mined, as usual, by

n ¼ N þ �n

Equations (55) and (28) can be easily solved, leading to the following distributions of
� and �n outside the double layer:

� ~nn ¼ Ke
exp½�ð1þ iÞWðr=a� 1Þ�

r2=a2
1þ ð1þ iÞW r=a

1þW þ iW

aEa

kT
cos 	 ð58Þ

~�� ¼
Kda

2

r2
�
r

a

" #
eEa

kT
cos 	 þ�� ~nn ð59Þ
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where

W ¼

ffiffiffiffiffiffiffiffiffiffi
!a2

2Def

s
ð60Þ

while Kc and Kd are frequency-dependent integration coefficients; Kc is proportional to the
variation in electrolyte concentration on the surface of the particle, while Kd is propor-
tional to its induced dipole moment (actually Kc is proportional to the variation in elec-
trolyte concentration calculated using expressions valid outside the thin double layer and
extrapolated up to the surface of the particle).

The coefficients Ke and Kd can be determined by integrating the continuity equation
written for the difference between the total ion flows ~jj� and the flows ~jj�l calculated using
expressions which are only valid outside the double layer:

ð1
a

1

r

@

@r
r½~jj� � ~jj�l �rdr ¼ �

ð1
a

1

r sin 	

@

@	
sin 	½~jj� � ~jj�l �0dr�

ð1
a

@

@t
C�

� z�n
� �

dr ð61Þ

In this expression, the long-range (subscript ‘‘l’’) ion flows are

~jj�l ¼ �z�ND�
r� ~��þ z�N~�� ð62Þ

The integrals can be analytically evaluated in the case when the double layer is thin as
compared to the radius of the particle:

a� 1 ð63Þ

The simplifications corresponding to this case, which were first used in Refs 27 and 28 for
stationary fields, presented in detail in Ref. 1 for periodic fields, and whose validity was
numerically verified [31] are:

. The curvature of the surface is only taken into account in the solution of the
equations corresponding to the electroneutral electrolyte, while the equations
inside the thin double layer are solved assuming a locally flat surface.

. Each portion of the double layer is considered to be in a state of local equili-
brium, which means that the electrochemical potentials, as well as their tangen-
tial derivative, do not change across the double layer.

Using these simplifications Eq. (61) reduces to [36]

z�NDrr� ~��
�
��
a
¼ �

1

a sin 	

@

@	
sin 	 D�G�

0 r	� ~��
�
��
a
þ

ð1
a

ðz�N � C�
0 Þ~��dr

2
4

3
5

8<
:

9=
; ð64Þ

where G�
0 are the adsorption coefficients for the two types of ions:

G�
0 ¼

ð1
a

C�
0 � C�

0 ð1Þ
�  

dr ð65Þ

Equation (64) expresses the condition that ion flows arriving at the double layer spread out
along the surface of the particle.
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In all that follows we shall consider the case where zþ ¼ z� ¼ z, since it is the only
situation when analytical results can be obtained. In this case, the adsorption coefficients
become

G�
qeq ¼

2zn

qeq
exp

z�qeq
2

� �
� 1

� �
ð66Þ

where �qeq and qeq are, respectively, the quasiequilibrium � potential of the particle and
the local reciprocal thickness of the quasiequilibrium double layer. The local parameters of
the thin quasiequilibrium double layer correspond to its local equilibrium with the virtual
electrolyte solution of concentration nða; 	Þ near the given point of the particle’s surface.
Note that the parameters of a fully equilibrium double layer correspond to an equilibrium
electrolyte concentration, neq, identical for all the points.

In order to solve Eq. (50), the fluid velocity �	 needs only be calculated inside the
double layer, since the factor multiplying �	 in this equation vanishes outside. For a thin
double layer, and in view of restriction (63), the fluid velocity inside can be obtained by
solving Eq. (50) for a plane interface under the action of tangential gradients of the electric
potential � and of the concentration n. The local equilibrium of the thin double layer
means, in terms of the definition of the virtual solution, that the parameters of the latter,
namely, �, n, and p, do not change across the thin double layer:

r	�ðrÞ
��
a�r�aþO 1



� �� const;r	nðrÞ��a�r�aþO 1


� �� const;r	pðrÞ��a�r�aþO 1


� � � const ð67Þ

Consequently, the tangential components of the gradients of � and n may be considered
constant across the double layer. The tangential component of the gradient of p may be
neglected, since the pressure gradient at the outer boundary of the double layer vanishes.
This corresponds to the well-known feature of electrophoretic motion [37], when no total
force acts on the electroneutral system composed of the particle together with its double
layer:

r	pðrÞ
��
r¼aþO 1



� � ¼ 0 ð68Þ

and, in accordance with Eq. (67):

r	pðzÞ
��
a�r�aþO 1



� � ¼ 0 ð69Þ

We consider a flat charged surface and choose an orthogonal coordinate system with
the x-axis extending in the normal direction from the surface and towards the fluid. In
accordance with Eqs (44), (46) and (69), the tangential component of Eq. (50) can be
rewritten for the convection, considering a thin quasi-flat diffuse layer, as

�
d2�	
dx2

� kT ðz�gþ þ zþg�Þr	nða; 	Þ � ez
þz�ðgþ � g�Þr	�ða; 	Þ ¼ 0 ð70Þ

The surface conditions for this equation at the particle surface ðx ¼ 0Þ and at the outer
boundary of the EDL ðx! 1Þ are

�	
��
x¼0

¼ 0;
d�	
dx

����
x!1

¼ 0 ð71Þ
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Integrating Eq. (70) and using condition (71) leads to the following distribution of �	:

�	 ¼ kTzr	nða; 	Þ

ð1
x0

dx0
ðx0
0

ðgþ þ g�Þdx00 þ ez2r	�ða; 	Þ

ð1
x0

dx0
ðx0
0

ðgþ � g�Þdx00 ð72Þ

The integrals can be analytically calculated in the case of a symmetrical electrolyte by
using the usual procedure that consists in a change of the integration variable from the co-
ordinate x to the quasiequilibrium potential. In quasiequilibrium, the Poisson equation
(49), combined with Eq. (51), reduces to

d2�qeq

dx2
¼
enz2

"m
sinh

ze�qeq
kT

which can be integrated once leading to

d ~��qeq
dx

¼ �
qeq
z
sinh

z ~��qeq
2

ð73Þ

Using this result, the right-hand side of Eq. (72) can be reduced to

�	 ¼ kTqeqr	nða; 	Þ

ð�qeq
0

d�0
qeq

ð�0
qeq

�qeq

ðgþ þ g�Þ sinh
z�00
qeq

2
d�00
qeq

þ ezqeqr	�ða; 	Þ

ð�qeq
0

d�0
qeq

ð�0
qeq

�qeq

ðgþ � g�Þ sinh
z�00
qeq

2
d�00
qeq

ð74Þ

Substituting g�, written for the case zþ ¼ z� ¼ z, Eq. (51) leads to the following analytical
solution of Eq. (74):

�	 ¼
4"m
�

kT

ze

� �2
ln
cosh

z ~��qeq
4

cosh
z ~��qeq
4

2
664

3
775r	 ~nn� kT

e

� �2"mð ~��qeq � ~��qeqÞ

�
r	

~�� ð75Þ

Here

~��qeq ¼
e

kT
�qeq; ~��qeq ¼

e

kT
�qeq; ~��qeq ¼ ~��eq þ � ~��qeqð	Þ;

~��qeq ¼ ~��qeq
��
x¼0

� ~��eq þ � ~��qeqð	Þ
ð76Þ

are the potential distribution and the � potential of the thin polarized quasiequilibrium
double layer, which contain field-induced terms: ��qeq, and ��qeq, in addition to the field-
independent equilibrium terms: �eq and �eq. It must be emphasized that the capillary-
osmotic and the electroosmotic liquid velocity distributions in the thin polarized double
layer [first and second addends in the right-hand size of Eq. (75)] were obtained without
any restrictions concerning a linear approximation with respect to the applied field.
Therefore, this equation may be used for the consideration of nonlinear effects of the
double-layer polarization. In particular, the second (electro-osmotic) term may be com-
bined with expressions (31)–(34) to obtain easily the electro-osmotic slip component that is
second order in the applied field and, correspondingly, the electro-osmotic component of
electrorotation.
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For the case of the linear approximation, the quasiequilibrium potential distribu-
tions of ~��qeq ¼ ~��eq þ � ~��qeqð	Þ and ~��qeq ¼ ~��eq þ � ~��qeqð	Þ, which contain field-dependent
terms, must be replaced by expressions corresponding to the equilibrium double layer:

~��qeq; ~��qeq; qeq ) ~��eq; ~��eq; eq ð77Þ

For brevity, hereafter we omit the subscript ‘‘eq’’ in the designation of potentials and
reciprocal thickness of the equilibrium double layer, bearing in mind that
�eq 	 �; �eq 	 �; eq 	 .

The integral in Eq. (64) can now be solved using for the velocity the sum of the
electro-osmotic and the capillary osmotic contributions, Eq. (75), and, for the linear
approximation, making the replacement Eq. (77). This leads to

ð1
a

ðzN � C�
0 Þ~��dr ¼

3m�z2ND�
r	� ~��


�2 exp �z ~��=2

� �
� 1

�  
þ z ~��

# $

þ 3
3m�zND�

r	� ~nn


2 exp �z ~��=2Þ � 1� � 8 ln cosh

z ~��

4

� �
� z ~��

� 	�� ð78Þ

where

m�
¼
2"m
3�D�

kT

ze

� �2
ð79Þ

Equations (64), (65), and (78), together with Eqs (58) and (59), lead to the following
expressions, from which the coefficients Kc and Kd can be obtained:

Kc½ð1 ¼WÞ½1� z�ÞðR�
þ 2Þ �U�

� þ iW ½ð1� z�ÞðR�
þ 2W þ 2Þ �U�

��

zKdðR
�
þ 2Þð1þW þ iWÞ ¼ �zðR�

� 1Þð1þW þ iWÞ
ð80Þ

where

R�
¼
2G�
0

zan0
þ 6m� G

�
0

zan0
� z

z ~��

a

�
ð81Þ

U�
¼
48m�

a
ln cosh

z ~��

4

� �
ð82Þ

The results are

Kc ¼
3zðRþ

þ R�
Þ

2

1þW þ iW

iW2Aþ ð1þW þ iWÞB
ð83Þ

Kd ¼ Kdm � KcH ¼

�

a3
ð84Þ

where A;B;Kdm and H are real, frequency-independent coefficients:

A ¼ Rþ
þ R�

þ 4� z�ðRþ
� R�

Þ ð85Þ

B ¼ ðRþ
þ 2ÞðR�

þ 2Þ �Uþ
�U�

� ðUþR�
þU�Rþ

Þ=2 ð86Þ

Kdm ¼
Rþ

þ R�
� 2� z�ðRþ

� R�
Þ

Rþ þ R� þ 4� z�ðRþ � R�Þ
ð87Þ
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H ¼
ðRþ

� R�
Þð1� z2�2Þ �Uþ

þU�
þ z�ðUþ

þU�
Þ

zA
ð88Þ

Equation (84) has been written in such a way that the first term on the right-hand
side is proportional to the ‘‘fast’’ part of the dipole moment, which is free from the
influence of field-induced electrolyte concentration variations �nð!; ~rrÞ and, therefore, is
frequency independent and in phase with the applied field.

In the frame of the system, Eqs (58), (59) and (64), resulting from applying the
approximation of local equilibrium of the thin double layer to the standard model, the
process of formation of field-induced concentration variations �nð!; ~rrÞ (or so-called
‘‘volume diffusion mechanism’’) is the only slow factor, determining the frequency depen-
dence of the induced dipole moment. Its frequency dependence arises due to that of
�nð!; ~rrÞ, expressed by Eq. (58), as well as by means of coupling of the concentration
variations and electric fields, expressed by Eq. (64). The second term in Eq. (84), which
represents the ‘‘slow’’ part of the induced dipole moment, is proportional (with frequency-
independent coefficient H) to the concentration changes �nð!; ~rrÞ

��
r¼a

¼ Kc around the
particle, and, correspondingly, is in phase with Kc. Here, the terms ‘‘slow’’ and ‘‘fast’’
refer to the volume diffusion characteristic time of the low-frequency dispersion (� dis-
persion):

�� ¼ a
2=2Def ð89Þ

At low frequencies, when the period of the field is much longer than this character-
istic time, the ‘‘slow’’ part of the dipole moment shifts in phase with the field while its
amplitude attains its maximum value. On the other hand, at high frequencies, it shifts
progressively 908 out of phase, while its amplitude tends to zero.

The ‘‘fast’’ part of the dipole coefficient Kdm, being free from the influence of the
volume diffusion mechanism and, hence, from the contribution of diffusion flows of ionic
components, and from the contribution of capillary osmosis, is determined solely by the
distribution of ion flows due to electro-migration and electro-osmotic convection – the
factors which were taken into account by Bikerman in his theory of surface conductivity
[38]. Correspondingly, Kdm may be rewritten in terms of Bikerman’s surface conductivity
of the diffuse part of the EDL, �B, and the electrolyte conductivity km:

Kdm ¼ lim
!!1

Kd ¼

2�B
a

� km

2�B
a

þ 2km

ð90Þ

It is very important to note that this formula simultaneously corresponds to the low-
frequency limit of the dipole coefficient obtained from the Maxwell–Wagner–O’Konski
theory [Eqs (16) and (17)] by substituting Bikerman’s surface conductivity ð�BÞ for � in Eq.
(17):

Kdm ¼ lim
!!0


MW
a3

ð91Þ


MW ¼ a3
"�pef � "

�
m

2"�m þ "�pef
ð92Þ

"�m ¼ "m �
ikm
!

ð93Þ
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"�pef ¼ "p �
i

!

2�B
a

	 "p �
ikm
!
2Du ð94Þ

In Eq. (94), we use the dimensionless number ‘‘Du’’ (Dukhin’s number) which plays a
fundamental role in the theory of double-layer polarization [39]. It is the ratio between the
surface conductivity and the conductivity of the solution and particle radius. For the
standard model:

Du ¼
�B
kma

ð95Þ

The following expressions can be used for calculation of the conductivities involved in Eqs
(93)–(95):

�B ¼
z2e2n0a

kT
ðDþRþ

þD�R�
Þ ¼

ze2n0
kT

2


Dþ

ðe�
~��=2

� 1Þð1þ 3mþ
Þ þD�

ðe
~��=2

� 1Þð1þ 3m�
Þ

h i ð96aÞ

km ¼
z2e2n0
kT

ðDþ
þD�

Þ ð96bÞ

B. Wide-Frequency Range Polarizability and Dielectric Dispersion

A general formula for the induced dipole moment will now be described that yields
simultaneously the frequency dependence of both dispersion ranges, namely, the � disper-
sion and the Maxwell–Wagner–O’Konski dispersion. The treatment was recently elabo-
rated, in Ref. 40, for conditions corresponding to the quasiequilibrium polarization of the
Stern layer at the isoelectric point (in the absence of an equilibrium diffuse layer), but it
has not been applied yet in the frame of an analytical theory of thin double-layer polar-
ization. However, the coincidence [see Eq. (91)] of the high-frequency limit of the dipole
coefficient obtained from the analytical theory of the � dispersion, with the low-frequency
limit of dipole coefficient obtained by using the theory of Maxwell–Wagner–O’Konski,
creates the necessary prerequisites for a simple procedure of derivation of the general
formula for the dipole coefficient 
. In order to derive 
, a superposition approximation
will be used, whereby we have simply to replace the frequency independent term Kdm of
Eq. (84) by the Maxwell–Wagner–O’Konski dipole coefficient, Kdm!
MW=a

3 :


�

a3
¼ �KcH þ

"�pef � "
�
m

2"�m þ "�pef
ð97Þ

where Kc, H, "
�
pef , and "

�
m are given, respectively, by the expressions (83), (88), and (93)–

(96). The asymptotic validity of the superposition approximation is determined by the
strong inequality expressing the very small value of the relaxation time �MW corresponding
to Maxwell–Wagner–O’Konski dispersion, in comparison with ��, corresponding to �
dispersion, connected with the volume diffusion mechanism:

�MW 
 �� ð98Þ

The superposition approximation does not take into account the factors of the mutual
influence of the volume diffusion mechanism inherent in � dispersion and the interplay
between displacement and conductivity currents in the process of single-particle polariza-
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tion, inherent in the Maxwell–Wagner–O’Konski dispersion. However, if Eq. (98) holds,
the frequencies at which the volume diffusion mechanism is essential for the particle’s
polarization ð! � 1=��Þ happen to be very small, !
 1=�MW. Hence, the displacement
currents are negligible with respect to conductivity currents. On the other hand, the
frequencies at which the displacement currents are comparable with conductivity currents,
! � =1=�MW, are so large ð!� 1=��Þ that the volume diffusion mechanism has a negligible
influence on the fields and currents. The value of �MW is, for the majority of typical
systems, close to the value of the electrolyte relaxation time [Eq. (11)]:

�MW ¼
"p þ 2"m
kp þ 2km

¼
"m
km

1þ
"p
2"m

1þ
kp
2km

0
BB@

1
CCA �

"m
km

¼ �e ð99Þ

From Eqs (89), (99), together with Eq. (96) for electrolyte conductivity, Eq. (56) for
effective ion diffusivity, and the well-known expression for reciprocal Debye length :

 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2e2z2n

"mkT

s
ð100Þ

it follows that

��
�MW

� ðaÞ2 ð101Þ

This means that the strong inequality (98) that allows us to use the superposition approx-
imation is closely related to another inequality (63), describing the small thickness of the
Debye atmosphere as compared to the particle radius. In such a way, the superposition
approximation, leading to the validity of the general formula (97) for the dipole coeffi-
cient, happens to be applicable just in the case of the thin double layer, for which both
theories – that of the volume diffusion mechanism of � dispersion and that of Maxwell–
Wagner–O’Konski dispersion – are applicable.

To check the accuracy of the general formula, the frequency dependence of the
dipole coefficient, calculated with Eq. (97), has been compared with numerical calculations
[32]. The results of the comparison for the imaginary part of polarizability, Imf
�ð!Þg, and
for the real part of dielectric increment Ref�"�ð!Þg, calculated by substitution of 
�ð!Þ
from Eq. (97) into Eq. (8), are represented in Fig. 2. As is shown in this figure, the
analytical results are confirmed by numerical calculations, with a relative error of
M10% for �a > 10, and < 3% for �a > 25 in a frequency range including both volume
diffusion and Maxwell–Wagner relaxations.

C. Wide-Frequency Range Electrorotation Spectra

In order to apply our analytical results to the description of electrorotation spectra, in
terms of the traditional approach, it is sufficient to substitute Imf
�ð!Þg from Eq. (97) into
Eq. (29), and obtain in such a way the frequency dependence of the angular speed of a
particle’s electrorotation. Considering the positive values of Imf
�ð!Þg at low frequencies,
the traditional approach leads to the prediction of counterfield low-frequency electrorota-
tion, which contradicts most of the experimental data.

The calculation of the contribution of the combined movement of the particle and its
thin Debye atmosphere (i.e., the contribution of rotational electroosmoic slip) to electro-
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rotation, Eq. (36), it is necessary to calculate the complex amplitude, K�, of the field-
induced variation of the � potential. As shown in Refs 4, 27, and 28, the main factor
causing the variations in thin double-layer characteristics (for a dielectric particle with a
thin double layer and an immobile dense part) is the variation in concentration of the
electroneutral electrolyte solution along the particle’s surface. This is the system under
consideration, since the neutral salt concentration around the particle depends on the
polar angle, Eq. (58), which causes an angular dependence of the double-layer thickness
and, therefore, of the � potential. The dependence of � on the concentration n can be
obtained from Eq. (73) with taking into account Eqs (76), (100) and the boundary con-
dition expressing the approximate electro-neutrality of quasi-equilibrium EDL:

d�qeq
dx x¼0 ¼ �

�

"m
ð102Þ

where � is the surface charge density of the dense part of the double layer, whereas �d
�qeq=dxjx¼0 corresponds [Eq. (73)] to the surface charge density associated with the qua-
siequilibrium diffuse double layer.
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FIG. 2 Comparison between the results (particle polarizability and dielectric increment) of the
wide-frequency range generalization [Eq. (97)] of the analytical theory of thin double-layer approx-
imation (lines) with numerical calculations [29] (symbols), for ka ¼ 10 (left) and ka ¼ 25:12 (right).
Polarizability data obtained with the LFDD theory [4] are also included as Im ð
LÞ=a

3 curves.
Parameters: "m ¼ 80"0; "p ¼ 2"0; � ¼ 100 mV.



Equation (102), together with (73) gives

sinh
z ~��qeq
2

� �
¼
e

kT

z�

2"
ð103Þ

In this expression,  can be replaced using Eq. (100), with the virtual system concentration
near the particle surface, Eq. (58), n ¼ n0ð1þ � ~nnjr¼aÞ ¼ n0ð1þ Kc cos 	Þ, while � should be
expressed as a function n using the appropriate isotherm. The simplest one corresponds to
a constant surface charge, in which case Eq. (79) gives, to first order in the applied field:

�qeq ¼ �O þ ��qeq ¼ �O �
kT

e

Kc
Ea
tanh

z ~��0
2

� �
cos 	 ð104Þ

From this result, and recalling the definition of K�, it follows for the complex amplitude of
the field-induced variation of the � potential:

�K�
¼
kT

e
Kc tanh

z�0
2

� �
¼
kT

e

3zðRþ
þ R�

Þ

2

1þW þ iW

iW2Aþ ð1þW þ iWÞB
tanh

z�0
2

� �
ð105Þ

This expression, together with Eqs (36) and (97), determines the contribution of the rota-
tional electro-osmotic slip to the particle electrorotation. Recall that it has been obtained
on the basis of the standard model with the simplest adsorption isotherm, based on the
independence of the surface charge of the dense part of the EDL on the small variations in
electrolyte concentration with respect to its equilibrium value.

Figure 3 shows the frequency dependence of both components of the electrorota-
tion speed, �S and �M, as well as the total angular velocity �. It is obvious from the
graphs, that the negative contribution of the rotational electro-osmotic speed �S for not
too high values of the � potential, predominates in the low-frequency range, determining
low frequency cofield electrorotation, in spite of the negative sign of �M in the low-
frequency range. However, in the frequency range of Maxwell–Wagner dispersion, the
contribution of �S is negligible as compared to �M, and the direction of electrorotation
is determined in this range by the relationship between the Dukhin number Du ¼ �B=
kma and the ratio "p="m:

. Cofield rotation for

2Du >
"p
"m

ð106Þ

. Counterfield rotation for:

2Du <
"p
"m

ð107Þ

IV. INDUCED DIPOLE MOMENT AND AMPLITUDE OF FIELD-INDUCED
ZETA POTENTIAL IN TERMS OF GENERALIZED SCHWARZ MODEL
(SURFACE DIFFUSION MODEL)

A. Exact Solution of Electrodiffusion Problem for Particles Covered with
Conducting Film in Electrolyte Solution

The first quantitative description of the low-frequency dielectric dispersion of suspen-
sions in electrolyte solution was suggested by Schwarz [41] on the basis of a model now
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known as the ‘‘surface diffusion model’’ (SDM). This model considered the colloidal
particles covered by a thin surface layer of charges, which were capable of undergoing
free migration and diffusion along the particle’s surface, without any exchange in normal
direction with adjoining electrolyte volume (they could be called slipping charges). Such
behaviour was attributed [41] to counterions of the EDL on the basis of their high value
of electrostatic attractive energy (as compared to thermal energy) near the surface. This
makes charge exchange in the normal direction very difficult. However, a detailed con-
sideration [1, 3, 4, 26–33] of the frequency dependence of the polarization of the diffuse
part of the EDL, on the basis of the Nernst–Planck–Poisson–Stokes equation system,
did not reveal any ionic behavior that could be described by the SDM. Moreover, such a
detailed consideration confirmed the existence of a local equilibrium, and, correspond-
ingly, of free exchange of ions between the thin diffuse double layer and the adjacent
electrolyte volume. Hence, as was demonstrated in the previous section of this chapter,
the field-induced variations of the ion in the diffuse double layer constitute the fast
process, followed immediately by the slow one, namely, the field-induced variations in
electrolyte concentration in the solution surrounding the particle. In view of the nature
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FIG. 3 Frequency and �-potential dependence of the angular velocity of electrorotation, � (in
dimensionless form). Its components ~��S and ~��M are also shown. Parameters: "m ¼ 80"0; "p ¼ 2"0;
� ¼ 100 mV; a ¼ 200 nm; Dþ

¼ D�
¼ 2� 10�9 m2/s; a ¼ 26; � ¼ 10�3 kg/m2s.



of the slow factor, this mechanism of low-frequency polarization was called the ‘‘volume
diffusion model’’ (VDM).

The problem now arises of the predominant polarization mechanism in the dense
part of the EDL – volume diffusion, surface diffusion, or some intermediate mechanism
– and what conditions determine such a predominance. The problem remains open up
to now, although some investigations of this complicated topic have been performed
and are reviewed in Chapter 2 of this volume. It can be said that we can identify under
what circumstances the SDM is not applicable (for instance, in the case of diffuse
double-layer polarization), but it is difficult to establish, on a rigorous basis, when it
is applicable.

Nevertheless, real systems exist for which the SDM is applicable without any doubt.
Composite colloidal particles consisting of a dielectric core surrounded by one or more
conducting shells have recently received growing interest [42–49]. Particles covered with
either conducting polymers [46–49] or thin metal films [43–45] are of a special significance
for applications in experiments and in technology. The promising way to fabricate parti-
cles with controlled shell dimensions in the nanometer range employs the stepwise electro-
statically controlled adsorption of a wide range of materials, including metallic
nanoparticles. The size and shape of these composite particles have been shown to be
fully controlled by the original templates [42–49].

The characteristic feature of the polarization of such a system is the free displace-
ment of charge carriers along the surface, and the difficult charge exchange in the normal
direction, connected with a high resistance to electrochemical reaction. It is just such a
feature that gives rise to the surface-diffusion polarization mechanism, but with several
characteristic distinctions (see below), which require further generalizations of the
Schwarz model. Application of the well-known patterns of current passing through
metal–electrolyte interfaces facilitates the generalization of the model for taking into
account the finite rate of charge exchange in the normal direction.

Future progress in nanoengineering of the surface of colloidal particles will be closely
related to the parallel development of new thin-layer characterization techniques directly
applicable to colloidal dispersions. For example, single-particle light scattering has been
recently demonstrated to be capable of resolving the layer thickness growth with nan-
ometer precision [44, 46, 47]. For the case of conducting colloidal particles it is rather
attractive to employ electrorotation spectroscopy for the characterization of dielectric and
conductive properties, and the nanostructures of the suspended colloidal particles [45–49].
However, the currently available simplified approach of electrorotation of particles with a
shell structure does not properly take into account the polarization of a thin layer with
electronic conductivity in electrolyte solution. Hence, it would be desirable to develop
further the theory of electrorotation including a conducting layer with electronic conduc-
tivity to open new areas of application for electrorotation.

The order of magnitude of the characteristic time for both mechanisms – VDM and
SDM – is given by Eq. (89). However, whereas in the former case Def denotes effective
diffusivity of the electrolyte solution, determined by Eq. (56), for the latter case one has to
replace Def by the effective diffusivity of slipping charges. For the case of a thin metallic
layer, when the role of sleeping charges is played by electrons, then the characteristic time
of their corresponding surface diffusion process may be several orders shorter than that
characterizing the volume diffusion process.

Considering the range of frequencies exceeding the characteristic frequency provided
by the volume diffusion mechanism, we will not take into account any field-induced
variations in electrolyte concentration. Consequently, the Laplace equations in both the
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bulk electroneutral volume and in the dielectric inside the particle are sufficient to describe
the volume field distribution:

r
2�m ¼ 0; r

2�p ¼ 0 ð108Þ

If, however, a thin film with electronic conductivity is present at the particle surface, the
high mobility of charges inside this film has to be taken into account when modeling the
particle polarization. Generally, the high mobility of the charge carriers may give rise to
concentration gradients in the conducting film. In addition, interfacial charge-transfer
reactions between the film with electronic conductivity and the electrolyte solution,
mediated by an electrochemical reaction, may also contribute to the particle polarization.
In the limiting case, when the activation energy of the electrochemical reaction is very
high, and, correspondingly, the value of the exchange current i0 is very low, the tangential
electric field induces electron migration along the film, but the normal component of the
electrical current directed towards the electrolyte solution is negligibly small. In this case a
net current in the film cannot exist, and the migration current has to be compensated for
by diffusion flow in the opposite direction. Although in the general case of a finite value of
the exchange current full compensation does not fully take place, the total electronic
surface current in the film IsÞ is assumed to consist of a migration ð�� � grad	�sÞ and a
diffusion component ð�Dsef � grad	�sÞ:

Is ¼ �� � grad	�s �Dsef � grad	�s ð109Þ

where � is the surface conductivity of the film of sleeping charges �S is the surface charge
density of slipping charge carriers (electrons) given by their number per unit film area,

Dsef ¼ Ds

sh

2

tanh
sh

2

ð110Þ

is the effective diffusion coefficient of electrons (see Appendix), DS ¼ kTus is the diffusion
coefficient of electrons, with us as the mobility of electrons, h is the film thickness,

s ¼
�

hDs"s
(Debye length of the electronically conductive film), and "s is the dielectric

constant of the film.

The coefficient:

sh

2

tanh
sh

2

in Eq. (110) takes into account that the density of electronic charges inside the film is
inhomogeneous across the film’s thickness due to screening. It gives rise to a locally higher
field-induced density of electronic charges compared with its average value of �s=h and,
correspondingly, Dsef is larger than the local value of the electron diffusivity, Ds.

If the exchange current is negligible, and the electronic current Is is thus constrained
within the conducting film, the surface divergence of Is depends only on the change of �s
with time. In the more general case, the electron flow due to an electrochemical reaction
has to be included in the equation of electron conservation:

divs 	
1

a sin 	

@

@	
ðsin 	 � IsÞ ¼ �

@�s
@t

� ielc ð111Þ
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Here, ielc is the current density produced by an interfacial electrochemical reaction. Taking
into account that there is no EDL in the dielectric underneath the conducting film, the
electric potential at the surface of the core ð�ijr¼aÞ is equal to the potential of the inner
surface of the film ðUsjiÞ:

�ijr¼a ¼ Usjp ð112Þ

However, for writing the boundary conditions at the external surface of the film, one has
to consider that a field-induced potential difference �	1 (overpotential) between the film
and the bulk electrolyte may exist. This potential differnce is caused by possible field-
induced charge distributions in the external Debye atmosphere:

Usje þ �	1 ¼ �mjr¼a ð113Þ

The potential difference �	1 is just the motive force for the electrochemical reaction at the
surface permitting the current flow between the electronically conducting film and the
ionic conductive solution. The current density of an electrochemical reaction taken in
the linear approximation valid for small values of �	1 reads, according to the Tafel
equation [50]:

ielc ¼
ez

kT
i0�	1 ð114Þ

where, i0, the exchange current density characterizes the effective reciprocal resistivity
(Faradaic resistance) of the electrochemical reaction, i.e., in our case, the rate of charge
exchange between the film of slipping charges and adjacent electrolyte solution.

The field-induced potential jump �	1 can be expressed through the field-induced
surface charge density of the external ionic diffuse layer ��dif and its differential capacity:

�	1 ¼ �
1

Cdif
��dif ð115Þ

In Eqs (112) and (113) �i and �e were both introduced for r ¼ a. This simplification is
possible due to the very small film thickness h compared with the particle radius:

h
 a ð116Þ

and due to the smooth space dependence of the electrical potential resulting from the
solution of the Laplace equations (108).

For the case of a very small film thickness the field-induced potential jump across the
film may be also neglected:

Usji � Usje ð117Þ

and, correspondingly, from the latter equation, together with Eqs (112), (113), and (115), it
follows:

�pjr¼a � �mjr¼a ¼ �
1

Cd
��dif ð118Þ

The validity of simplification [Eq. (117)] is obvious in the case when the electron concen-
tration inside the film is very low, and the normal component of the field strength inside
the thin film is comparable with that inside the dielectric core, with its much larger radius.
However, upon increasing the electron concentration inside the film and, correspondingly,
increasing the inside screening, the electric field strength inside the film may only reduce,
and hence Eqs (117) and (118) are applicable both for small and large electron concentra-
tions inside the thin conducting film.
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The difference in electrostatic induction between the two bulk electroneutral phases
(the inner dielectric core and the external bulk solution) is given by the sum of the
electronic, ��s, and ionic, ��dif , charge densities:

"p
@�p
@r

jr¼a � "m
@�m
@r

jr¼a ¼ ��el þ ��dif ð119Þ

Here, we made specific use of the strong inequalities (30) and (116). The ionic component

of the total surface charge may change as a result of the migration of ions, km
@�m
@r

jr¼a, and

also due to the electrochemical reaction at the interface, ielc. Hence, the condition of ionic
charge conservation reads:

@��dif
@t

¼ km
@�m
@r

jr¼a þ ielc ð120Þ

In acocrdance with Eqs (2), (6), and (108), the electric field-induced distributions of the
electric potentials in the particle interior and in the bulk, the field-induced electronic
surface charge in the film, and the surface charge density of ionic diffuse layer take the
following forms:

�p � e
�i!t

¼ �Epr cos 	 ð121Þ

�m � e�i!t ¼ Er cos 	 þ

�E

r2
cos 	 ð122Þ

�s � e
�i!t

¼ As cos 	 ð123Þ

�dif � e
�i!t

¼ Adif cos 	 ð124Þ

The time- and space-independent coefficients, Ep; 

�, As, and Adif , can be found by sub-

stitution of �p, �m, ��s, and ��dif , from Eqs (121)–(124) into Eqs (111) and (118)–(120),
and taking into account (114) and (115). This leads to the following system of linear
algebraic equations:

2�

a
Ep �

2Dsef
a2

As ¼ i!As �
ei0

kTCdif
Adif ð125Þ

Epa� Ea 1�

�

a3

� �
¼
1

Cdif
Adif ð126Þ

"mE 1þ
2
�

a3

� �
� "

p
Ep ¼ As þ Adif ð127Þ

kmE 1þ
2
�

a3

� �
¼ �i!Adif �

ei0
kTCdif

Adif ð128Þ

The solution of the latter system directly provides the value of 
�, which determines the
traditional (torque) component of electrorotation [Eq. (29)]. In order to determine the
value of K�, appearing in the electro-osmotic component of electrorotation [Eq. (36)], the
well-known formula:

tanh
e�

4kT

� �
¼ tanh

	1
4kT

� �
expð��Þ ð129Þ
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is used, which connects the value of the � potential with the total potential jump 	1 in the
diffuse part of the external Debye layer. Here,  is the reciprocal Debye length and � is the
thickness of the hydrodynamically immobile part of the diffuse layer. If the frequency
sufficiently exceeds 2Def=a

2, no concentration polarization occurs [see Eqs (58), (60) and
(63)] and, hence, neither the electrolyte concentration nor the Debye length depend on the
electric field. In these conditions, we may connect the field-induced variations of the �
potential, ��, and of 	1 potential, �	1, by the following equation:

tanh
eð�eqþ ��Þ

4kT

� �
¼ tanh

eð	1eq þ �	1Þ

4kT

� �
expð��Þ ð130Þ

where �eq and 	1eq are the field-independent components of � and 	1.
Using a linear approximation with respect to the field-induced variations of �� and

�	1, we may rewrite Eq. (130) as

�� ¼ m�	1 ð131Þ

where

m ¼ expð��Þ

1� tanh2
e�1eq
4kT

� �

1� expð�2�Þ tanh2
e	1eq
4kT

� � ð132Þ

and, in accordance with Eqs (33), (115), (124), and (131), one has for K�:

K�
¼ �m

1

Cdif

Adif
Ea

ð133Þ

Next, Adif is expressed in terms of 

� by means of Eq. (128). For the case under con-

sideration, i.e., when the volume diffusion-induced particle polarization is negligibly small,
the electrorotation velocity, Eqs (36), (37), may then be expressed through the only char-
acteristic parameter of particle polarization, namely, the Mosotti coefficient 
�:

� ¼ �
"mE

2

2�

Im
�

a3
�m

ke
aCdif

Im
1

!far � i!
1þ
2
�

a3

� �
1�


�

a3

� �� �� 	
ð134Þ

Here and later we denote:

!far ¼
ezi0
kTCdif

; � ¼
a2

2Dsef
ð135Þ

To obtain an expression for 
� in a form similar to the simple and well-known formula of
a ‘‘dielectric sphere in dielectric liquid’’, we will transform the system of euqations (125)–
(128) into only two standard ‘‘electrotechnical’’ surface conditions, one describing the
continuity of the normal components of the effective complex electrostatic induction,
and the other providing the surface discontinuity of the electric potential. Instead of
directly solving the system [Eqs (125)–(128] we will rewrite it in a way that it becomes
formally equivalent to the description of a dielectric sphere in a bulk dielectric liquid.

As a first step of our transformation of Eqs (125)–(128), let us introduce a new
unknown variable, the total field-induced surface charge �A:

�A ¼ As þ Adif ð136Þ

�A and Adif are substituted into Eq. (125) instead of As and Adif . The latter quantity is
excluded from Eq. (125) with the help of Eq. (128), and �A is substituted with the help of
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Eq. (127). Taking into account Eqs (121) and (122), we obtain the transformed surface
condition of the continuity of the normal components of the effective complex electrostatic
induction:

"�efp rr�i � "
�ef
m rr�m ¼ 0 ð137Þ

where

"�efp ¼

2�

a
� þ ð1þ i!�Þ"i

1þ i!� þ !far�
ð138Þ

"�efmj ¼
km

i!þ !far
þ

ð1þ i!�Þ"m
1þ i!� þ !far�

ð139Þ

Relation (137) represents the surface condition of the continuity of normal components of
the effective complex electrostatic induction of the internal medium, D�ef

p ¼ �"�efp rr�i and
the bulk medium D

�ef
m ¼ �"�efm rr�m written with, however, effective complex dielectric

constants for the internal ð"�efi Þ end bulk ð"�efe Þ phases. The next step in the transformation
of the system, Eqs (125)–(128), is directed towards finding an effective surface capacity in
order to represent the equation for the field-induced surface jump of the potential in the
simple notation:

ð�p � �mÞjr¼a ¼ D
�ef
n

1

C�ef
s

ð140Þ

Where D�ef
n is the normal component of the effective complex electrostatic induction near

the surface. In accordance with Eq. (137), D�ef
n should be continuous at the surface:

D�ef
n ¼ �"�efp rp�pjr¼a ¼ �"�efm rn�mjr¼a ð141Þ

Multiplying both sides of Eq. (128) by
"�efm
km
and taking into account Eq. (122), we obtain:

D�ef
n ¼ �"�efm

!far þ i!

km
Adif ð142Þ

Inserting Eq. (142) in Eq. (126), and comparing the result with Eq. (140) it follows:

C�ef
s ¼ "�efm

!far þ i!

km
Cdif ð143Þ

The system of the harmonic functions for the inner [Eq. (121)] and external [Eq.
(122)] electric potential distributions together with the surface conditions [Eqs (137) and
(140)] formally coincides with the description of the polarization in a homogeneous exter-
nal field of a spherical particle with the dielectric constant "�efp , surrounded by an infinite
thin film with a finite value of the capacity C�ef

s per unit area of the particle surface
immersed in a bulk medium with the dielectric constant "�efm . The effective parameters
"�efp , "

�ef
p , and C

�ef
s were obtained by means of an algebraic transformation of the system

[Eqs (125)–(128)]. Hence, the more complicated initial model of a particle with a conduct-
ing thin layer (taking into account the diffusion of charge carriers inside it, with charge
exchange between the film and electrolyte volume) has been brought to the well-known
system of ‘‘dielectric in dielectric’’ with a thin layer of homogeneous surface capacity (see,
e.g., Ref. 51). The existence of this formal analogy has the significant advantage that one
can make use of the well-established procedures for the calculation of complex polariz-
ability and complex amplitude of the field-induced variations in � potential. It is just
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sufficient to use the effective complex dielectric constants "�efp , "
�ef
m , and C

�ef
s , the effective

surface capacity, in the expression for the polarizability:


�

a3
¼ �

"�efm � "�efp

� �
þ
"�efm "

�ef
p

C�ef
s a

2"�efe þ "�efi
� �

þ 2
"�efm "

�ef
p

C�ef
s a

ð144Þ

B. Dispersion of Particle Polarizability, Suspension Admittance and
Electrorotation

The characteristic examples of the frequency dependences of dimensionless angular velo-
city of electrorotation, given by the expression (134), of its traditional component,
�Imf
Þ=a3, given by Eq (29) [the first term in brackets in Eq. (134)], and the frequency
dependences of the disperse particles contribution to suspension permittivity [Eq. (8)] and
conductivity [Eq. (9)], calculated with the expression (144) for the dipole coefficient, are
represented in Figs 4–6.

Figures 4–6 show the frequency dependences for large values of diffusivity of slip-
ping charge curriers (much larger than ionic diffusivity), which is characteristic of elec-
tronic conductivity. Apparently, from a comparison of the plots of the first lines of each
of the figures, the difference between the full angular velocity of electrorotation (upper
curve in every plot) and the contribution of its traditional component (lower curve) is
significant only when the frequency is small as compared to the reciprocal electrolyte
relaxation time, and when the equilibrium � potential is also small enough. This is true
provided that the diffuse layer has a small capacitance, and, hence, given values of field-
induced variations in the diffuse layer charge density �dif provoke large enough field-
induced variations in the � potential. If the equilibrium � is large, and (or) the external
field frequency is of the order of 1=�el or larger, the contribution of the electro-osmotic
component of electrorotation is small, and its traditional component accounts for the full
angular velocity of electrorotation.

Note that the frequency dependence of Imf
�g=a3 has a width of about three orders
of magnitude for not very large values of film conductivity and, correspondingly, small
and medium values of Du number (Figs 4–6). This frequency interval spreads through a
significantly wider frequency range – about five orders of magnitude – under the condition
of good conductive film, or large Du number (Figs 4 and 5). As a result, the frequency
range, within the limits of which Imf
�g=a3 has a noticeable value, may cover frequencies
on both sides of 1=�el, far away from the latter (Figs 4 and 6). In accordance to the
inequalities (23)–(26), this corresponds to the condition when both effects, LFDD and
HFCD, manifest simultaneously (Figs 4 and 6).

The influence of the inner dielectric constant of the core particle can be ascertained
by comparison of the plots presented in Fig. 4 ð"i ¼ 2Þ, Fig. 5 ("i ¼ 25Þ, and Fig. 6
("i ¼ 1000). For small inner dielectric constant, when "i="e 
 2 Du, the frequency depen-
dence of polarizability is represented by the almost antisymmetrical curve with maximum
and minimum [see plots 11(lower curve), 12, and 13 in Fig. 4, and 11 and 12 in Fig. 5). The
left half of those antisymmetrical curves corresponds to surface diffusion relaxation: it
provokes the increase in dipole coefficient (dimensionless polarizability) from �1=2 to 1 by
decreasing the influence of diffusion of slipping carriers and increasing the surface current
from zero to its maximum possible value. The right half of the curves corresponds to
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FIG. 4 Characteristic examples of the frequency dependences of dimensionless angular velocity of electrorotation ~�� (plots 11,
12, 13) of its traditional component, �Imð
Þ=a3 (same plots), and of the dispersed particles contributions to the permittivity (plots
21, 22, 23) and conductivity (plots 31, 32, 33) of the suspensions. Parameters: left column: 	1 ¼ 25 mV; � ¼ 3:9� 10�7 S. Middle
column: 	1 ¼ 200 mV; � ¼ 3:9� 10�7 S. Right column: 	1 ¼ 25 mV; � ¼ 3:0� 10�9 S. Common parameters: "m ¼ 80"0;
"p ¼ 2"0; a ¼ 5 mm; D

�
¼ D�

¼ 2� 10�9 m2/s; Ds ¼ 10
�5 m2/s; a ¼ 237; � ¼ 10�3 kg/m2s; � ¼ 0.
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Maxwell–Wagner relaxation: in this case, the dipole coefficient decreases because of the
smaller influence of conductivity currents as compared to dielectric displacement currents.
The decrease occurs also from 1 down to almost its minimum possible value, �1=2, because
the very large ratio of the effective conductivities of particle and medium corresponds to a
small ratio between their dielectric constants (under the condition "i="e 
 2 Du).

It follows from above that, if the dielectric constant of the particle increases, the
amplitude of the right peak decreases, causing a characteristic distortion of the frequency
dependence of polarizability, as at plot 13 of Fig. 5 and plots 11 and 12 of Fig. 6. Plot 13 of
Fig. 6 demonstrates the complete disappearance of the right peak as a result of the
combination of a small value of surface conductivity and a large value of particle permit-
tivity.

The essential influence of the value of the exchange current density i0, as is obvious
from the expressions for the effective parameters, Eqs (138), (139), (142), and (143), is
determined by the ratio between !far [see Eq. (135)] and the external field frequency:

!far
!

� 1

Substituting in Eq. (135) the well-known expression for the differential capacity of the
diffuse layer:

Cdif ¼ "m cosh
e	10
2kT

� �

and taking  ¼ 10�8 m�1, "m ¼ 80"0, 	10 ¼ 50 mV, and a comparatively high value of i0 ¼
1 A m�2, the following estimation of !far may be given:

!far � 380 Hz

Such a small order of value for !far means that one may expect a slight influence of the
finite exchange range between the slipping charges and electrolyte solution at least for the
case in which the surface layer is a conductor of the first kind (charge carriers are electrons
and holes).

The calculations show that the LFDD is the measurable effect most sensitive to the
value of the exchange current density i0. Figure 7 shows the influence of i0 on the fre-
quency dependence of the dielectric increment of LFDD. It follows from these results that,
for the set of parameters used, a noticeable influence of the exchange processes on LFDD
exists only if i0 exceeds 10 A m

�2.

V. APPENDIX

Let us express the total tangential current (surface current) Is in the thin electronic con-
ductive film by integrating the local tangential electronic current density is	:

Is ¼

ðaþh
a

is	dr ðA:1Þ

The local tangential electronic current density includes two components, namely, migra-
tion and diffusion:

is ¼ �ksrU �Dsr�s ðA:2Þ
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where ks and Ds are the local values of the conductivity and the diffusion coefficient of
electrons inside the film, and �s is the local spatial density of electronic charges. Its
associated charge density is cs ¼ ��s=e.

For the single case described here, the field-independent electron concentration cseq,
the diffusion coefficient Ds, and the local conductivity are supposed to be constants
throughout the film. Nevertheless, even for this model, the final field-induced spatial
electronic charge density and, hence, the density of the local tangential electronic current
due to screening from the adjacent double layer happens to be inhomogeneous in space.
As a consequence, the integration of Eq. (A.1) is not a simple procedure.

A convenient way to consider the migration and diffusion current in the region of the
film where the Debye screening mechanism influences the charge distribution (see, e.g.,
Ref. 10) is to represent the local electric potential as a superposition of

Us ¼ �s þ�s ðA:3Þ

where the second term, which may be called as a quasiequilibrium or Boltzmann term, is
connected with the distribution of electronic charge according to Boltzmann’s formula:

cs ¼ cs0 exp
e�s
kT

ðA:4Þ

where cs0 is the concentration of electrons inn the neutral region of the film.
Assuming that, inside the electronic conductive film the only mobile charge carriers

are the electrons and that the charge density of any fixed ionic groups inside the film is
constant and equal to �s0 ¼ ecs0 (as required by electroneutrality), we may state that the
Boltzmann prefactor cs0 is spatially constant and field independent.

Correspondingly, a weak field-induced electronic charge density leading to deviation
from electroneutrality inside the film can be described in a linear approximation as

��s ¼ �s � �s0 � �s0
e�s
kT

ðA:5Þ

By using Poisson’s equation, Eq. (A.5) provides a Debye equation for the quasiequilibrium
component of the electric potential �s:

r
2�s ¼ 2s�s ðA:6Þ
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FIG. 7 Influence of the value of exchange current density i0 on the dielectric dispersion in terms of
the generalized Schwarz model. Parameters: see Fig. 4.



where

s ¼

ffiffiffiffiffiffiffiffiffiffi
e2cs0
kT"s

s
¼

ffiffiffiffiffiffiffiffiffi
ks
"sDs

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
�

"sDsh

s
ðA:7Þ

is the inverse Debye screening length of the electronically conducting film. Here, � ¼ ksh,

and ks is the electronic conductivity ðks ¼ �s
e

kT
DsÞ.

The solution of the Debye equation (A.6) inside the film is conveniently given by

�s ¼ A sinh
sx

2

� �
þ B cosh

sx

2

� �
;
h

2
� x �

h

2
ðA:8Þ

The first term in Eq. (A.8) is antisymmetric, and thus does not contribute to the integral of
field-induced functions of type (A.1). Hence, for the calculation of Is we need not take into
account that term in Eq. (A.8):

�s ¼ B cosh
sx

2

� �
ðA:9Þ

The integration constant B is connected with the surface density of the field-induced
electronic charge �s by:

�s ¼

ðh2
�h2

��sdx ¼ �s0

ðh2
�h2

e�

kT
dx ¼ 2B�s0

e

kT

1

s
sinh

sh

2

� �
¼ 2B"ss sinh

sh

2

� �

ðA:10Þ

Substituting of Eqs (A.3) and (A.4) into Eq. (A.2) transforms the equation for the elec-
tronic current density into a form which contains only the field-induced multiplier r�s:

is ¼ �ksr�s ðA:11Þ

The value of the current density is inside the film is restricted by the value of the current
density in the external electrolyte solution. This is true even in the case where both the
exchange current and the electron concentration are very large. From this it follows that
�r�s is of the order of the external field strength E. This means that, due to the small film
thickness, we may neglect the variation of �el and, correspondingly, the variation in the
value of r	�el across the thin film. It has to be noted that this variation is, however, not
small along the surface of the large particle. The substitution of iel	 ¼ �kelr	�el in Eq.
(A.1) leads, upon taking into account the above considerations, to

I ¼ ��r	�s ðA:12Þ

Using the continuity of the electric potential at the inner surface of the film, Eq. (15),
and relations (A3), (A9), and (A10), we obtain:

Is ¼ �� � grad	�s �Ds

sh

2

tanh
sh

2

� grad	�s ðA:13Þ
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VI. SUMMARY AND CONCLUSIONS

In this chapter we have described the classification of the spectrum of particle polariz-
ability and the associated spectra of suspension admittance and particle electrorotation,
for particles suspended in an electrolyte solution. This has been performed on the basis of
a natural scale of frequencies connected with the reciprocal electrolyte relaxation time. The
analysis, which is free of any model assumptions about the structure of the particle and its
double layer, allows us, in particular, to predict the phenomenon of high-frequency dis-
persion of suspension conductivity, which is characterized by a very large value for the
specific increment of conductivity. The predicted phenomenon is in a certain sense the
high-frequency analog of the well-known LFDD, characterized by a very large value for
the specific increment of dielectric permittivity. Both phenomena are connected with the
imaginary part of the induced dipole moment, and are located on both sides of the
reciprocal relaxation time, far from it on a logarithmic scale.

The general expression for the angular velocity of electrorotation, including the
traditional (torque) component and a new one (rotational electro-osmotic slip), was
obtained by using a rather simple procedure.

The main steps and simplifications involved in the application of the standard model
of the thin diffuse EDL to the solution of the problem of polarization of nonconducting
charged spherical particles by uniform harmonic external fields have been described. The
well-known results of the theory of thin diffuse double-layer polarization in low-frequency
alternating fields have been generalized to describe simultaneously the low-frequency and
Maxwell–Wagner frequency ranges. The generalized expression obtained for the induced
dipole moment is confirmed by comparison with numerical results of the DeLacey and
White approach [32]. Expressions have been derived describing the spectrum of dielectric
dispersion of suspensions, and of electrorotation of a spherical particle with thin diffuse
double layer for a wide frequency range. The standard model leads to the conclusion that
the diffusion of ions adjacent to electroneutral electrolyte solution around the particle is
the main slow process, controlling the low-frequency dependence of double-layer polar-
ization (volume diffusion model).

A quite different approach is represented by the so-called surface diffusion model
(SDM) (Schwarz model), which assumes the existence on the particle surface of special
kinds of charges (slipping charges), which are capable of undergoing free migration and
diffusion along the surface, whereas their migration and diffusion in the normal direc-
tion is impossible or strongly hampered. This behavior is impossible for ions in the
diffuse part of the EDL and its occurrence for ions in the dense part has never been
confirmed up to now. The applicability of the SDM is no doubt for new interesting
systems – particles covered by thin metallic films or thin polymeric films with electronic
conductivity. In such systems, the role of slipping charges is played by electrons or holes.
Hence, the SDM has been generalized to be applied to such new systems, by taking into
account the inner screening in the layer of slipping charge, and the exchange current
density, as a parameter determining the normal current between the film and enjoined
solution. Analytical expressions have been obtained for the frequency dependences of
particle polarizability, suspension admittance, and angular velocity of electrorotation
over a broad frequency range, covering both low and high frequencies in the natural
frequency scale. The existence of a high-frequency dispersion of suspension conductivity
is predicted, and it is found to be characterized by a very large value for the specific
conductivity increment when the mobility in slipping charges is comparable to that of
electrons in metals.
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11. T Müller, L Küchler, G Fuhr, T Schnelle, A Sokirko. Silvae Genet 42: 311, 1993.

12. XF Zhou, GH Marx, R Pethig, JM Eastwood Biochim Biophys Acta 1245: 85, 1995.
13. VL Sukhotukov, U Zimmerman J Membr Biol 153: 161, 1996.
14. J Gimsa, T Müller, T Schnelle, G Fuhr. Biophys J 71: 498, 1996.

15. JPH Brut, KL Chan, D Dawson, A Patron, R Pethig. Ann Biol Clin 54: 253, 1996.
16. XB Wang, Y Huang, PRC Gascoyne, FF Becker, R Hölzel, R Pethig. Biochim Biophys Acta

330: 1193, 1994.

17. M Egger, E Donath. Biophys J 68: 364, 1995.
18. Y Huang, XB Wang, R Hölzel, FF Becker, PRC Gascoyne. Phys Med Biol 40: 1789, 1995.
19. HP Schwan, G Schwarz, J Maczuk, H Pauly. J Phys Chem 66:2626, 1962.
20. R Barchini, DA Saville. J Colloid Interface Sci 173: 86, 1995.

21. AV Delgado, FJ Arroyo, F Conzalez-Caballero, VN Shilov, YB Borkovskaya. Colloids
Surfaces A 140: 139, 1998.

22. H Maier. Biophys J 73: 1617, 1997.

23. R Georgieva, B Neu, VN Shilov, E Knippel, A Budde, R Latza, E Donath, H Kiesewetter, H
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13
Characterization of Particles and Biological
Cells by AC Electrokinetics

JAN GIMSA Humboldt Universität zu Berlin, Berlin, Germany

I. INTRODUCTION

In the growing research into the interaction of AC electric fields with colloidal particles
and biological cells, AC electrokinetic methods [1–15] are increasingly replacing classical
impedance methods [5, 16–18]. The reason is the higher resolution of the electrokinetic
methods for the electrical parameters of single objects, resulting from their different mea-
suring principles. While impedance methods register the direct electric response of a
suspension to an applied electric field, e.g., an alternating current, AC electrokinetic
methods register force effects which arise from the interaction of the induced polarization
charges with the inducing field. In the field of biology, interesting applications of electro-
kinetic methods are the determination, screening, or pursuit of changes in membrane
capacitance, membrane conductance, and cytoplasmic properties [1, 9, 19–32].

In impedance the current through a suspension increases with frequency. This is
caused by a decrease in the effective impedances of both particles and suspension medium
due to the increasing current contributions of the permittivities of all the constituents.
For a certain structure the switch from a current contribution predominantly based on
its conductivity property at low frequencies to a contribution predominantly based on its
permittivity property at higher frequencies occurs in a characteristic frequency range
around the dispersion frequency. The different dispersion frequencies of the various con-
stituents lead to a stepwise but continuous decrease in the suspension impedance with
increasing frequency. The different properties of particle structures and the medium cause
a different frequency dependence of the effective impedances of particle and medium. This
results in a frequency-dependent redistribution of the current balance through and around
the particles. Typically, for biological cells suspended in a medium of low conductivity,
two structure-related redistribution processes occur in the kilohertz and the megahertz
range, respectively. The first process is capacitive membrane bridging, i.e., changing the
current from predominantly flowing around the cell to predominantly flowing through its
highly conductive cytoplasm. Then, with increasing frequency the currents related to the
bulk permittivities supersede the frequency-independent conductivity currents. This again
leads to a predominant current flow around the cell due to the permittivity difference
between the medium and cytoplasm. Although the latter process may cause a stronger
current redistribution than the membrane bridging it is often neglected in impedance
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modeling. One of the reasons is that the strength of a dispersion is related to the impe-
dance change relative to its value at DC or at very low frequencies. For this reason, it
seems to be more appropriate to relate the strength of a dispersion process to the height of
the impedance step relative to zero, the impedance value at infinite frequency.

Whereas the impedance of a suspension depends, though in a complex way, on the
sum of the current contributions through and around the suspended particles, the forces or
torques in AC electrokinetics depend on the difference between particle and medium
properties. Consequently, AC electrokinetic forces or torques may decrease as well as
increase with frequency, thereby, reflecting the strength of the current redistributions.
Summarizing these considerations, it can be concluded that particle and medium proper-
ties in impedance are qualitatively reflected in an integrative manner, whereas in the AC
electrokinetic methods in a differential one. Nevertheless, impedance and the electroki-
netic methods detect the same polarization processes and their dispersions and thus gen-
erally yield the same information on the dielectric particle properties.

There is a long-standing tradition in characterizing the dielectric properties of bio-
logical material. The dispersion processes leading to characteristic frequency-dependent
properties of biological material are better understood than those of the various artificial
colloidal particles. The impedance and permittivity of biological material drop over some
frequency decades by several orders of magnitude [33, 34]. Two different approaches were
chosen for the classification of the measured dispersions. They were either sorted accord-
ing to their physical nature, e.g., as structural Maxwell–Wagner and molecular Debye
dispersions, or according to the frequency range where they occur. A classification accord-
ing to frequencies originally yielded a scaling where the dispersions were assigned to �, and
�, and � ranges with increasing frequencies. At that time it was assumed that well-defined
processes were responsible in a certain dispersion range which could be assigned to certain
biological structures [33–40]. Later, the ranges were subdivided, e.g., the � range into �1
and �2. Furthermore, processes based on a certain mechanism, which were originally
assigned to a specific dispersion range, could be observed in another range, e.g., � disper-
sions of large molecules or � dispersions of small molecules in the �-dispersion range.

Despite these difficulties, especially for suspended biological cells, a general classifi-
cation is possible. Below a few kilohertz in the �-dispersion range many different pro-
cesses, such as electrode processes, hydrodynamic relaxations of electro-osmotically
induced convections within the measuring chamber and around the particles, as well as
particle electrophoresis, may influence the measurements. These phenomena are hard to
separate and concurrently influence the suspension medium and particles [2, 41–43]. In the
�-dispersion range from a few kilohertz to some 100 MHz the main components are the
aforementioned structural dispersions. A cell suspended in a medium of low conductivity
may exhibit two extreme cases of polarizability. At low frequencies, when the membrane
effectively insulates the cell, its polarizability is much lower than that of the medium. In
the intermediate frequency band, after capacitive membrane bridging, conductivity effects
dominate and the high cytoplasmic polarizability may strongly exceed that of the medium.
Finally, at very high frequencies, permittivities dominate and the cell polarizability may
again fall below that of the medium. The latter dispersion, resulting from a polarization
according to the bulk conductivity properties to a polarization based on the bulk permit-
tivity properties is qualitatively different from the dispersions of the polarization of the
cytoplasmic membrane and that of internal membrane systems. Although some authors
[44] consider the dispersions of the cytoplasmic and the internal membrane structures as
�1 and �2 dispersions, respectively, it would be preferable to stress their different qualities
by using �1 and �2 for the membrane and the bulk conductivity dispersions, respectively.
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The different membrane structures can then be designated as �10; �100, etc. The structural
dispersions can be further influenced by other processes such as the surface conductance
[45–47] or membrane transport processes [48, 49]. In addition, Debye dispersions of cyto-
plasmatic proteins occur in the � range. For impedance, it has been known for a long time
that these processes are masked by the stronger structural dispersions [50]. Only more
recently has it become possible to resolve them by AC electrokinetic methods [8]. In the �
range, above some 100-MHz dissociation–association relaxations or Debye dispersions of
small molecules or charged groups as well as the dispersion of bound water (in the range
1–10 GHz) and that of free water (above 10 GHz) occur [33, 51].

A number of reviews on AC electrokinetic phenomena is available [11, 31, 33, 52].
This chapter aims to provide an introduction to AC electrokinetics and its relation to
classicial impedance. The interrelations of the various electrokinetic methods are described
on the basis of a simple model. It allows for the derivation of expressions for electro-
orientation, electrodeformation, dielectrophoresis (DP), and electrorotation (ER) and
considers particles and cells of a general ellipsoidal shape covered by a thin, low conduc-
tive shell. A number of experimental results are presented, together with an introduction to
the latest developments.

II. RELATION OF IMPEDANCE AND AC ELECTROKINETIC EFFECTS

A simple notion of the impedance of a suspension is presented by the scheme in Fig. 1.
This model permits a simplified but qualitatively correct comparison of impedance

and AC electrokinetic effects. For simplicity, Fig. 1 only considers a small suspension
element which consists of one-half of a single particle and the surrounding suspension. It
is assumed that the particle is mirror symmetrical with respect to a plane oriented
perpendicular to the field direction. For symmetry reasons such a plane is equipotential.
An AC passing through the suspension may either flow around the particle, through the
external solution elements ext 1 and ext 2, or pass through the external element ext 3
and the particle. In this model both current paths end at the equipotential plane which is
at the reference potential �ref . The impedance of a complete particle and its surrounding
solution is twice that of the circuit in Fig. 1, and the overall impedance of the suspension
is then given by a Kirchhoff meshwork of a multitude of such circuits [53]. The sub-
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FIG. 1 Diagram for half a particle and its surrounding medium, demonstrating the different prin-

ciples of impedance (IMP) and the AC electrokinetic effects. One of the elements describes the
particle properties; three elements (ext 1, ext 2, and ext 3) represent the surrounding medium.
�ref , �e, and ��p are the reference potential at the symmetry plane, the applied potential, and

the potential difference in between the pole at the particle’s surface and a reference in the external
medium, respectively.



division of the external solution current path providing a reference in the external
medium is assumed to be at a distance from the symmetry plane equal to the particle’s
radius. It is assumed that the potential at this point is frequency independent and
exhibits no phase shift to the applied potential �e. ��p reflects the balance of medium
and particle polarizability and is related to the mechanical work conducted by AC
electrokinetic effects. ��p reflects the energy change of the particle–medium system,
e.g., in DP when the particle is displaced by the external medium or vice versa. Thus,
if the particle were to be replaced by the suspension medium or if it consisted of such a
medium, ��p and accordingly all forces would vanish.

For the case of a homogeneous particle and a homogeneous external medium all
elements of Fig. 1 can be described by parallel resistor–capacitor (RC) circuits [11, 53, 54].
These circuits reflect the dispersion relation [cf. Eq (A6)]. Since all external medium ele-
ments exhibit the same frequency behavior, the frequency behavior, the frequency depen-
dence of the current redistribution between the top and the bottom current path is
determined by the frequency dependence of the particle’s effective impedance. It is note-
worthy that the scheme of Fig. 1 resembles a Wheatstone bridge, the impedance of which
is given by the voltage–current characteristics of its feed signal. In contrast, the AC
electrokinetic effects are related to the bridge signal, ��p. For a summary of the relation-
ship between impedance and AC electrokinetics see Refs 54 and 55.

III. AC ELECTROKINETIC EFFECTS AND METHODS

The frequency and external conductivity dependence of orientation, deformation, dielec-
trophoretically or traveling wave-induced translational movement, aggregation, or rota-
tion of the particles or cells can be exploited for particle characterization by AC
electrokinetic methods. Different AC electrokinetic methods detect this dependence either
on a suspension or on single objects. Apart from aggregation or pearl chain formation
which are based on particle–particle interaction, each suspension method is complemented
by a single-particle method. Generally, the various methods exhibit certain advantages and
disadvantages. For example, the suspension methods detect many particles at once and
may achieve a high statistical significance at short measuring times. Further, methods such
as electro-optics can be applied to suspensions of submicroscopic objects. Electro-optics
detects turbidity changes in a suspension arising from particle reorientations [5, 15]. In
contrast, observations of the orientation of single particles, which can be held in place,
e.g., by a laser tweezer [14], are restricted to the microscopic particle range. Nonetheless, a
clear advantage of these methods is that the geometry and structural features of the object
under observation are well known. This is a prerequisite for correct modeling and deduc-
tion of particle properties. On the other hand, when AC electrokinetic suspension methods
or impedance detect, e.g., the broadening of a certain dispersion process, no unambiguous
ascription to either the properties of each single particle or to the scattering of individual
particle properties within a population is possible.

DP and ER analyze the translation and rotation of single cells in an inhomogeneous
and rotating external field, respectively. The different motions in DP and ER depend on
the different spatial and temporal properties of the field determining the interaction with
the induced dipole moment. Like the deformational force in homogeneous AC fields, DP
is proportional to the real part of the induced dipole moment [56–59]. Both effects can be
employed for dielectric cell or particle characterization. Nevertheless, deformation is also
used to explore the viscoelastic properties of cells [56, 58, 60]. Such experiments can be
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conducted by microscopic observation of a single cells [56] or by deformational diffracto-
metry on suspensions [60]. The DP translation arises from the imbalance of the forces
acting on the two hemiellipsoids in an inhomogeneous field. Consequently, particles or
cells that would be elongated or compressed under certain conditions move towards or
away from regions of high field [8, 11, 13, 20, 61–66]. Frequency-dependent changes in the
DP force are mediated by dispersions of the particle’s polarizability relative to that of the
medium. In ER the rotating field induces an induced dipole moment which rotates at the
angular frequency of the field. Any dispersion process causes a spatial phase shift of the
external field vector and the dipole moment, giving rise to a torque which causes individual
particle rotation. The torque, and therefore particle rotation, is at maximum if the relaxa-
tion time of the dispersion process and external field frequency match. According to their
mechanisms DP and ER reflect the sole real and imaginary parts of the induced dipole
moment, respectively. Measurements of DP and ER can be conducted by direct micro-
scopic observation or video processing [66–69]. Recently developed light-scattering meth-
ods allow for the detection of DP (dielectrophoretic phase analysis light scattering,
DPALS) and ER (ER light scattering, ERLS) in suspensions (see below; [70–72]).

The orientation of particles can be microscopically observed on individual particles
in free suspension [3, 12, 73]. Alternatively, single particles can be held in place by a laser
tweezer [14, 69]. When the turbidity or static light scattering of a suspension is registered,
AC field-induced reorientations of nonspherical objects change the optical properties of
the suspension. The respective methods are known as electro-optics or electrical birefrin-
gence [5, 10, 74].

Induced mutual attraction of cells is exploited in biotechnology for their alignment
in pearl chains before fusion [75]. Nevertheless, registration of the frequency dependence
of the attraction force can also be used for cell characterization [76]. Microstructured
electrode chambers allow for the generation of strongly inhomogeneous fields. In such
fields even submicroscopic particles can be trapped or particle aggregates can be formed
[72, 77, 78]. These effects cannot only be exploited for particle handling but also for
characterization when the frequency dependence, e.g., of the trapping efficiency is ana-
lyzed. Fluorescence markers may facilitate observation of submicroscopic particles. A
special way to detect the frequency dependence of DP is to register turbidity changes in
the gap between two electrode chips, each of which carries repetitive electrode structures
[79]. In such a setup, positive DP attracting the objects towards the electrodes reduces the
turbidity, whereas negative DP repelling the objects from the electrode surfaces leads to a
turbidity increase. Flow chambers with a similar electrode setup operated at positive DP
can also be used to filter out and analyze intact biological cells, e.g., from drinking water
or homogenized meat [80–82].

Field-flow methods are chromatographic-like elution techniques in which a differ-
ential retention of particles is caused by an external force field, e.g., medium cross flow, a
thermal gradient, gravitation, etc. [83]. Recently, DP was introduced as a new kind of
force field to the variety of fields already applied in field-flow fractionation [84].
Accordingly, DP field-flow fractionation does not mainly aim at dielectric property ana-
lysis but at particle and cell separation according to their dielectric properties. The method
is based on the DP positioning of the objects within the suspension flow velocity profile
established through a special chamber. The chamber walls carry repetitive DP electrode
structures and the mean particle distance to the walls or the strength of the particle
interaction with the walls is determined by the DP force experienced by the objects.

Particle translation in traveling-wave DP (TWDP) is actually based on the ER effect
in a repetitive, comb-shaped electrode structure driven by progressively phase-shifted
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signals [85, 86]. Besides the transition induced by the traveling field component, the
particles experience a DP attraction or lift force evolving from the field inhomogeneities
above the electrode structure. Besides microscopic observation and video processing a
special laser Doppler method (TWDP-PALS) allows detection of the effect in suspensions
(see below; [87]). The combination of TWDP with field-flow fractionation can also be
considered. In this case even a two-dimensional separation of particle and cell populations
seems possible when the field-induced traveling direction is oriented perpendicularly to the
suspension flow.

IV. AC FIELD-INDUCED FORCE ACTING ON PARTICLES AND CELLS

Figure 2 presents a simple notion of how field-induced forces evolve. The two limiting
cases of particle polarization can be respectively pictured by an air bubble in water (top)
and a water droplet in air (middle). Interestingly, depending on frequency, biological
cells may exhibit the two extreme cases of polarizability. Being insulated by the mem-
brane at frequencies below the membrane dispersion, cell polarizability is usually very
low (top). Above the membrane dispersion range, although still below the bulk con-
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FIG. 2 Diagram of the field distributions and evolving forces for the two limiting cases of the

polarization of an ellipsoidal particle. Charges are located at the particle/medium interface. Top: The
particle’s polarizability is much lower than that of the medium; Middle: the inverse case; Bottom: the
induced potentials at three different sites: on the symmetry plane within the particle or in the external

solution, a reference potential of �ref ¼ 0 V is assumed. In the external solution at distance j~aaj from
the symmetry plane the potential is �e. The complex, frequency-dependent potential �

�
p at the pole

site of the particle’s surface is related to the effective local field ~EE�
p within the particle, which in turn

can be expressed by the depolarizing coefficient n and the Clausius–Mossotti factor f �CM. (Please note
that complex parameters are marked by an asterisk.)



ductivity dispersion, cell polarizability is dominated by the polarizability of the cyto-
plasm. This can be much higher than the polarizability of the medium when cells are
suspended at low conductivity. The charges depicted are an example of a DC or an
instantaneous moment in an AC field. In AC mode the charges change their signs with
the frequency of the field. At the bottom of Fig. 1 the induced potentials at three
different sites are considered (see legend).

The reference potential at the symmetry plane within the particle or in the external
solution would be 0 V, e.g., if the particle were to be localized in the center of two plane
electrodes. Nevertheless, at any other place between such electrodes the offset potential
would be the same for all points within the symmetry plane. Therefore, it is no limitation
to assume �ref to be 0 V. In the external solution at distance j~aaj from the symmetry plane
the potential is �e. The complex, frequency-dependent potential �

�
p at the pole site of the

particle’s surface is related to the effective local field ~EEp within the particle which in turn
can be expressed by the depolarizing coefficient n and the Clausius–Mossotti factor f �CM
(see Appendix A). All AC electrokinetic effects are based on the difference between the
potentials that would exist at the pole site of the particle’s surface in the absence (�eÞ and
the presence ð��

p) of the particle. This difference ð��p ¼ ��
p ��eÞ has already been intro-

duced in Fig. 1. Please note that for a sphere the depolarizing coefficient n ¼ 1=3 and the
limiting values of the Clausius–Mossotti factor are �1:5 � fCM� � 3.

V. PARTICLES OF GENERAL ELLIPSOIDAL SHAPE WITH THIN, LOW
CONDUCTANCE LAYER

In Fig. 2 ‘‘effective’’ values for the polarizability and the local field were assumed. These
effective values are identical to the actual values for homogeneous particles. Nevertheless,
colloidal and especially biological particles feature a strong compartmentalization and are
covered by thin membrane layers of properties which are strikingly different from those of
the bulk media. In impedance and in AC electrokinetics, multishell spherical, cylindrical,
and ellipsoidal models were developed with the focus on biological cells [13, 18, 54, 63, 88–
91]. A sphere or an ellipsoid covered by a single membraneous shell features the typical
polarizability properties of a biological cell and can be considered as a standard model.
The thin cytoplasmic membrane and its ion barrier function are the reasons for the two
most striking frequency-dependent changes in cell polarizability which are expressed by
two strong dispersions leading from one status to the other. These dispersions are reflected
in the frequency dependence of the force effects. Curiously, the general solution for the
polarization of the standard model of a biological cell, a single-shell ellipsoid, had already
been derived before the biological work on the meteorological problem of dust particles
carrying a water layer [92].

Generally, the calculation of the frequency-dependent polarization and the force
effects on shelled spherical or ellipsoidal models starts with Maxwell’s stress tensor [93,
94], or simpler with Laplace’s equation [9, 54, 63, 90, 91, 95, 96]. In the Laplace solution a
homogeneous ellipsoid or the homogeneous core of a shelled ellipsoid always exhibits a
constant field. For an explicit solution of the single-shell ellipsoid a confocal shell has to be
assumed to describe the ellipsoidal surfaces of the shell within a single co-ordinate system.
This standard approach is in contradiction to the actual biological situation of a thin lipid
membrane of constant thickness. Consequently, this model may lead to significant errors
when the object deviates from a spherical shape [54]. Probably because of the shielding
effects this error is reduced when the shell itself is highly polarizable, as for some artificial
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colloids or in the case of the meteorological problem mentioned above. For these cases, the
reader may refer to the literature cited above.

A new alternative approach, which is more appropriate for the biological case, is
presented in Appendix A. It assumes a body of general ellipsoidal shape consisting of a
homogeneous core which is covered by a low-conductance layer of constant thickness. The
model extends a notion of Maxwell that he developed for a shelled sphere to a shelled
general ellipsoid (Fig. 3). According to Maxwell, for any given frequency for a shelled
sphere a homogeneous equivalent sphere can be found that exhibits a constant local field
and possesses the same external dipole field as the shelled one [92] (see also Refs 11, 54,
and 97). Consequently, the shelled and the equivalent spheres experience the same induced
forces. The derivation is based on three ideas: First, the existence of a Maxwellian equiva-
lent body with a constant local field. Second, a shell impedance high enough to avoid
significant lateral currents within the shell. Third, the introduction of influential radii
which are equivalent to the depolarizing factors but allow for a special finite element
‘‘ansatz’’ [54].

The derivation starts from the Laplace solution for a homogeneous ellipsoid in a
homogeneous field. To calculate the constant local field within a homogeneous or an
equivalent ellipsoid, three field components along the three principal axes of the ellipsoid
must be taken into account. These local field components can be obtained from the three
principal axes and the respective induced potentials at the three poles of the ellipsoid’s
surface (see Fig. 3). A special finite element ansatz is employed to calculate the potentials
[54]. Along each principal axis it assumes prismatic elements, consisting of the three media
of core, shell, and exterior which possess infinitely small but constant cross-sectional areas
(Fig. 4). The length of the core and shell elements are given by the object geometry. The
lengths of the external medium elements are defined by the influential radii, a parameter
previously introduced [53, 54]. The influential radii do not depend on frequency and are
directly related to the electrostatic depolarizing factors. When they are normalized to their
respective principal axis they reflect the maximum of the effective local field amplification
factor (compared to a vacuum object). From the impedances of the finite elements the
potentials at the ellipsoid’s surface poles can easily be determined [Fig. 4; Eq. (A.5)]. The
impedances of the three elements are given by their permittivities and conductivities [Eq.
(A.6)].

376 Gimsa

FIG. 3 Single-shell model of the general ellipsoidal shape with constant shell thickness d. The

principal axes a; b; and c are oriented in the x; y; and z directions, respectively; ainfl is the influential
radius along axis a.



Finally, from the principal axes, the influential radii, and the impedances of the
elements a new expression for the Clausius–Mossotti factor is derived [Eq. (A.9)] which
immediately leads to the induced dipole moment [Eq. (A.1)]. For the description of a
homogeneous ellipsoid or after capacitive bridging of the membrane layer of a single-
shell particle the element Zm

x of Eq. (A.9) can be canceled out. While the induced dipole
moment obtained for a homogeneous ellipsoid is identical to the Laplace solution, in the
single-shell case it is slightly different. A comparison between the new model with a
constant shell thickness with the classical version with a confocal shell is given in Ref.
54 for single-shell spheroids. The comparison showed that the new model was superior for
cell-sized objects with a low-conductive layer. On the other hand, it is clear that the
calculation of the potential �p

x applying the finite element ansatz (Fig. 4) is only correct
when the layer is ‘‘electrically thin’’ and tangential currents within the layer are negligible
(for a consideration see Ref. (63)). Nevertheless, the introduction of the influential radius
notion allows for the definition of the geometry of the impedance of the external medium
element. This is a prerequisite for describing the frequency dependence of �p

x by
Kirchhoff’s rules using RC pairs for each impedance element of Fig. 4. By skipping certain
elements from the RC model in a given range, simpler models are obtained which in turn
can be used to derive simplified characteristic equations for characteristic spectra points
(cf. Fig. 5; [54]).

VI. INTERRELATIONS OF THE AC ELECTROKINETIC EFFECTS

Regardless of the strong interrelations between impedance and diverse AC electrokinetic
methods, one may gain the impression that these are often not fully recognized. One of the
reasons might be the complexity of the existing theories which are often derived with the
focus on a special experimental situation [9, 11, 17, 18, 55, 74, 90, 91, 93, 95, 96, 98, 99].
Nevertheless, several approaches towards a unified theory exist [11, 53–54, 63].

This chapter focusses on the AC electrokinetic effects and does not consider impe-
dance. An overview of AC electrokinetic characterization method is given in Table 1.
Expressions for electro-orientation, electro-deformation, DP, and ER have already been
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FIG. 4 Sketch of the prismatic volume element of Fig. 3. A; d; a; and ainfl stand for cross-sectional
area, membrane thickness, the principal axis, and influential radius along the a axis. Ex0 , �

p
x, �

0
x0 and

��m are the absolute value of the external field strength, and the actual potentials at the surface, the
maximum potential at the surface, and the induced transmembrane potential, respectively. For
symmetry reasons the induced potential in the center can be assumed as 0 V. The complex impe-

dances Z� of the internal medium, membrane layer, and external medium are designated by i, m, and
e, respectively.



given in different forms and combinations by other authors [3, 5, 11, 12, 56, 66, 91, 95, 96,
99, 100]. Nevertheless, the combination of the dipole approach and component notation
for field and induced dipole moment allows for an easy derivation of expressions for all
phenomena (Appendix B). In the following, the phenomena and their interrelations will be
discussed.

Electro-orientation of nonspherical single objects can either be microscopically
observed in free suspension [3, 4, 12, 73, 101] or in a laser trap [14, 69] or can be detected
as turbidity changes of a suspension (electro-optics) [5, 10, 15]. Two kinds of information
can be obtained from electro-orientational spectra: the critical frequencies of turnover,
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FIG. 5 Schematic DP and ER spectra of a biological cell consisting of a conductive core and a thin
insulating membrane drawn as the real and imaginary parts of the Clausius–Mossotti factor (fCM).

Positive values of the DP curve indicate elongation or attraction to high field areas, negative values
compression or repulsion from high field areas in electrodeformation and DP.

TABLE 1 AC Electrokinetic Characterization Methods

Effect Direct observation,
individual particles

Suspension methods

DP Microscopic registration by
eye or video processing

DP phase analysis light
scattering (DPALS)

DP field-flow fractionation
Deformation Microscopic registration by

eye or video processing
Electrodeformational
diffractometry

ER Microscopic registration by
eye or video processing

ER light scattering (ERLS)

Orientation Micro-observation in:

	 free suspension
	 laser trap

Electro-optics

Electric birefringence

Collection and trapping Micro-observation of:
	 pearl chains

	 (fluorescent) aggregate
formation

Blocking or clearing of light
path

DP filtering, DP columns

Traveling-wave DP (TWDP) Microscopic registration by

eye or video processing

TWDP-PALS

TWDP field-flow fractionation



and the preferred axis of orientation for the frequency bands within the turnover frequen-
cies. Two different arguments are used to explain orientation, energy minimization, and
the different torques induced around the three principal axes of the ellipsoid [4, 12]. In
linear AC fields, the torque criterion results in orientation of the axis of the highest real
part of the Clausius–Mossotti factor in the field direction [Appendix B, Eq. (B.6)].

The deformational force in linear AC fields is proportional to the real part of the
Clausius–Mossotti factor [Eq (A.3) and (A.9)] [56–58]. In the context of the dipole ansatz,
the expressions for electrodeformation in homogeneous fields and DP in weakly inhomo-
geneous fields are the same. The DP force results from an imbalance of the forces experi-
enced by the two hemiellipsoids, leading to a particle translation towards areas of higher
and lower field when the relative polarizability of the particle is higher or lower than that
of the medium. In a homogeneous field the same forces elongate or compress the object.

In ER a circularly polarized, rotating field induces a rotating dipole moment. In the
case of dispersion a time-independent spatial phase shift of the external field vector and the
induced dipole moment occurs. Because of the angle between the two vectors a torque is
generated which is proportional to the cross-product of the two vectors (B.2) and (B.11)].
The resulting individual rotation of particles of cells may occur in or against the sense of
field rotation [1, 63, 102]. The frequency and external conductivity dependencies of DP
and ER are especially suitable for recalculating dielectric properties since these methods
independently access the sole real and imaginary parts of the induced dipole moment,
respectively. Moreover, the mutual interdependency of the real and imaginary parts over
the Kramers–Kronig relation can be exploited to test dielectric cell and particle models.
Given a certain geometry, model parameters can be calculated from DP or ER data.
Nevertheless, the model obtained can only be correct if it consistently explains DP and
ER data [61, 63].

When experiments are conducted with one of the above methods the various effects
cannnot usually be fully separated from one another. Generally, a frequency-dependent
mutual attraction of the objects under investigation is observed as a disturbing effect. This
attraction can be understood as the DP of one object in the local field inhomogeneity
generated by the other object and vice versa. In ER chambers the field inhomogeneities in
the vicinity of the electrodes also generate DP translations. Interestingly, ER was first
observed in DP experiments on pairs of cells [103] when their connecting line had a
particular orientation with respect to the field [104]. An orientation of 458 was ideal for
one cell of the pair to experience the rotating field component generated by the relaxation
of the polarization of the other cell and vice versa. As a result, both cells of a pair were
spinning [104]. In both methods, DP and ER orientation and deformation may occur. To
avoid complications in data interpretation of microscopic investigations the reorientation
of cells can be hindered, e.g., hydrodynamically by the vicinity of the microscopic slide [8].
Nevertheless, for freely suspended cells, e.g., in ER light scattering, reorientation is a
disturbing effect [70].

Traveling-wave DP of particles or cells was based on an idea analogous to the
transition from a rotating to a linear motor [85, 105]. A traveling-wave field is generated
over comb-shaped microelectrodes which are driven by progressively phase-shifted signals.
In such a field, as in the rotating field of ER, the induced charges at the particles may
exhibit a phase lag at certain propagation velocities of the field. Due to field propagation
the resulting forces induce particle or cell translation. Analogous to ER, translation may
be induced in or against the propagation direction of the field, depending on the dispersion
process causing the phase lag [85, 86]. Similarly to traveling-wave DP, pumping of liquids
can be induced when fluid interfaces or anisotropic media are polarized [106, 107].
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Pumping is also possible for media which are homogeneous in the first place when the
anisotropy is caused by temperature gradient generated by the applied field itself [87, 108].
Nevertheless, for traveling-wave electrode systems it is obvious that inhomogeneous field
components must exist in the vicinity of the gaps between two neighboring electrodes.
These components induce DP which may repel particles or cells from, or attract them to,
the electrodes.

VII. SPECTRA AND THEIR REGISTRATION

Figure 5 depicts typical DP (or deformational force) and ER spectra for a spherical single-
shell model of a biological cell suspended in a low-conductivity medium. Each of the two
spectra is well described by five points: the DP spectrum is characterized by three different
force plateaus (F1�F3Þ acting in different frequency ranges and by two critical frequencies
ðfct1; fct2Þ at which the DP force ceases. The two peaks of the ER spectrum are related to
the two changes in the DP force from F1 to F2 and from F2 to F3, respectively. In the ER
spectrum these dispersions are expressed as rotation peaks at the characteristic frequen-
cies, fc1 and fc2, respectively. At these frequencies the rotation speed of the object against
or with the rotation direction of the field reaches the maxima R1 and R2, respectively. The
rotation ceases at f0.

It is clear that the spectra characteristics depend on the electrical and geometrical
properties of the object as well as on the properties of the external medium (cf. Eq (A.9)].
At external conductivities higher than the internal one, the relative position of the DP
plateaus F2 and F3 and the direction of the ER peak may be inverted. When the real and
imaginary parts of the Clausius–Mossotti factor are plotted in the complex plane, the two
dispersion processes result in two arcs [53, 109]. These arcs would have a perfect circular
shape when the spectra consisted of well-separated Lorentzian functions. Nevertheless, in
practice, the spectra are often modulated by underlying dispersion processes. For example,
these processes may result from internal membrane systems [24, 28, 61, 110, 111], the
dispersion of large cytoplasmatic molecules [8], lipid headgroup orientation [112], or
transport processes within the plasma membrane [49, 113]. The spectra are further influ-
enced by the orientation of a given object within the field (see Appendix B).

Several approaches have been tried to derive simplified characteristic equations for
the characteristic points of the spectra [1, 54, 61]. This is a complex problem, especially for
nonspherical objects. The correspondence of the finite element ansatz to a RC lumped
model allows for simplifications at the RC level before the derivation of characteristic
equations (cf. Appendix A). Different elements describing model properties with negligible
contribution to the overall behavior in a given frequency range can be canceled out, e.g.,
the capacitors under DC or the resistors at very high frequencies (for details see Ref. 54).
This approach, for the first time, allows for the derivation of all characteristic equations
for a single-shell spheroid.

Figure 6 gives theoretical DP and ER spectra for the three orientations of typical
ellipsoidal cells. For calculations, Eq. (B.7) and the parameters of chicken red cells were
used. The model had a membrane thickness of 8 nm. Microscopically three principal axes
of a ¼ 7:7 mm, b ¼ 4 mm, and c ¼ 1:85 mm were measured. The conductivities and relative
permittivities of the internal, membrane, and external medium were assumed to be 0.15, 0,
and 0.01 S/m as well as 50, 10, and 80, respectively. Note that according to Eq. (B.7), cell
orientation is such that the axis of highest polarizability is oriented in the field direction.
Therefore, in a linear DP field a single axis is oriented in the field direction. In a circular
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ER field the two axes of highest polarizability are oriented. From the theoretical spectra of
Fig. 6 one can get the impression that, experimentally, for biological cells reorientation is a
more disturbing effect in ER than in DP.

For the characterization of particle and cell properties it is not inevitable to mea-
sure complete frequency spectra. Actually, it is easier to determine characteristic points
of the spectra, e.g., in dependence on the external conductivity or to follow their time-
dependent changes. For this a variety of approaches exists. Most easy is the measure-
ment of the critical frequencies of DP. It can be conducted by adjusting the DP field
generator to a frequency at which the object’s movement ceases [61]. A similar approach
is very interesting for submicroscopic particles, such as viruses [77, 78, 114, 115]. For
such objects the balance of DP accumulation at electrode surfaces or in niches of low
field makes their microscopic observation feasible. Observability can be further facili-
tated by fluorescence markers.

Characteristic peak frequencies of ER can be determined by more sophisticated
compensation methods [116]. A prerequisite for detecting the peak frequencies by com-
pensation is a symmetrical shape of the peaks over a logarithmic frequency axis. To detect
the peak frequency, two fields having different rotation senses and frequencies, e.g., of f
and f =4, respectively, are alternately applied. At an alternation frequency of, e.g., 100 Hz
and a key ratio of 1:1 the inertia of the particles results in a smooth rotation. The rotation
ceases if the logarithmic center frequency f =2 and the peak frequency match. After
determination of this frequency the peak rotation speed can be directly determined by
switching the field to f =2. This method is especially useful for following rapid changes of
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FIG. 6 DP, electrodeformation (ED), and ER spectra for chicken red cells given as real or ima-
ginary parts of the Clausius–Mossotti factor. The bold lines are the predicted experimental spectra

taking reorientation into account. Around 100-MHz orientation alters within a narrow frequency
band (cf. Fig. 8). Top: three DP spectra for three different orientations; the principal axis orientated
in the field direction is marked. Bottom: ER spectra for three pairs of axes laying in the plane of field
rotation.



cell or particle properties [23, 29, 30]. In principle, for two ER peaks of opposite signs but
similar amplitude, it is also possible to determine the frequency of zero rotation by
compensation [111]. To measure complete spectra by compensation a reference and a
measuring field are alternately applied at a certain key ratio [117, 118]. Ceasing of rota-
tion is obtained by variation of the key ratio. When the reference and the measuring
frequency are located in the same peak or in different peaks of the same sign, the rotation
sense of the field must be altered together with the frequency. The same principle can be
applied in DP levitation [119]. Scanning of the ER spectrum by a compensation method
seems to be especially interesting in ERLS for detecting the relative rotation sense of
different ER peaks [118].

Of course, the results of compensation methods must not always be translated into
DP or ER frequency spectra but can as well be directly interpreted, e.g., by characteristic
equations. This is demonstrated in Fig. 7 for human red cells. The data were obtained by
compensating the generator frequency to the critical frequencies of DP (top of Fig. 7) and
by compensating for the first characteristic frequency of ER before measuring the rotation
speed at that frequency (bottom of Fig. 7), respectively. The figure presents the depen-
dence of the two critical frequencies of DP over medium conductivity and the changes of
the antifield ER peak after addition of different ionophor concentrations (for details see
Refs 8 and 30, repectively). The theoretical curves were calculated as outlined in the
appendices. Membrane capacitance and specific conductance were assumed to be 10�2

F/m2 and 480 S/m2, respectively. The cells were modeled as spheroids with a radius of 3.6
mm and a third axis of 1.8 mm. To calculate the theoretical curve for the critical frequencies
of DP, dispersing cytoplasmic properties were assumed. The dispersion frequency was 15
MHz at a distribution coefficient of 0.2. The dispersion mediated the transitions of the
cytoplasmic permittivity and conductivity from 162 to 50 and from 0.4 to 0.535 S/m,
respectively. To generate the ‘‘spider web’’ at the bottom of Fig. 7 the cytoplasmic dis-
persion was neglected. The external and internal permittivities were assumed to be 80 and
50, respectively. The cytoplasmic conductivity was varied as is shown in the figure.

For most cells, the critical frequencies of DP form a nose-shaped function which
consists of two branches describing the conductivity dependence of the first (bottom
branch) and the second (top branch) critical frequency, respectively. Above a certain
external conductivity only negative DP is observed and the two branches join. For cells
it was shown that this plot is especially sensitive to parameter variations [8]. In ER the
Lorentzian peak generated by a single dispersion process is well defined by its character-
istic frequency and amplitude. The idea of the spider-web like presentation is to allow for
an efficient two-dimensional presentation of the dependence of the two well-separated ER
peaks on two independent parameters [30, 31]. The presentation was obtained by plotting
the trajectory of amplitude and frequency of the antifield peak by varying one parameter
while keeping the other fixed. The ‘‘web’’ obtained is a helpful tool in interpreting, e.g.,
time-dependent cell parameter changes followed by the peak compensation method [29]. It
can be seen that the membrane conductance has a value of about 480 S/m2 and is fairly
independent of the cytoplasmic conductivity.

When the axis orientation of a cell is plotted in dependence on the external con-
ductivity, a function is obtained that is similar in shape to the critical DP frequency
function (Fig. 7). Figure 8 shows an example for chicken erythrocytes which possesses a
shape similar to a general ellipsoid. For calculations Eq. (B.6) was used (cf. Fig. 6). The
parameters were the same as in Fig. 6.

Usually, cell or particle orientation is observed in linear fields. According to Eq.
(B.6) the criterion for the orientation of a certain axis in parallel to the field is the max-
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imum of the real part of the Clausius–Mossotti factor. To interpret linear field orientation,
it is sufficient to consider alterations of the maximum axis in dependence on the external
conductivity. Nevertheless, Fig. 8 gives a complete picture of the orientation phenomenon,
presenting frequency curves of maxima and minima alterations. The inclusion of minima
alterations also makes sense when the orientation in circular fields is considered. While a
linear field orients the axis of the maximum of the real part of the Clausius–Mossotti
factor, a rotating field orientates two axes, those of the largest and the second largest real
part of the Clausius–Mossotti factor. The reason is that a rotating field can be considered
as a superposition of two linear fields, perpendicularly applied within a field plane. As a
result, the third axis of the lowest real part of the Clausius–Mossotti factor, when oriented
perpendicularly to the field plane, exhibits an exceptional orientation.

In detail, the curves of Fig. 8 are different from those given by other authors [11, 12].
These differences arise from the ill-defined layer thickness of the common Laplace
approach. The equatorial region of a polarized object oriented in field direction most
strongly contributes to the induced forces. In the common Laplace model, reorientation
turns membrane areas of very different thickness, i.e., electrical properties, into this region,
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FIG. 7 Compensation methods applied to human red cells. For parameters of the theoretical
curves see text. Top: critical frequencies of DP over medium conductivity; frequencies at which
only part of the cell population exhibited a transition from positive to negative DP are marked

by hollow points. Bottom: frequency and rotation speed at the antifield ER peak of red cells under
the influence of the ionophor nystatin at a medium conductivity of 12.5 mS/m. A spider-web like
presentation of the theoretical peak dependence on cytoplasmic conductivity ð�i in S/m) and specific
membrane conductance ðgm in kS/m2) was fitted to measured points by changing the friction coeffi-
cient.



thus changing the effective electrical properties of the membrane layer [54]. While the
confocal model in cases where no reorientation occurred will have generated effective
model parameters (e.g., Refs 8 and 9), in electro-orientation the application of a certain
geometry to all orientations seems problematic (e.g., Ref. 12). The problem can probably
be reduced by the application of different geometric models for each orientation, which is
an intrinsic feature of the finite element model. The latter approach seems to be more
reasonable for modeling ellipsoids with a low-conductivity membrane layer.

Figure 9 compares traveling-wave DP and ER measurements on Sephadex G15
particles. The traveling-wave induced particle velocity was measured over a comb-shaped,
repetitive electrode structure which was driven by signals of progressive 908-phase shifts
(for details see Ref. 120).

The measurements are consistent with a homogeneous, spherical particle model
possessing a dielectric constant and a conductivity of 40 and 0.9 mS/m, respectively [8,
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FIG. 8 Theoretical orientation of chicken erythrocytes over medium conductivity plotted as max-
ima, Re(fMax

CM Þ, and minima, ReðfMin
CM Þ, of the real part of the Clausius–Mossotti factor, respectively.

The curves separate areas of a certain axis with maximal or minimal polarizability. While the

maximum axis describes the orientation in a linear field, the minimum axis has an exceptional
orientation in a circular field (see text). For cell parameters see Fig. 6.

FIG. 9 Traveling-wave induced velocity (triangles, right ordinate) and rotation speed (circles, left
ordinate) of Sephadex G15 particles at an external conductivity of 0.23 S/m in dependence on field

frequency. Below 400 kHz the particles were attracted to the electrodes.



120]. The results of traveling-wave DP can qualitatively be explained by a superposition of
a linearized ER and dielectrophoretic particle lifting or attraction by the inhomogeneous
electrode field. Since attraction of the objects towards the electrode structure by positive
DP hinders particle translation in the free suspension, it can only be observed in the
frequency range of negative DP (cf. Fig. 5). Under the conditions used Sephadex particles
exhibit a positive ER peak. With increasing frequency the positive DP changes at 400 kHz
to negative DP. The positive ER peak corresponds to a translation in the direction of field
propagation.

VIII. RECENT DEVELOPMENTS

A. Microstructured Chambers

Conventionally, AC electrokinetic measurements were carried out at low ionic strength to
reduce heat production and medium convections. Such problems are minimized in micro-
electrode chambers produced by microchip technology with an electrode size of the order
of the particles themselves [8, 65, 77, 114, 121, 122]. The increased surface–volume ratio of
the microchambers facilitates heat dissipation and reduces convections. Also, the neces-
sary driving voltages decrease with the electrode spacing. Moreover, microelectrodes pos-
sess a reduced impedance and impose a lower electrical load on to the signal generators.
Microchambers allow for an extension of the medium conductivity and the measuring
frequency beyond the cell physiological ionic strength (about 1.5 S/m) and 1 GHz, respec-
tively. Generally, at an increased medium conductivity all dispersions are shifted towards
higher frequencies. For cells in ER the cofield peak becomes antifield for conductivities
higher than that of the cytoplasmic core, which is usually of the order of 0.5 S/m. For
shielded particles, like cells, the external medium and the core polarizability balance
becomes delicate when their properties are similar. This allows for a more sensitive detec-
tion of the core properties [30].

Nevertheless, the introduction of microchambers and the extension of the measuring
frequency range also caused unprecedented problems. In ER measurements on particles
and cells above 30 MHz additional peaks of unexpectedly high and low rotation speed
were observed. Figure 10 gives an example for the resonant properties of microchambers.
The undistorted, theoretical curves (continuous) were calculated for the parameters used
in Fig. 9. Around 180 MHz, the speed dramatically increased in a relatively narrow peak
before a final drop. Checking the driving voltage at the terminating resistors ðVdrive)
revealed that the driving signal was frequency independent and that the reason for the
ER resonance peaks must be located within the chamber structure itself. Analysis of the
electrical chamber circuit properties showed that these effects are not due to object polar-
ization but are instead caused by a resonance peak of the chamber field strength around
180 MHz. This chamber peak frequency was broadly independent of medium conductiv-
ity, but depended on the chamber and the chip carrier design.

For measurements square-topped fields were used. At 44 mS/m the inherent cham-
ber resonance at 180 MHz was located far away at the high-frequency flank of the ER
peak, causing only minor deviations from a Lorentzian shape. Increasing the conductiv-
ity to 370 mS/m shifted the ER peak to 66 MHz, resulting also in strong distortions at
frequencies lower than 180 MHz. Similar distortions were observed at 44 mS/m when
four inductances of 4.7 mH each were added in series to the electrode connectors. This
drastic increase in inductance of the feed wires (see scheme at bottom of Fig. 10) shifted
the resonance frequency and altered the spectrum at 44 mS/m (upright triangles), result-
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ing in resonance distortions of the ER spectrum qualitatively identical to the chamber’s
inherent distortions.

How can such complex distortions be explained? For an ER generator producing
two square-topped fields (in x and y directions) with duty cycles of 50%, the resulting field
can be expressed in a Fourier series for the field. Consequently, Eq. (B.3) is transformed
into

~EE ¼
4E0
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where E0 stands for the peak value of the square-topped field. The field possesses only odd
harmonics, the strength of which progressively decreases. Their spinning directions change
with every component. The torque ~NN induced on a particle can be developed in a series of
torque components:

~NN ¼ ~NNð!Þ �
~NNð3!Þ

9
þ
~NNð5!Þ

25
�þ � � � ð2Þ

In this series, the torque contributions of higher components decrease with the square of
their harmonics and alternately change their signs, inducing torques with negative and
positive spinning directions. Thus, if no resonances occur, ER spectra in square-topped
fields of a duty cycle of 50% usually show only slight deviations from those in continu-
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FIG. 10 Top: spectra of Sephadex G15 beads at two different external conductivities (44 mS/m –

triangles; 370 mS/m – squares); the dashed curves consider resonance peaks at 180 and 28 MHz as
well as the Fourier content of the square-topped field. Bottom: equivalent circuit for each of the four
electrodes used to fit the resonance curves; L, R, and C represent the inductance of 0.807 �H for the

bond wires in series with the electrode strips on the chip, the conductivity-dependent resistance of the
filling solution, and a capacitance of 0.922 pF formed by each electrode.



ously rotating fields [123]. The situation changes when the chamber exhibits an inherent
resonance. At a measuring frequency of, e.g., 60 MHz the third harmonic is at resonance,
generating a strong negative contribution to the torque (cf. squares to theoretical curve in
Fig. 10 and Eq. (2)]. Further evidence that the ER spectra distortions were caused by the
chamber properties was that all spectra could be fitted by changing the resistor (scheme at
bottom of Fig. 10) using the same friction coefficient (for details see Ref. 8).

Nevertheless, chamber resonances do not only cause problems. When the harmonic
content of the drive signal is known it is possible to separate the narrow resonance dis-
tortions from the Lorentzian peaks generated by cell or particle polarization. Moreover,
we found that fitting the distorted spectra of probe particles was much more sensitive in
determining the effective electrical chamber parameters than direct impedance character-
ization of the chambers [8]. The electrorotating particles were used as field probes within
the liquid dielectric of a capacitor, which was formed by the chamber. Since alterations in
the ER torque are proportional to the square of the field strength, they are very sensitive to
field strength variations. Furthermore, resonances can be applied for the local increase of
forces in media, particle, or cell manipulation [8, 87] or in microsystem technology [124].

It is advantageous to avoid resonance in most cases of cell and particle characteriza-
tion. To this end, as a rule, the chamber chip material should possess no conductivity and
a low dielectric constant. Therefore, glass chips are superior to silicon chips. Further, the
terminating resistors should be close to the electrode structure which may, unfortunately,
cause temperature problems due to the resistors’ heat dissipation. Despite these problems,
a linear frequency behavior of microchambers up to the low gigahertz range can easily be
achieved.

B. Dielectrophoretic Field Trapping

Planar or three-dimensional microelectrode chambers, e.g., with four electrodes as used in
ER or with a special, intercastellated design allow for the generation of strongly inhomo-
geneous fields with well-defined positions of the field minima and maxima [65, 72, 77, 78,
121, 125]. Due to the strong gradients and the small distances between the sites of mini-
mum and maximum field, particle collection at a certain site and the frequency dependent
alteration of the collection sites can be observed even for submicroscopic particles.
Usually, dielectrophoretic field-trapping experiments are theoretically interpreted by the
real part of the induced dipole moment of the particles. Nevertheless, only the translation
of single particles within the field gradient towards the site of collection is proportional to
the real part. Fortunately, the frequency dependence of the polarizabilities of small aggre-
gates is usually very similar to that of single particles. Moreover, the deviations of the
collecting force acting in between the single particles of an electrically formed aggregate
from the real part of the induced dipole moment are comparatively small. This is despite
the deviation caused by the contribution of the imaginary part of the induced dipole
moments and the differences in the polarizability of single particles and aggregates. For
these reasons it is largely justified to make field-trapping results synonymous for the real
part of the induced dipole moment.

In order to keep the experiments as simple as possible often only critical frequencies
and their medium-conductivity dependence are registered (Figs 5 and 7) [72, 126]. For
submicroscopic particles, e.g., viruses, fluorescence markers may facilitate observability.
An interesting point is that, with decreasing size, the particle properties are strongly
dominated by their surface properties, and the double-layer related � dispersions are
shifted beyond 10 kHz into the �-dispersion range. As a result, the DP and ER behavior
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of, e.g., artificial particles becomes very sensitive to surface property alterations, e.g., by
specific adsorption or binding of charged molecules, antibodies, etc. These features can be
employed in screening systems, etc. [127].

C. Electrorotational Light Scattering (ERLS)

Microscopic registration of individual particle kinetics is tedious and restricted to the
microscopic size range. Dynamic light-scattering techniques access the diameter range
from about 5 nm up to 5 mm and are commonly used to characterize the size and surface
charge of colloidal or biological particles. Recently developed methods such as ERLS and
DPALS aim to combine the advantages of AC electrokinetics and dynamic light scattering.
The methods are based on the simultaneous, computerized registration of many individual
particles of a population and yield statistical significance at short measuring times.

ERLS is a homodyne dynamic light-scattering method with a single beam and a
single detector [70, 118]. A scheme of the experimental setup is presented in Fig. 11.

For ERLS two principle designs for the measuring chamber were tested. The con-
ventional setup consisted of four platinum-wire electrodes placed in a cylindrical drilled
hole in a Plexiglas body. Alternatively, two microelectrode glass chips carrying the elec-
trode structures were glued to a spacer with a drill hole, forming the measuring volume.
With no field, the ERLS setup comprises a conventional dynamic light-scattering device.
When the particles possess a deviation from a perfect optical rotational symmetry, the field
frequency-dependent ER of the particles generates field frequency-dependent autocorrela-
tion functions of the scattered light intensity. Figure 12 (top) gives an example for the
change in autocorrelation function measured on human red cells.

The inverse of the decay time of the autocorrelation functions to 75% of its initial
value ð1=�75Þ was introduced as a measure of the induced rotation speed [70]. The 1=�75
spectra allow for the determination of the frequency dependence of the particle rotation.
As an example measurements on TiO2 particles are presented in Fig. 12 (bottom). The
TiO2 particles were filtered by a micropore filter and had an average diameter of 320 nm.
Nevertheless, since the criteria do not only depend on the rotation speed, but also on
particle shape and additional particle motion, limits for clear detection of particle rota-
tion exist [70]. Another problem of the method was its inability to detect the rotation
sense of particles. This problem could partly be solved by a compensation method
allowing for the detection of the relative sense of all ER peaks of a spectrum (compare
with above) [118].
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FIG. 11 Principal ERLS setup. A laser beam illuminates the measuring volume in the center of a

special ER chamber. Scattered light intensity is detected by a photon-multiplier (PM) at the detec-
tion angle, �. The PM signal is fed into the correlator of a computer (PC) which also drives the four-
phase field generator.



D. Dielectrophoretic Phase Analysis Light Scattering

To take advantage of the Kramers–Kronig relationship between DP and ER, e.g., for
testing certain particle models, DP-induced translations also need to be registered.
Commonly, heterodyne dual-beam laser–Doppler setups are applied to detect particle
translations [128–130]. For DP measurements, several advantages favor a dual-beam
setup. A striking advantage is that the measuring volume is restricted to the crossing
region of the two beams and can thus be adjusted to an area of known field distribution.
To detect translation, no optical anisotropy of the particles is required. This, in principle,
allows for the detection of particles smaller than 5 nm. Since the classical laser–Doppler
setups are not sensitive to very small particle displacements, we applied phase analysis
light scattering (PALS). In PALS, Bragg cells introduce a small optical frequency differ-
ence into two laser beams to create an interference region with a moving fringe pattern
(Fig. 13) [129]. The intensity of the scattered light of a particle, stationary within the
crossing region, varies with the frequency difference between the two laser beams.

To detect particle translation, the intensity of the scattered light of a particle is
compared to the difference frequency of the Bragg cell drive signals. For this, the differ-
ence frequency obtained from a mixer (equivalent to the optical difference frequency of the
beams) is used as the reference for the lock-in amplifier. Phase demodulation of the light
scattered by a single particle directly yields the particle velocity perpendicular to the fringe
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FIG. 12 ERLS measurements on human red cells (top) and TiO2 particles (bottom). ER results in a
steeper decay of the normalized autocorrelations function [Cð�Þ � 1�; the inverse times necessary for
the function to decay to 75% of its initial value ð1=�75Þ is marked by arrows for the case of no ER

field and 150 kHz, respectively. TiO2 particle spectra were measured at three media conductivities of
0.16, 1, and 2 mS/m, respectively. The fitted curves are single Lorentzian functions.



pattern. For diffusing particles the method registers the translational component perpen-
dicular to the fringe pattern (Fig. 14, top). Amplitude weighting of the scattered light
intensity yields phase differences in angular degrees. For pure diffusion the average shift
vanishes. For moving ensembles of particles the shift obtained by amplitude weighting is
directly related to the mean velocity of the ensemble [129].

Latex particles exhibit a single Lorentzian transition of their DP force. PALS regis-
tration of DP was possible despite an offset velocity of the particles of about 100 mm=s (for
details see Ref. 71). This velocity is due to medium convections and gives another example
for the superposition of different AC electrokinetic effects. With microchambers medium
convections can only be reduced, and the construction of a convection-free DP chamber is
still an unsolved problem.

IX. SUMMARY

Over the last two decades, a number of AC electrokinetic characterization techniques have
been rapidly developed in biotechnology, but especially in the field of basic research.
Prerequisites for this development were the improvement of the generators and the cham-
ber connectors, the introduction of chip technology for the design of electrodes, video
processing, light-scattering techniques, and last but not least, the development of adequate
theories. Many AC electrokinetic effects used for characterization can also be applied to
the manipulation of particles. Biological research in this field is aimed at the development
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FIG. 13 Optical and electronic DPALS setup. The measuring chamber is illuminated by two

focussed laser beams that path through Bragg cells. The frequency difference between the Bragg
cell drivers, which is identical to the optical frequency difference between the two first-order beams,
is used as the reference signal of the lock-in-amplifier. The scattered light intensity is detected by a

PM through an optical fiber. A computer drives the lock-in amplifier and the field generator via an
IEEE bus.



of ‘‘Bio-factories on a chip’’ based on electrode chips with channels and cavities for
sorting, separation, collection, and different forms of electrical, biochemical, and genetic
manipulations as well as for the characterization of dielectric properties [131–133]. In
characterization, the development aimed at separating the different AC electrokinetic
effects to simplify the interpretation of experimental data. An example is the development
of ER. Whereas the first ER experiments were conducted on pairs of cells in linear fields
[104] the introduction of rotating fields by Arnold and Zimmermann [1] based on an idea
of H. Schwan (personal communication, 1998) allowed for the observation of ER on single
objects. Nonetheless, in most methods for a correct interpretation of measurements, e.g.,
DP or ER spectra, it is still essential to take into account the interrelations of the different
AC electrokinetic effects, e.g., cell reorientation, deformation, or even the distortion of
membrane integrity by the induced transmembrane potential. The model presented here
considers such interrelations. Despite its simplicity, the model is not only relevant for
microscopic particles but also for submicroscopic biological particles, such as viruses or
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FIG. 14 PALS measurements of the diffusion (132 nm; top) and of the DP translation (15 mm,
external conductivity 3.4 mS/m; bottom) of latex particles. In the case of diffusion amplitude weight-
ing of the measured phase difference yields a Gaussian distribution with a center of 08. The width
depends on the beam geometry and the diffusion coefficient. Frequency-dependent DP translation
shifts the center of the distribution. The shift can be recalculated into particle velocity (bottom). The
solid line is a fit of the theoretical spectrum for a homogeneous particle with a permittivity of 2.6 and

a conductivity of 0.75 mS/m



cell organelles and even molecular objects, e.g., for the electric birefringence of macro-
molecular suspensions. Nevertheless, especially for submicroscopic objects, it is necessary
to expand the simple structural model by additional dispersion processes, like those related
to the double-layer properties [41, 43, 47, 72, 127, 134, 135].

Although the methodology for most of the AC electrokinetic methods was developed
in biology, in the future colloid science may emerge as the main field of application. In
colloid science the properties of the suspension medium and the different particle struc-
tures, such as their bulks, layers, and surfaces may vary much more than those of the
relatively ‘‘standardized’’ biological structures. On the other hand, the molecular structure
and composition of artificial particles are less complex and better understood than those of
biological objects. Consequently, it can be expected that a variety of different new disper-
sion processes and their understanding will emerge in colloid science, rather than in biol-
ogy. The improved models for the � dispersion can be considered as a first step in this
development, andDP-screening systems based on antigen–antibody reactions at the surface
of artificial colloids are its first applications. The new possibilities in characterizing particles
will also find applications in the development of artificial particles for drug targeting, etc.

Progress in colloid science will improve our understanding of the interaction of
biological material with electromagnetic fields, an acute problem given the current concern
over ‘‘electro-smog.’’ On the other hand, the characterization of individual microscopic
and submicroscopic biological objects potentially has direct applications in the screening
of microbial activity in fermentation, e.g., in breweries, where impedance methods are
already established [33]. Knowledge of the dielectric properties of single objects such as
yeast, bacteria, or cancer cells can finally be applied to improve the impedance models of
suspensions in fermentation and of tissues in hyperthermal cancer therapy, respectively
[136]. Today, having emerged from (and being inspired by) impedance techniques, AC
electrokinetics has become an independent field of research that may help improve our
understanding of impedance phenomena.
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APPENDIX A

Induced Dipole Moment of Single-Shell Ellipsoid

In the following an expression for the general single-shell ellipsoid is derived. For the
derivation it is assumed that the three principal axes of the general ellipsoid are oriented
in the directions of the axes of the co-ordinate system. Axes a; b, and c should be oriented
in the x, y, and z directions, respectively. For an ellipsoidal particle, assumed to be
homogeneous (this assumption holds for an actually homogeneous ellipsoid as well as
for the homogeneous equivalent ellipsoid), the x component of the induced dipole moment
is given by the product of the particle volume V and the effective polarizability in the x
direction ~PPx:

392 Gimsa



~mmx ¼ V ~PPx ¼ V"e"0f
x
CM

~EEx with V ¼
4	abc

3
ðA:1Þ

In Eq. (A.1), V , "e; "0; f
X
CM, and ~EEx stand for the particle volume, the permittivities of

external medium and vacuum, the Clausius–Mossotti factor, and the external field in the x
direction, respectively. As can be seen from Eq. (A.1), the Clausius–Mossotti factor stands
for the frequency-dependent part of the induced dipole moment. The dipole moment can
also be expressed using the constant local field ~EEp

x within the ellipsoid [137]:

~mmx ¼ V
"e"0
nx

ð ~EEx �
~EEp
x Þ ðA:2Þ

Here, nx stands for the depolarizing factor in the x direction (for depolarizing factors see
Appendix C). When the Clausius–Mossotti factor is formally introduced, as in Eq. (A.1),
it deviates from the conventional value by a factor of 3. The reason is that the factor of 3 in
the denominator of the volume equation is conventionally cancelled out with the depolar-
izing factor of a sphere of 1/3. This cancellation was avoided here, since it is not reasonable
for nonspherical objects with depolarizing factors different from 1/3.

The term ~EEp
x can be determined from the potential �p

x at the particle’s surface at the
pole of half-axis a (see Figs 2–4):

~EEp
x ¼

�p
x

a
~ii ¼

�p
x

�e
x

~EEx ðA:2aÞ

For a homogeneous ellipsoidal particle the frequency-dependent part of the induced dipole
moment is

f xCM ¼
"i � "e

"e þ ð"i � "eÞnx
ðA:3Þ

[137]. "i; "e, and nx are the complex permittivities of the particle and external medium as
well as the depolarizing factor in the x direction, respectively. Please note that due to the
definition of Eqs (A.1) and (A.3) the numerical values of the Clausius–Mossotti factor are
three times those usually used in the literature. The reason is that the factors ‘‘3’’ appear-
ing in the volume and the depolarizing factors of a sphere are not canceled out (for
discussion see Ref. 54). A comparison of Eqs (A.1)–(A.3) results in an expression for
the Clausius–Mossotti factor in the x direction which depends on a normalized potential
difference (cf. Figs 1 and 2):

f xCM ¼
1

nx

�e
x ��p

x

�e
x

� �
ðA:4Þ

According to Fig. 4 the potential �p
x is determined by the voltage divider properties of the

finite element model consisting of three impedance elements Zx:

�p
x ¼

Zi
x þ Zm

x

Zi
x þ Zm

x þ Ze
x

~EEx ~aainfl ðA:5Þ

The impedance elements for the internal, membrane, and external medium are designated
by the indices i;m, and e, respectively. All elements possess the same cross-sectional area
Aj but differ in lengths lj. Element j has the impedance:

Zj
¼

1

�j þ j!"j"0

lj
Aj

ðA:6Þ
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where j; !; �j; "j, and "0 stand for ð�1Þ0:5, the angular frequency of the field, the DC
conductivity, the relative permittivity, and the permittivity of vacuum, respectively. For
a given field strength the maximum of �p

x in Eq. (A.5) is determined by the influential
radius ~aainfl (Fig. 4):

Maxð�p
xÞ ¼ �0

x ¼ ~aainfl ~EEx ðA:7Þ

Its minimum is 0 V (e.g., for a metallic body). Keeping in mind that the minimum of the
Clausius–Mossotti factor [Eq. (A.3)] corresponds to the maximum of the local field, the
combination of Eqs (A.3), (A.4), and (A.5) yields the relationship between nx and the
influential radius ~aainfl [53, 54]:

a

ainfl
¼ 1� nx ðA:8Þ

Finally, Eqs (A.4), (A.5), and (A.8) can be combined to obtain a new expression for the
Clausius–Mossotti factor in the x direction:

f xCM ¼
ainfl

ainfl � a
1�

Zi
x þ Zm

x

Zi
x þ Zm

x þ Ze
x

ainfl
a

 !
ðA:9Þ

Analogous expressions are valid for the other two axes.

APPENDIX B

AC Electrokinetic Effects

In this appendix the dipole approximation is used to derive general expressions for the
behavior of ellipsoidal objects in homogeneous, inhomogeneous, and rotating AC fields.
The electrical properties of the objects are given by the frequency-dependent induced
dipole moment along the three principal axes [Eq. (A.1)]. In weakly inhomogeneous fields
the time-averaged dielectrophoretic force h ~FFi acting on a homogeneous particle of general
ellipsoidal shape can be expressed by the product of the induced dipole moment ~mm and the
gradient of the conjugated, complex external field ~EE�:

h ~FFi ¼
1

2
<½ ~mmr ~EE�

� ðB:1Þ

The time-averaged torque h ~NNi in a rotating field is given by the cross-product of the
induced dipole moment and the conjugated field:

h ~NNi ¼
1

2
Re½ ~mm� ~EE�

� ðB:2Þ

In component notation the external AC field can generally be written as:

~EE ¼

Ex

Ey

Ez

0
@

1
A ¼ E0e

j!t
ex
ey
ez

0
@

1
A ðB:3Þ

where E0, !; j, and t stand for the amplitude of the field, circular frequency, ð�1Þ�0:5, and
time, respectively. The components of the field vector Ex;Ey;Ez are parallel to the ortho-
normal base vectors ~ii; ~jj; ~kk, respectively, which are the vectors of an orthonormal base
system. The induced dipole moment ~mm is proportional to the external field, the external
permittivity "0"e, and the volume V of the ellipsoid:
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~mm ¼

mx

my

mz

0
B@

1
CA ¼ "0"eV

f x<CM þ jf xICM

f
y<
CM þ jf

yI
CM

f z<CM þ jf zICM

0
B@

1
CA ~EE ðB:4Þ

The frequency-dependent part of each component (index x; y; or z) along the three
principal axes of the ellipsoid is given by three components of the Clausius–Mossotti
factor. Each consists of a real (index <) and an imaginary part (index I ), which are in
phase and out of phase with the inducing field, respectively. Introducing the expressions
(B.3) and (B.4) into Eq. (B.2) one obtains:

h ~NNi ¼
1

2
<

myE
�
z �mzE

�
y

mzE
�
x �mxE

�
z

mxE
�
y �myE

�
x

0
B@

1
CA ðB:5Þ

In the following, special cases for the external field shall be considered. For
ex ¼ ey ¼ ez ¼ 1, Eq. (B.3) describes a linear AC field as it is applied in electro-orientation.
If we assume the three principal axes a; b; c of the ellipsoid to be oriented parallel to the
three base vectors the same magnitude of the external field applies along each principal
axis. Therefore, the field-induced torque around a given axis depends on the induced
dipole components along the other two axes. This relationship is obvious in Eq. (B.6)
which can be directly obtained from Eq. (B.5) [12]:

h ~NNi ¼
1

2
"e"0VE

2
0

f
y<
CM � f z<CM

f z<CM � f x<CM

f x<CM � f
y<
CM

0
B@

1
CA ðB:6Þ

For any given frequency and external conductivity, Eq. (B.6) can be used to obtain the two
largest torque components that are induced around two of the three principal axes.
Orientation would then occur along the third axis of weakest torque. These relationships
were reflected by complicated tables of the signs of the components of Eq. (B.6) [11, 12].
The same result is obtained by looking up the maximum of the three components
f x<CM; f

y<
CM; f

z<
CM.

Orientation will also be observed when DP spectra are detected on freely suspended
particles. Particle reorientation and a subsequent change in its effective properties will
result in discontinuous DP spectra. Neglecting thermal motion, one of the principal axes
of the particle will always be oriented in parallel to the field. For a field in the x direction
and a parallel orientation of a certain principal axis (e.g., axis a, index x), introduction of
Eq. (B.4) into Eq. (B.1) then yields the DP force:

h ~FFxi ¼
1

2
"0"eV<½ðf x<CM þ jf xICMÞExrE

�
x� ðB:7Þ

A field that is weakly inhomogeneous in the x direction can be approximated by Eq. (B.3)
for ex ¼ 1þ �x and ey ¼ ez ¼ 0; � describes the small field inhomogeneity. For such a field
one obtains:

h ~FFxi ¼ "0"eVf
x<
CME2

0

�

2
~ii ðB:8Þ

Equation (B.8) shows that the frequency dependence of the DP force is described by the real
part of the Clausius–Mossotti factor along the axis oriented parallel to the field. For � ¼ 0
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the external field is homogeneous and the DP force vanishes. Nevertheless, an electrode-
formational force will still be induced, leading to compression or elongation of the object.

To consider ER a field circulating at constant amplitude in the x plane can be
assumed. Such a field is given by ex ¼ 1; ey ¼ j, and ez ¼ 0. It follows that:

~EEy ¼ j ~EEx
~EE�
y ¼ �j ~EE�

x ðB:9Þ

For simplicity, in the following only cases are considered in which one principal axis is
oriented perpendicular to the field plane. Since the z component of the external field is zero
for the oriented ellipsoid, the component of the induced dipole moment along axis c also
vanishes and Eq. (B.5) becomes

h ~NNzi ¼
1

2
"0"eV<½ðf x<CM þ jf xICMÞExE

�
y � ðf

y<
CM þ jf

yI
CMÞEyE

�
x�
~kk ðB:10Þ

which can be simplified to

h ~NNzi ¼ "0"eVE
2
0

f xICM þ f
yI
CM

2
~kk ðB:11Þ

Obviously only the out-of-phase parts of the induced dipole moment contribute to the
torque. For the three possible orientations of the general ellipsoid the three different
combinations of the Clausius–Mossotti factors apply and three different ER spectra will
be obtained. In practice, at certain field frequencies reorientation of the particles will be
observed, resulting in discontinuous ER spectra.

APPENDIX C

Depolarizing Factors

In Appendix A, Eq. (A.2) depolarizing factors for the general ellipsoids were introduced
which were then related to the influential radii. To our knowledge explicit expressions for
the depolarizing factors were first derived by Stille [138] for spheroids and for the general
ellipsoid independently by Osborn [139] and Stoner [140]. For the general ellipsoid and
principal axes with a > b > c the depolarizing factors na; nb, and nc are given by

na ¼
��ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

ð1� �2Þ
ðLFðk;�Þ � LEðk;�ÞÞ

nb ¼ na þ
��ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

ð�2 � �2Þ
LEðk;�Þ �

�2

�2 � �2

nc ¼ �
��ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

ð�2 � �2Þ
LEðk;�Þ þ

�2

�2 � �2

ðC:1Þ

where � and � are the axis ratios � ¼ b=a and � ¼ c=a, and LF and LE are elliptical
integrals that are functions of k and �; k and � also depend on the axis ratios according
to

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

1� �2

s
and  ¼ arccosð�Þ ðC:2Þ

The elliptical integrals are then
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LFðk;�Þ ¼

ð�
0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 ’

p d’

LEðk;�Þ ¼

ð�
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2

p
d’

ðC:3Þ

For spheroids with two equal axes ða ¼ bÞ it is possible to obtain explicit expressions [138].
For the oblate case ða > cÞ along an axis perpendicular to the symmetry axis one obtains:

na ¼
1

2
1�

1þ e2

e3
ðe� arctan eÞ

" #
with e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

c

� �2
�1

r
ðC:4Þ

and for the prolate case ða < cÞ:

na
1

2
1�

1� e2

2e3
ln
1þ e

1� e
� 2e

� �" #
with e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

a

c

� �2r
ðC:5Þ

where e stands for the eccentricity of the spheroid. Since the sum of the depolarizing
factors of the general ellipsoid is always unity ðna þ nb þ nc ¼ 1Þ the depolarizing factor
along the symmetry axis of the spheroid is nc ¼ 1� 2na.
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Electric Birefringence Spectroscopy: A New
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I. INTRODUCTION

Aqueous solutions of proteins, nucleic acids, certain macromolecules, ionic micelles, col-
loids, and other polyelectrolyte systems respond to external electric fields in complicated
ways. Mainly, the complexity stems from the presence of screened electric charge, since
polyelectrolytes dissociate into large polyions and numerous small counterions. Because of
the complexity and variety of the phenomena involved, the response of polyelectrolyte
solutions to electric fields is still only partially understood. This chapter is devoted to a
theoretical and experimental study of the electro-optic response of polyelectrolyte solutions.

The theoretical description of polyelectrolytes in the presence of an external electric
field has to deal with the mobile charges in the diffuse atmosphere surrounding each
particle. The most complete theoretical framework used to describe this matter is the so-
called standard electrokinetic (SE) model [1–4]. The SE model embodies all the relevant
electrical and hydrodynamic phenomena: charge conservation, description of hydrody-
namics through the Navier–Stokes law, Poisson equation, and boundary conditions for
the electric field, ionic diffusion, and conduction. Comprehensive numerical solutions of
the SE model are available for spherical particles only [3]. In situations of thin double layer
and/or low surface potential, approximate or asysmptotic analytical solutions are available
for spherical particles [5–10], for spheroidal particles at zero frequency [11], and for spher-
oidal particles at high frequency [12, 13]. Applications of the SE model allow interpretation
of measurements of the electrophoretic mobility of individual particles and of the (complex)
dielectric constant and conductivity of dilute suspensions. However, agreement between
theory and experiment is poor. The analysis of such disagreement is made more difficult
because few experimental techniques directly access the pertinent properties. Indeed, none
of the classical electrokinetic methodologies (such as electrophoresis and dielectric spectro-
scopy) directly measure the particle’s electric polarizability, �, which gauges the particle’s
reaction to an electric field in a direct way, and reflects the distribution of ions as deter-
mined by a combination of surface group ionization, diffusion, electromigration, and
hydrodynamics. In this chapter we show that electric birefringence (EB) is a powerful
tool providing direct information about �. Accordingly, this technique is more efficient,
in many respects, than dielectric spectroscopy and conductivity measurements.
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The EB experiment basically consists in biasing the orientational distribution of
suspended anisotropic colloids by applying an external electric field, thus inducing in
the sample a preferred orientation of the particles along the field. The amplitude of
such a bias is measured by optical means, i.e., by detecting the birefringence of the
suspension. Accordingly, EB is a technique that measures the electric torque on each
particle. As such, it can be applied to electrically and optically anisotropic particles
only, and it is highly sensitive to the magnitude of the anisotropy. This contrasts with
the classical electrokinetic methodologies which, instead, typically measure orientationally
averaged quantities, and are not particularly sensitive to anisotropies in either the particle
shape, its internal structure, or its surface charge distribution.

EB is not a new technique [14, 15] and many measurements have been made on, e.g.,
tobacco mosaic virus, DNA, flexible polymer chains, and optically anisotropic colloids.
Most experiments focus on the time decay of the induced birefringence after the electric
field is switched off. The decay of the Kerr constant (the quantity measured by EB
experiments) is controlled by the rotational correlation time, �R, which depends on particle
geometry, solvent viscosity, and temperature [14]. Few studies are devoted to the steady-
state amplitude of the Kerr constant in an a.c. field – the frequency-resolved electric
birefringence (FREB) approach employed in our experiments [16, 17]. Especially impor-
tant in this regard is the pioneering work of O’Konski, who disclosed the enhancement of
the measured values of the Kerr constant with respect to those predicted from particle-
shape anisotropy and bulk dielectric constants using the simple electrostatic theory [18].
As is now known, this dichotomy arises from transport processes in the diffuse double
layer around each particle, i.e., it is an electrokinetic effect [19].

Only recently has the SE model been recognized as the correct environment, at least
in principle, to describe the EB of polyelectrolytes. When O’Konski first observed the
double layer-induced enhancement of the Kerr constant, little was known about electro-
kinetic phenomena and their interpretation. Thus, he proposed a Maxwell–Wagner (MW)
model [1], where charged particles are treated as ‘‘equivalent’’ conductive particles [20]. As
will be explained in this chapter, the MW approach is certainly more effective in describing
the Kerr constant rather than the dielectric constant. In the form proposed by O’Konski,
though, the model yielded unsatisfactory results: first, it failed to explain the low-fre-
quency behavior and, second, it did not make contact with the physicochemical properties
of the particles. Such a contact requires, in fact, connecting the MW model with the
microscopic processes taking place on the particle surface. Even more recently, no serious
attempt was made to connect results from EB experiments on polyelectrolytes with the
modern knowledge of electrokinetic properties of charged colloids. This is in part due to
the different environments of scientists working on electrokinetic phenomena and those
performing EB experiments. This ‘‘cultural’’ misconnection has also a more specific jus-
tification since comprehensive solutions of the SE model exist only for spheres, but EB can
be measured only with nonspherical particles.� The first use of approximate solutions of
the SE model for nonspherical particles to analyze the low-frequency behavior of the Kerr
constant of polyelectrolytes is quite recent [19].

In this chapter we present a theory for EB and a complete set of measurements
interpreted with it. The experiments have been performed at various values of q, the charge
density on the particle surface, controlled by adsorbing monolayers of cationic, anionic, or
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nonionic surfactants on the particle surface. The amount of adsorbed surfactant molecules
has been monitored by light-scattering techniques. In comparison with the values of q
found in the literature, the range of surface charges here explored is rather large, extending
from q � 1 �C=cm2 (for particles coated by nonionic surfactants) to q � 10 �C=cm2 (for
particles coated by ionic surfactants).

For the sake of simplification, the structure of this chapter is divided into two parts:
theory and experiments. Furthermore, since the relevance of the various processes con-
tributing to the polarizability of the particles strongly depends on frequency, we will split
our discussion into two main frequency regimes, distinguishing a low frequency (1 kHz <
� < 1 MHz) and high frequency (1 MHz < � < 200 MHz) behavior, where different
models apply.

In the high-frequency regime, the EB data display a richly structured frequency depen-
dence, featuring two characteristic frequencies and (in some cases) a minimum before reach-
ing the high-frequency asymptote. From the EB data we calculate the electric polarizability
and interpret the results by using an extended Maxwell–Wagner (EMW) model, here
described. By fitting the model to the experimental data, the effective particle surface charge
is derived in a new and simple way. This is a relevant result since, despite its importance,
ascertaining the effective electric charge of a colloidal particle remains an open question. The
surface charge density is found to depend heavily on the strength of the interaction between
the particle surface and the specific surfactant used in the experiments.

In the low-frequency regime, the EB data obtained with weakly charged particles are
compatible with approximate electrokinetic models for the d.c. behavior of rod-like par-
ticles already available in the literature [11]. The same agreement is instead not found
when studying highly charged particles, since in this case the measured EB is too large in
comparison with the predictions. This disagreement between low-frequency EB data and
theory may be a consequence of the approximations inherent in the available low-fre-
quency models.

II. GENERAL THEORY OF ELECTRIC BIREFRINGENCE

The EB experiment involves measuring the induced optical anisotropy of a suspension.
For a suspension of rod-like particles with no external forces, Brownian motion ensures
that the dispersion is isotropic. Put another way, the time-averaged distribution of vectors
describing the orientation of individual particles is uniform. Application of an electric field
biases the orientation distribution due to the electric torque exerted on the particles. The
optical anisotropy of the dispersion is reflected in the induced birefringence, defined as
�n ¼ nk � n?, where nk and n? are the refractive indices detected by a light beam with a
linear polarization parallel or perpendicular to the external electric field E0. When E0 is
small, �n is proportional to the square of the field. The Kerr constant, B, is defined as [15].

B ¼
�n

�E20
ð1Þ

where � is the wavelength of the incident light. For a dilute system, �n is proportional to
the particle number density N. In FREB experiments a sine-wave voltage of frequency � is
applied to the electrodes of a cell. Given in complex notation:

E0 ¼ Re½E0�e
�i2��t


 ð2Þ
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After a starting transient, the signal consists of oscillatory and steady components,
�nac and �ndc. FREB measures the d.c. component of the induced birefringence as a
function of frequency, �ndcð�Þ. The frequency-dependent d.c. value of the Kerr constant,
Bð�Þ is

Bð�Þ ¼
�ndcð�Þ

�ðE20 Þdc
ð3Þ

where ðE20Þdc ¼ E20�=2 is the mean-square magnitude of the applied electric field. A detailed
description of the FREB experimental setup was given in an earlier paper [21].

Our treatment focuses on particles with no permanent dipole and whose polarizability
tensor has a symmetry axis. Particle orientation can be specified by the angle, #, between
the applied field E0 and the particle axis. The optical polarizability tensor of a particle is
denoted by �o. The diagonal elements of �o are �ok and �

o
?;��

o
¼ �ok � �

o
?. With these

definitions it can be shown [14] that the Kerr constant Bð�Þ of the suspension, in SI units is

Bð�Þ ¼
N��oSdcð�Þ

�n"0E
2
0�

ð4Þ

Here, n is the refractive index of the solvent and "0 is the vacuum dielectric permittivity;
Sdc denotes the d.c. component of the nonpolar orientational order parameter, defined as

Sdcð�Þ �

ð�
0

P2ðcos#Þfdcð#Þ sin# d# ð5Þ

where fdcð#Þ is the normalized d.c. component (or time-averaged) orientation distribution
function, and P2ð�Þ is the Legendre polynomial of degree 2; S ¼ 1 for perfect parallel
alignment and S ¼ 0 for isotropic alignment. The proportionality between Bð�Þ and Sdc
holds for dilute systems where it is appropriate to neglect co-operative contributions to the
optical field experienced by each particle. To calculate Bð�Þ it is necessary to know the
angular distribution function, fdcð#Þ, of the suspended rod-like particles in the presence of
an oscillatory field. In the simplest case, i.e., when dealing with noncharged, nonconduc-
tive particles in a nonconductive medium, fdcð#Þ is proportional to the Boltzmann factor
exp[�Udcð#Þ=kBT 
 where Udcð#Þ is the d.c. component of the electrostatic potential energy
of the particle, and kBT is the thermal energy. This expression cannot be naively extended
to include the situation of charged particles in aqueous solution because, in such a case,
phenomena other than electrostatic coupling, such as ionic conduction, hydrodynamics,
and ion diffusion, take place around the particle and, potentially, contribute to the particle
alignment. Moreover, being electro-osmosis and ionic conduction dissipative phenomena,
it is not clear, even in principle, if an energetic argument could be properly developed. For
these reasons it appears to be more appropriate, and secure, to relate the Kerr constant to
the forces acting on the particles rather than to their potential energy. We find [22] that
fdcð#Þ depends on to the torque �dcð#Þ experienced by the particles as follows:

fdcð#Þ ¼ F exp
1

kBT

ð

0

sdcð#Þ � u#d#

0
@

1
A ð6Þ

where F is a normalization constant and u# represents the unit vector in the # direction.
Using Eq. (6) in Eqs (4) and (5) connects Bð�Þ with �dc. The separation of d.c. and a.c.
components of the Kerr constant is a consequence of its linear response to the squared
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electric field [23]. Consequently, Bð�Þ can be considered separately for each frequency. It
is worth noticing that Eq. (6) only holds for a stationary torque. The oscillatory com-
ponent of the induced birefringence is computed using a Smoluchowski equation to
establish facð#Þ.

In principle, the orientational ordering of colloidal particles exposed to an electric
field involves electric and hydrodynamic effects, since the total torque on the particle
contains both, i.e., s ¼ sE þ sH. Both components of the torque can be obtained by
evaluating the moment of the forces acting on the particle surface:

sE;H ¼

ð
S

r� �
E;H

� n
� �

dS ð7Þ

where r is the vector identifying the position of dS (element of the particle surface S), n is
the unit outer normal, �

H
is the hydrodynamic stress tensor, accounting for viscous forces

and pressure, and �
E
is the Maxwell electric stress tensor. In the EB experiments discussed

here, the Reynolds number is low and the hydrodynamics can be described by the Stokes
equations with an extra body force to account for electrical effects [1]. The computation of
Eq. (7) is simplified when it is recognized that, at equilibrium, the integral performed on
any surface including the particle gives the same result as the integral performed on the
particle surface [24].

Let us first evaluate the d.c. component of the electric torque, �dc;E. For a dilute
system, the electric field around a particle is the superposition of three terms,
E ¼ E0 þ E1 þ E2, where E0 is the uniform external field (here assumed to be an a.c.
field), E1 is the (d.c.) field within the unperturbed double layer, and E2 is the (a.c.) electric
field due to the induced polarization of the particle. In the case of spherical particles,
the latter contribution is a dipolar field oscillating at the same frequency � of the
applied external field. The amplitude of the associated dipolar potential �2ðrÞ ¼

Reb�2;�ðrÞe
�i2��t

c is

�2;�ðrÞ ¼
1

4�"0"s

�E0� � r

r3
ð8Þ

Here, r is the distance from the center of the sphere, "S is the relative dielectric
constant of the solvent, and � indicates the electric polarizability of the particle accom-
panied by its counterion cloud; � can be obtained from the ‘‘standard’’ set of electro-
kinetic equations and boundary conditions (the SE model) either numerically [3] or
through approximate analytical solutions [6,7,9]. It is important to realize that � is,
even in the case of a d.c. field, a ‘‘kinetic’’ quantity, determined by a dynamic local
balance of incoming and outgoing ions carried by hydrodynamic, diffusion, and electro-
migration flows. Thus, the electric polarizability of polyelectrolytes is, in general, a
complex variable because of the finite mobility of ions and because of the finite velocity
of the solvent flows.

For nonspherical particles, E2 contains multipolar terms of various orders. Thus, the
associated electric potential �2 is

�2;�ðrÞ ¼
ð�E0;�Þ � r

r3
þ
1

2

X
i;j

Qij

rirj

r5
þ ð9Þ

where � is the electric polarizability tensor while Qij is the quadrupolar tensor. The
diagonal elements of �, �k and �?, represent the electric polarizability of the particle
along and perpendicular to its axis.
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The electric stress tensor is given by [25]

�
E
¼ "0"s EE�

1

2
E � E

	 

ð10Þ

where EE is a dyadic product and  is the unit tensor. Note that Eq. (10) contains "S and
not "e. This is because, in the electrokinetic model, counterions and coions are not con-
sidered part of the solvent, but rather described through their local densities.

We introduce the complex notation for E in Eq. (10): E ¼ Re½E�e
�i2��t


. By retaining
only the nonoscillatory terms, i.e., by averaging �

E
over a period, we obtain:

�
E;dc

¼
1

2
"0"s ReðE�E

�
�Þ �

1

2
E� � E

�
�

	 

ð11Þ

The asterisk indicates a complex conjugate. The nonoscillatory component of the torque is
then

sdc;E ¼

ð
S

r�
1

2
"0"s ReðE�E

�
�Þ �

1

2
E� � E

�
�

	 

� ndS ð12Þ

By performing the surface integral in Eq. (12), we obtain:

sdc;E ¼ �
1

2
��0E20� sin# cos#u# ð13Þ

Here, ��0 ¼ �0k��
0
?, where �

0
k and �

0
? indicate, respectively, the real parts of �k and

�?. It is worth noting that no contribution connected to multipolar terms in the electric
potential higher than the dipole appears in Eq. (13). Hence, even if the nonspherical shape
of the particle gives rise to a complicated pattern of electric fields, when it amounts to
calculate the torque, only the dipolar term really matters. Indeed, the torque in Eq. (13)
could be more simply expressed as �dc;E ¼ hp� E0i, where the electric dipole p ¼

Reð� � E0�e
�i2��t

Þ:
The evaluation of the d.c. component of the torque �dc;H is more complicated. The

basic problem is that, since the electric torque is proportional to E20 , we need to account
for the hydrodynamics to the same extent. Calculations of the solvent flows to the E2 level
are not availbale even for the simplified geometry of a sphere. Thus, the only accessible
way to tackle the problem is to use symmetry arguments. Along this line, Teubner [26] has
shown that the hydrodynamic torque is zero for centrosymmetric, moderately charged
particles with thin double layers. Furthermore, it is not implausible that the torque also
vanishes for highly charged particles with thin double layers since expansions for the
velocity, pressure, and electric fields for rigid-body motion proceed in odd powers of the
applied field. However, no results exist for highly charged particles with thin double layers,
the situation considered here. Accordingly, we cannot exclude, in general, a hydrodynamic
contribution to the Kerr constant.

In order to give a more physical, although incomplete, picture of the issues related
to the presence of hydrodynamic torque on the particles, let us consider the high-fre-
quency situation, where the hydrodynamic penetration distance [1],

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�f=ð2��Þ

p
, where �f

is the kinematic viscosity, is shorter than the size of the particle. Specifically, this con-
dition, for a 0.5 mm radius particle, is obtained for � > 1 MHz. In such a case, the
hydrodynamic flows, driven by surface electro-osmosis, are limited to a surface region
whose thickness is less than the particle curvature and thus can be considered as local.
Let us compare the forces due to hydrodynamic flow at two positions on the particle
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surface that are symmetric through the center. Given the centrosymmetry of the particle,
the surface at either position has the same orientation. An inspection of the symmetry of
the multipolar terms reveals also that E0 and E2 are the same at the two positions, while
E1 is reversed. Thus, the component of E tangential to the surface, EkðrÞ, is the same in
the two positions, while the normal component, E?ðrÞ, differs. Therefore, to first order
in E, the double layer is perturbed by E? in a different way in the two positions, while
the electro-osmotic flow driven by Ek, being equal in the two symmetry positions, gives
rise to no torque. To second order in E, one should take into account the effects of the
double-layer perturbation on the electro-osmotic flow. As the double-layer perturbation
is noncentrosymmetric, the presence of a nonzero �dc;H to OðE2Þ cannot be ruled out
using a pure symmetry argument.

In what follows we will simply assume, stretching the validity range of the Teubner
argument [26], that the electric torque calculated by taking into account the effect of
electrokinetics on the induced dipole [i.e., Eq. (13)] provides a good approximation. By
inserting Eq. (13) into Eq. (6), and approximating fdcð#Þ by its first-order expansion in the
electric field, from Eq. (4) we obtain:

Bð�Þ ¼
N��o��0ð�Þ

15��n"0kBT
ð14Þ

It follows that the problem of interpreting the Kerr constant in a system of rod-like
charged particles has been reduced to calculating the parallel and perpendicular compo-
nents of the real part of the electric polarizability as a function of frequency. Since the
torque in Eq. (13) is formally equal to that expected for the simple case of noncharged
particles in a nonconductive medium, Eq. (14) is similar to equations previously proposed.
We want to stress, however, that Eq. (14) has been obtained for a dissipative system, �
resulting from a kinetic balance rather than from bulk (molecular) polarizabilities.
Theories for the calculation of � for charged particles will be discussed in the following
sections.

III. HIGH-FREQUENCY THEORY OF ELECTRIC POLARIZATION OF
SPHERES

Ideally, an EB theory should provide an understanding of the polarizability of a spheroid
in terms of colloidal variables – size, shape, and charge of the particle, and the ionic
strength of the suspending solution. This entails finding ways to deal with the relevant
electrokinetic processes. Fortunately, this can be done using asymptotic methods in the
high-frequency regime. To illustrate matters, we look first at the high-frequency electric
polarizability of a sphere and show that in the megahertz range, the polarizability can be
interpreted in electrokinetic terms by a simple extension of the MWmodel [1]. This is a key
point, since MW-based calculations for ellipsoidal particles are straightforward. To estab-
lish the validity of the asymptotic approach, in this section we compare exact and approx-
imate results for spherical particles.

The classical MW model represents a suspended polyelectrolyte as a conducting
particle imbedded in a conductive medium. Polarization arises from the conductivity mis-
match between the solvent and the particle. Due to the finite resistivity of the bodies
involved, the induced dipole moment following a MW polarization process exhibits
a phase lag with respect to the applied field, and the electric polarizability is thus a
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frequency-dependent quantity. The MW electric polarizability of a sphere, �MWS, is a
simple function of the complex dielectric constants of particle and suspending medium [25]:

�MWS ¼ 4�"0"sR
3 "p � "e
"p þ 2"e

ð15Þ

Here, R is the particle radius, and "p is the complex dielectric constant of the particle,
expressed as a function of its real dielectric constant, "0p, and its volume conductivity, Kp:

"p ¼ "0p þ i
Kp
!"0

ð16Þ

Similarly, the complex dielectric constant of the solvent (water plus added electrolyte) is

"e ¼ "s þ i
Ke
!"0

ð17Þ

where Ke is the conductivity of electrolyte solution in the absence of colloidal particles.
Here, "s and Ke are assumed to be real quantities with Ke proportional to the ionic strength
of the solution; ! ¼ 2��.

To show its Debye-like frequency dependence, the real part of �MWS can be rear-
ranged to give

�0MWS ¼ �1 þ
�0MWS � �

1

1þ !2�2MWS
ð18Þ

where �MWS is the characteristic time, and �
1 and �0MWS are the MW electric polarizabil-

ities at high and low frequencies, respectively. They can be expressed as�

�MWS ¼ "0
"0p þ 2"s
Kp þ 2Ke

ð19Þ

�1 ¼ 4�"0"sR
3 "

0
p � "s

"0p þ 2"s
ð20Þ

�0MWS ¼ 4�"0"sR
3 Kp � Ke
Kp þ 2Ke

ð21Þ

To calculate the polarizability of a charged spherical particle using the above equa-
tions, it is necessary to know the complex dielectric constant "p of the particle and, in
particular, its conductivity Kp. Clearly, Kp has to be understood as an effective property of
the particle which embodies different processes related to the double layer. This will be
done in two steps: first, showing the equivalence between the polarizability of a sphere
having a conductive surface versus a sphere having a conductive body, and second, map-
ping the electrokinetic processes into a surface conductivity. This combination of elements
from the SE model [5,10] with the MW approach [1,18] constitutes an original model,
which we will refer to as the EMW model. The EMW allows us to explain, unambigu-
ously, the high-frequency structure of polarizability and EB. In this section we present an
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EMW theory valid for spherical particles; the extension to spheroidal particles is more
complicated and will be the subject of Section IV.

As shown by O’Konski [18], in his treatment of the MW polarizability of spherical
particles, the volume conductivity Kp is equivalent to surface conductivity K s

p in the
following sense: a nonconducting spherical particle with surface conductivity K s

p produces
the same dipolar field as a particle with volume conductivity equal to

Kp ¼
2K s

p

R
ð22Þ

Now, it turns out that for highly charged colloidal particles with thin diffuse layers,
the electrokinetic features of the polarizability can be represented with an asymptotic
theory by employing an appropriate value for surface conductivity. Building on the semi-
nal work of Dukhin and Shilov [8], O’Brien and Rowlands [12] showed how this can be
justified at high frequencies, i.e., where D=R2 � ! � Ke="0"s, since the influence of the
oscillating field on ion concentrations is negligible. Here, D is the diffusion coefficient of
the free counterions. Thus, at high ionic strengths, high potentials, and high frequencies,
the effects of processes around a sphere can be encapsulated in an equivalent particle
surface conductivity K s

pðq; �;KeÞ expressed in terms of the electric surface charge of the
particle, q, of the Debye length, ��1, and of the solvent conductivity, Ke. To relate the
surface and volume conductivities to the particle charge we use Bikerman’s expression [27]
for the surface conductivity near a highly charged flat surface in a 1:1 electrolyte, viz.,

K s
p ¼ ��1 exp

e�

2kBT




	 

� 1

� �
ð1þ 3mÞKe ð23Þ

In Equation (23) contributions from coions are neglected since their concentration is small
near a surface with a large surface electric potential �. Here, e is the electron charge and m
is a nondimensional ionic drag coefficient ðm ¼ 0:18 for KCl). Equation (23) is an exact
expression for the incremental conductivity due to increased ion density and electro-
osmosis along a flat surface. Moreover, at sufficiently high frequencies, electro-osmosis
on a curved surface becomes a local process since the viscous penetration distance short-
ens. Thus, even for spheroidal particles or particles with slowly varying surface properties,
the Bikerman expression provides the local surface conductivity at high frequency. This is
further confirmed by the fact that Eq. (23) is identical to O’Brien’s asymptotic formula for
spheres [10] with thin double layers.

Next, because the � potential and surface charge density, q, for a 1 : 1 electrolyte are
related as [1]

q ¼ 2
"s"0kBT

e
� sinh

e�

2kBT

	 

ð24Þ

when � � 2kBT=e, Eq. (23) can be expressed as

K s
pðrÞ � qðrÞ

Ke
zeI

ð1þ 3mÞ ð25Þ

The r-position dependence has been added to emphasize the local nature of the
Bikerman expression, i.e., the local conductivity depends on the local surface charge
density. Here, I denotes the ionic strength of the solution.

It is interesting to note that we can obtain the relation between particle conductivity
and charge in a much rougher way, i.e., by interpreting Kp as the conductivity given by an
appropriate number of charges with their bulk mobility in an aqueous solution. Let us
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ideally replace the real particle with a droplet of water of the same size, containing a
sufficient number of counterions to give the desired conductivity. In this way the particle
charge (number of counterions in the droplet) becomes a simple function of the particle
conductivity. The result is given by the following expression:

K s
pðrÞ ¼

RqðrÞS

2NAVe
� ¼

3qðrÞ

2NAe
� ð26Þ

where V and S are the volume and surface of the particle, respectively, NA is the Avogadro
number, and � is the limiting ionic conductivity ð� � 75� 10�4��1 m2M�1 for Kþ).
Since Ke ¼ 2 I �, we observe that Eqs (25) and (26) yield, within 3%, the same value
for Kp.

In synthesis, the EMW model construction involves several steps. First, the surface
conductivity near a nonconducting particle, KS

p , is computed with an asymptotic model
that maps processes near the surface into a surface conductivity, Eq. (23). This is con-
verted into an equivalent volume conductivity Kp of a sphere using the O’Konski relation
[18], Eq. (22). Finally, using Kp in Eqs (15)–(17), the particle polarizability, �EMW, is
calculated according to the MW model. Basically, the EMW model relies on two main
simplifications, i.e., on the notion that, at high enough frequency, ion diffusion can be
neglected and hydrodynamic flows are local, their effect being reduced to a (minor)
renormalization of the counterion conductivity in the double layer.

To demonstrate the validity of this approach we compare predictions computed from
the EMW model just described, with analogous predictions of the complete SE model for
spheres. Figure 1 shows �0ð�Þ=ð3"0"sVÞ, the real part of the dimensionless particle electric
polarizability, according to the SE model [3] for a specific choice of parameters (see figure
caption). As evident, �0ð�Þ has a rich frequency dependence over a wide range: �0ð�Þ is an
increasing function of � up to 1MHz and a decreasing function of � at higher frequencies. It
is interesting to note that the polarizability increases with � when 1 kHz < � < 1 MHz,
suggesting that low-frequency processes (mainly ion diffusion) have the overall effect of
reducing the particle polarizability. In Fig. 1 we also show (dashed line) the behavior of
�0MWSð�Þ, the real part of �MWSð�Þ for a sphere as given by Eq. (15), calculated from the same
dielectric constants and solvent conductivity used in the numerical evaluation of the SE
model, but withKp ‘‘adjusted’’ as a free parameter to give an accurate representation of � as
given by the SE model. As the figure demonstrates, when Kp is freely chosen, the polariz-
abilities calculated from the SE and MW models share the same high-frequency character-
istics, supporting the notion that the high-frequency behavior of the complete SE model
exhibits basic MW behavior. Figure 1 also shows (continuous line) the real part of �MWSð�Þ
calculated (no free parameter) by using the EMW model, i.e., from Eq. (15) with Kp given
by Eqs (22) and (23). Clearly, the EMW model accurately captures the high-frequency
behavior of the SE model. The small differences between polarizabilities calculated from
the SE model and the EMW model, stem from approximations inherent in the asymptotic
formula for the conductivity. At frequencies below 1 MHz, the dipolar coefficient follows
an ‘‘electrokinetic’’ regime where processes neglected in the EMW model are relevant. The
common high frequency (above 200 MHz) asymptote of particle polarizability ð�1Þ repre-
sents the polarizability of a dielectric sphere in a dielectric medium.

To test further the correspondence between the exact numerical solution of the SE
model and our EMW model, the comparison shown in Fig. 1 was repeated for different
choices of � potentials and ionic strengths. By fitting the high-frequency decay with Kp as
free parameter, the ‘‘effective’’ particle volume conductivity was extracted; Kp was then
also calculated, for the same condition, following the EMW prescriptions, from Eq. (23)
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and the O’Konski relationship. The values of Kp obtained in the two ways are compared in
Fig. 2 as a function of the ionic strength for different � potentials. The EMW model is
found to be accurate at high potentials, almost independently of ionic strength.

IV. EXTENDED MAXWELL–WAGNER THEORY FOR HIGH-FREQUENCY
POLARIZABILITY OF SPHEROIDS

To adapt the EMW approach to particles of spheroidal shape, different problems must be
addressed. Following the sequence of the above paragraph, we first introduce the MW
results for spheroids. In analogy with the O’Konski equation for spheres, we then con-
struct relations mapping a spheroidal particle with conductive surface into an ‘‘effective’’
bulk-conductive particle having the same shape. Using Bikerman’s expression [Eq. (23)]
enables us to formulate the EMW model for spheroidal polyelectrolytes and to predict the
frequency dispersion in the particle polarizability. It will be shown that an isotropic
(independent from the particle orientation) surface conductivity K s

p yields different particle
volume conductivities along, Kpk, and perpendicular, Kp?, to the particle axis due to
geometrical factors alone. The consequences of nonuniform surface charge distribution
are then discussed and it is shown how nonuniform charge introduces an additional
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FIG. 1 Real part of the dimensionless particle electric polarizability, �0ð�Þ=ð3"0"sVÞ, calculated for
a sphere as a function of the frequency of the applied field, �. Square: �0ð�Þ calculated using numer-
ical solutions of the SE model [3]; solid line: �0ð�Þ calculated from the EMW model for spheres;
dashed line: �0ð�Þ ¼ �0MWSð�Þ calculated using the MW model for spheres with Kp as an adjustable
parameter to fit the SE model; dotted–dashed line: �0ð�Þ calculated using Eqs (56) and (57).

Parameters: particle radius R ¼ 135 nm; � potential ¼ 100 mV; ionic strength I ¼ 1 mM KCl.
The arrows indicate low- and high-frequency asymptotic values.



anisotropy, which accentuates (or depresses) the spheroid’s already anisotropic volume
conductivity. Finally, using the EMW model, particle charge can be readily calculated
once the volume conductivities are extracted from the measured frequency dispersion of
the Kerr constant. In order to clarify the treatment, we call EMW-1 the model developed
assuming uniform surface charge, and EMW-2 the model obtained assuming nonuniform
surface charge.

A. Maxwell–Wagner Polarizability

To develop explicit expressions we introduce the spheroidal coordinates �; �; �, related to
the Cartesian co-ordinates by

x ¼ c sinh � sin� cos �
y ¼ c sinh � sin� sin �
z ¼ c cosh � cos�

8<
: ð27Þ

The particle surface is represented by a prolate spheroid aligned with the z axis. On
the spheroid surface, the � co-ordinate is constant ð� ¼ �0Þ and

z2

c2 cosh2 �0
þ

x2 þ y2

c2 sinh2 �0
¼ 1 ð28Þ
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FIG. 2 Comparison between particle conductivities, Kp for spheres calculated in different ways.
Symbols: Kp obtained by fitting results from the SE model with the MWmodel for spheres. Lines: Kp
obtained with the EMW model for spheres using Eqs (22) and (23). Triangles and solid line: � ¼ 70

mV; circles and short dashed line: � ¼ 100 mV; diamonds and long dashed line: � ¼ 120 mV; squares
and dot–dashed line: � ¼ 140 mV. Parameters: "0p ¼ 2; "s ¼ 80, and various KCl ionic strengths.



�0 is chosen so that tanh �0 ¼ r; r being the particle’s aspect ratio, i.e., r ¼ a=b. The particle
volume is V ¼ 4�a2b=3. The relationship between the short and long semiaxes, a and b,
and the constant c is

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

p
ð29Þ

Explicit expressions for the polarizabilities of ellipsoidal particles along and perpen-
dicular to the external electric field follow from the standard electrostatic procedure [25].
These are

ak;? ¼ 4�"0"sa
2b

"pk;? � "e
3ð"e þ ð"pk;? � "eÞLk;?Þ

ð30Þ

where Lk and L? are the ordinary geometrical depolarization factors for spheroids:

Lk ¼ 1� 2L? ¼ sinh2 �0Q1 ð31Þ

Q1ðzÞ ¼
z

2
ln

zþ 1

z� 1

	 

� 1 ð32Þ

and z ¼ cosh �0. In Eq. (30), the complex dielectric constants of the particle parallel ("pkÞ
or perpendicular ("p?Þ to the field are expressed as

"pk;? ¼ "0p þ i
Kpk;?

!"0
ð33Þ

where we have assumed that the real part of the dielectric constant of the particle, is the
same when the particle is polarized parallel or perpendicular to its symmetry axis. On the
other hand, the ‘‘effective’’ particle volume conductivities parallel and perpendicular to the
symmetry axis, Kpk and Kp?, differ since they reflect particle geometry and transport in the
double layer.

As in the case of spherical particles, the real part of the polarizability is a simple
Debye function that can be expressed as a function of the high ð�1k;?Þ and low ð�0k;?Þ
frequency polarizabilities as

�0k;? ¼ �1k;? þ
�0k;? � �1k;?
1þ !2�2k;?

ð34Þ

Here, �k and �? are the reciprocals of the MW cut-off frequencies; �1k;? and �
0
k;? are

the MW electric polarizabilities at high and low frequencies (respectively). They can be
expressed as�

�k;? ¼ "0
ð1� Lk;?Þ"s þ Lk;?"

0
p

ð1� Lk;?ÞKe þ Lk;?Kpk;?
ð35Þ

�1k;? ¼ 4�"0"sa
2b

"0p � "s
3ð"s þ ð"0p � "sÞLk;?Þ

ð36Þ

�0k;? ¼ 4�"0"sa
2b

Kpk;? � Ke
3ðKe þ ðKpk;? � KeÞLk;?Þ

ð37Þ
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B. O’Konski Relations for Spheroids

As in the case of spheres, particles having volume conductivity are ‘‘equivalent’’ to par-
ticles having a conductive surface, since in both cases the spatial distribution of electric
field and charges is the same. Specifically, the electric field outside the particle is, in both
cases, purely dipolar. Thus, provided that K s

p and Kp are related as in Eq. (22), bulk-
conducting and surface-conducting particles are electrically indistinguishable. This equiva-
lence does not hold in the case of spheroidal particles: the field around a polarized spher-
oid is not purely dipolar, and has different multipolar contributions when the particle is a
surface conductor and when it is a bulk conductor. A relevant simplification in this matter
occurs, though, by recognizing that our present concern is only the dipolar coefficient,
since, as detailed in the next paragraph, only the dipolar field contributes to the torque.
When the focus is restricted to the dipolar level only, the O’Konski equivalence is extend-
able to spheroidal particles. To show this, let us first recall that the dipole moment d can be
determined from the surface charged density qðrÞ as an integral over the particle surface S:

dw ¼

ð
S

wqðrÞdS ð38Þ

where dw is the component of d along a generic co-ordinate w, that we take as directed
along the external electric field E0: when the particle’s symmetry axis is parallel to E0, then
w ¼ z; when E0 is perpendicular to the particle axis, w lies in the xy plane.

At the surface of the spheroid we have the usual boundary condition for the surface
charge qðrÞ in some specific position r:

qðrÞ ¼ "s"0ðEðrÞ � nðrÞÞo � "
0
p"0ðEðrÞ � nðrÞÞi ð39Þ

Here, the subscripts (o) and (i) denote outside and inside the interface, respectively, and n

represents the normal to the surface. The surface charge density can be modified either as a
consequence of transport of ions due to bulk conductivity of particle and solvent or due to
surface conductivity. Surface charge conservation for the two limiting situations of par-
ticles having conductive surface and particles with bulk conductivity yields, respectively:

dqsðrÞ

dt
¼ �rs � ðK

s
pEÞ � KeðE � nÞo ð40Þ

dqvk;?ðrÞ

dt
¼ Kpk;?ðE � nÞi � KeðE � nÞo ð41Þ

where the bulk conductivity of the particle is Kpk or Kp?, depending on the relative
orientation between the particle axis and E0. In Eq. (41) we let Kpk and Kp? be different
because, being ‘‘effective’’ quantities, they could reflect the surface conductivity in differ-
ent ways; rs � ð Þ represents the surface divergence, and q

v
k;? and q

s are the resulting surface
charges considering the two limiting situations separately. Next, we equate the dipolar
moments resulting from the surface charge densities qs and qvk;?:ð

S

wKpk;?ðE � nÞidS ¼ �

ð
S

wrs � ðK
s
pEÞdS ð42Þ

This result is the same as the approximation introduced by Dukhin and Shilov [8],
although here it has been obtained in a different and much simpler way, Equation (42) can
be further simplified by introducing �, the angle between E0 and n, � having different
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geometrical meanings in the parallel and perpendicular configurations. By noting that
V ¼

Ð
S

w cos �dS:

Kpk;?VE ¼ �

ð
S

wrs � ðK
s
pEÞdS ð43Þ

where we have made use of the fact that the electric field inside an insulating/conductive
spheroid imbedded in an insulating/conductive medium, under the effect of an electric
field, is uniform and, for the parallel and perpendicular geometries, parallel to E0. Upon
integrating by parts, and since ðrswÞ

2
¼ sin2 �, the integral for the parallel direction can be

simplified to

KpkV ¼

ð
S

K s
p sin

2 �dS ¼

ð
S

K s
p½1� ðn � uEÞ

2

dS ð44Þ

In the second equality, uE is a unit vector parallel to E0, which, in this geometry, is parallel
to the particle’s axis. A similar expression can be formed in the case of perpendicular
geometry. Upon forming their average we have

Kpk þ 2Kp?
3

¼
2

3V

ð
S

K s
pdS ð45Þ

By combining Eq. (45) with the local Bikerman formula, Eq. (25), we obtain an
explicit expression relating the charge to the components of the volume conductivity, viz.,

� ¼
3�2"s"0kBT

2eð1þ 3mÞKe
V
Kpk þ 2Kp?

3
ð46Þ

Here, � ¼ q S is the total charge of the particle. Equation (46) is a powerful tool
since it provides a simple relationship between the equivalent volume conductivities and
the total charge of the particle. Moreover, Eqs (45) and (46) are generally valid since they
do not depend on the specific � and � dependence of q and K s

p.

C. Spheroids with Uniform Surface Charge Density

Two formulations of the EMW model will be discussed. The first (EMW-1) is developed
for uniformly charged particles and leads to explicit equations for the particle polariz-
ability as a function of one parameter only, the surface charge density. According to the
EMW-1 model, geometry places restrictions on the relative magnitudes of the volume
conductivities Kpk and Kp?. The second (EMW-2) deals with a nonuniform surface charge
distribution with an additional free parameter. In EMW-2, the relative magnitudes of the
volume conductivities are no longer constrained by geometry.

When the surface conductivity is uniform, Eq. (44) can be simplified to

Kpk;?V ¼ K s
p

ð
s

sin2 � dS ð47Þ

The integral depends on particle geometry and when the electric field is parallel to
the particle’s axis:

Kpk ¼
3

2a
Ks

p cosh �0I1 ð48Þ
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with

I1 ¼ ð1� sinh2 �0Þ sin
�1 1

cosh �0
þ sinh �0 ð49Þ

Similarly, evaluating the integral in Eq. (47) with the spheroid oriented perpendicu-
lar to the field yields:

Kp? ¼
3

4a
K s
p

sinh2 �0
cosh �0

I2 ð50Þ

with

I2 ¼
1

sinh �0
� sinh �0

	 

þ
cosh4 �0

sinh2 �0
sin�1

1

cosh �0
ð51Þ

Equations (48) and (50) show that the volume conductivities Kpk and Kp? differ even
when the surface conductivity is uniform. Their ratio:

Kpk
Kp?

¼ 2
cosh2 �0

sinh2 �0

I1
I2

ð52Þ

depends only on the axial ratio of the particle and, for uniformly charged, needle-shaped
particles, Kpk=Kp? reaches a maximum value of 2.

Combining the expressions for Kpk;? with Eq. (30) provides explicit formulas for
electric polarizability of uniformly charged spheroids according to the EMW model; �k;?
are then related to properties of the bulk electrolyte, and shape and effective properties of
the particle as

�k ¼ 4�"0"sa
2b

1

3 sinh2 �0 cosh �0

�
2

3
1þ i!0 1�

"0p
"s

	 
� �
þ �s cosh �0I1

2

3
@Q1ð1þ i!0

Þ �
2

3
i!0 "

0
p

"s

Q1

cosh �0
� �

1
I1Q1

ð53Þ

�? ¼ 4�"0"sa
2b

2

3 cosh �0 sinh
3 �0

4

3
cosh �0 1þ i!0 1�

"0p
"s

	 
� �
þ �s sinh

2 �0I2

4

3
@Q1

1ð1þ i!0
Þ �

4

3
i!0 "

0
p

"s

Q1
1

sinh2 �0
cosh �0 � �1Q

1
1I2

ð54Þ

Here, @Q1ðzÞ and @Q
1
1ðzÞ are, respectively, the z derivatives of Q1ðzÞ and Q1

1ðzÞ, defined as

Q1
1ðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p

2
ln
zþ 1

z� 1
�

zffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p ð55Þ

with z ¼ cosh �0. The normalized angular frequency, !
0, is given by !"0"s=Ke, and the

dimensionless conductivity ratio is �s ¼ K s
p=ðKeaÞ. Equations (53) and (54) constitute

the essence of the EMW-1 model.
Figure 3 shows the real part of the dimensionless polarizabilities, �0k=ð3"0"sVÞ and

�0?=ð3"0"sVÞ, calculated by using Eqs (53) and (54), for a uniformly charged spheroid with
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an aspect ratio of 3, together with their difference, ��0=ð3"0"sVÞ. In these examples, the
EMW-1 polarizabilities �0k and �

0
? have Debye-like frequency dispersions with different

cut-off frequencies. The difference between the cut-off frequencies and asymptotic values
of the two polarizabilities engenders the dip in ��0 which is then reflected in Bð�Þ. This
behavior is a striking signature of shape anisotropy.

The term ��0 depends on several variables, namely, a=b, "0p="s;K
s
p=K, and

!"0"s=Ke, in a complicated fashion. Figure 4 shows ��; =ð3"0"sVÞ calculated at constant
ionic strengths, � potential, and surface charge. As the figure illustrates, both the fre-
quency where ��0 is a minimum and the dip magnitude depend on the ionic strength
and the � potential, but in different ways. From Fig. 4a we see that increasing the ionic
strength diminishes the ��0 dip due to the lowered surface conductivity. At the same
time, the dip frequency increases, due in part to the increase in Ke="0"s. Figure 4b shows
an increase in the magnitude of the dip and the dip frequency with increase in �
potential. Evidently, the behavior of the dip frequency depends on both the bulk and
surface conductivities. Figure 4c indicates the effects when working in terms of particle
surface charge and ionic strength.

Figure 5 shows the (high-frequency) cut-off frequency, �MW, defined as the frequency
of maximum negative slope of Bð�Þ, as a function of the ionic strength for particles having
either uniform charge or potential. The behavior in these situations is clearly different:
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FIG. 3 Real part of the parallel �0k=ð3"0"sVÞ (dashed line) and perpendicular �0?=ð3"0"sVÞ (long

dashed line) dimensionless particle electric polarizability, for a prolate spheroid calculated with the
EMW-1 model. The solid line represents the difference between the two quantities:
��0=ð3"0"sVÞ ¼ ð�0k � �

0
?Þ=ð3"0"sVÞ. Long semiaxis ¼ 240 nm; � ¼ 120 mV; I ¼ 1 mM KCl; axial

ratio ¼ 1=3. The arrows indicate the high- and low-frequency values of �0k=ð3"0"sVÞ, �0?=ð3"0"sVÞ,
and ��=ð3"0"sVÞ:



�MW for constant potential particles has a stronger ionic strength dependence than for
constant charge. This difference is particularly important since experimental data can
encompass either situation, depending on the particle’s surface characteristics.

D. Spheroids with Nonuniform Surface Charge Density

The theory for uniformly charged particles predicts, as the main feature of ��, a large,
easily detectable minimum in Bð�Þ. However, in many experiments the dip is less pro-
nounced than allowed by the EMW-1 model, suggesting that Kpk=Kp? is larger than
geometry alone permits, cf. Eq. (52). To illustrate this point, Fig. 6 shows ��0=ð3"0"sVÞ

calculated from Eq. (30), treating Kpk and Kp? independently. Note that the dip amplitude
depends strongly on Kpk=Kp?, becoming less pronounced as the anisotropy increases. One
way this can arise is from a nonuniform surface charge, which alters the surface conduc-
tivity and therefore the dipole coefficient. For example, the charge density of some crystal-
line particles depends on the crystal plane exposed. Accordingly, in many instances the
surface charge may be nonuniform. Inspection of Eq. (43) – taking into account Eq. (25) –
shows that Kpk and Kp? depend strongly on the charge distribution. For these reasons we
introduce the EMW-2 formulation of the model, which involves fitting the Bð�Þ data with
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FIG. 4 Real part of the anisotropy in the dimensionless particle electric polarizability,

��0=ð3"0"sVÞ ¼ ð�0k � �
0
?Þ=ð3"0"sVÞ, calculated using the EMW-1 model for various values of surface

potential �, surface charge q, and ionic strength I . Parameters: long semiaxis ¼ 240 nm; axial ratio
¼ 1=3. (a) Behavior with � ¼ 120 mV at different KCl ionic strengths; (b) behavior with I ¼ 1 mM

KCl at different � potentials; (c) behavior with a surface charge q ¼ 1:271 �C=cm2 at different KCl
ionic strengths. Solid line: I ¼ 0:5 mM; dashed line: I ¼ 1 mM; dot–dashed line: I ¼ 2 mM.



the basic MW equations [Eq. (30)] to extract Kpk and Kp? as independent quantities. In
EMW-2, Kpk and Kp? represent two different moments of the surface charge distribution,
which combine in Eq. (46) to give the total charge. The main result is that one can extract
� from Kpk and Kp? without knowing the surface charge distribution.

E. Low-frequency Values of the Maxwell–Wagner Regime

According to the MW model, the high-frequency polarizabilities, �1k and �1? , depend on
the real particle and solvent dielectric constants, whereas the low-frequency limits of the
particle polarizabilities, �0k and �

0
?, depend on the particle and solvent conductivities [see

Eqs (36) and (37)]. Since the low-frequency values of the Kerr constant in the MW regime
are easily compared with experimental findings, it is worthwhile to observe in detail the
related theoretical predictions. We define ��1 ¼ �1k � �1? and ��0MW ¼ �0k � �

0
?.

According to the EMWmodel, the parameter Kp in Eq. (37) depends on q or � as expressed
by Eq. (23), and so we can calculate �0k;? as a function of measurable quantities I and �. In
Fig. 7, ��0MW=��

1, the normalized value of the anisotropy of the real part of the low-
frequency value of MW polarizability is plotted as a function of the ionic strength I for
different values of the particle surface charge, as predicted by the EMW-1model. From Fig.
7 we observe that the effect of the added salt is to decrease the ratio ��0MW=��

1, whereas
the effect of increasing � is to increase the ratio until an asymptotic value independent of I is
reached.
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FIG. 5 Dependence of the MW characteristic frequency �MW on KCl ionic strength calculated
from EMW-1 model at constant � potential or constant surface charge q. Constant charge – q ¼

8:5 �C=cm2 (solid line) and constant potential – � ¼ 140 mV (dashed line). Long semiaxis ¼ 240 nm;
axial ratio ¼ 1=3.



V. LOW-FREQUENCY THEORY OF ELECTRIC POLARIZABILITY OF
SPHERES

In the low-frequency regime (1 kHz < � < 1 MHz), changes in ion densities beyond the
double layer make the equations governing the particle polarization far more complex
than in the high-frequency regime; this is in fact an expression of the fully electrokinetic
character of the problem. In this regime, an exact numerical solution has been provided by
DeLacey and White [3] in the case of spherical particles. When dealing with specific
limiting cases, a number of approximate solutions are available. For instance, in situations
of high ionic strength (thin double layer) and/or low surface potential, the following
expression for the polarizability of spheres at low frequency can be used [5–7, 9]:

�LFS ¼ �4�"0"sR
3 2Ke þ Kpð� 2Þ

2ð2Ke þ Kpðþ 1ÞÞ
ð56Þ

where

 ¼
1þ

ffiffiffiffiffiffiffiffiffiffi
i!R2

D

r

1þ

ffiffiffiffiffiffiffiffiffiffi
i!R2

D

r
þ
1

2

i!R2

D

ð57Þ
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FIG. 6 Real part of the anisotropy in the dimensionless electric polarizability of the particles,
��0=ð3"0"sVÞ ¼ ð�0k � �

0
?Þ=ð3"0"sVÞ, calculated with the EMW-2 model for an anisotropic spheroid

for various values of the ratio Kpk=Kp?. Long semiaxis ¼ 240 nm; axial ratio ¼ 1=3; Kpk ¼ 0:05 S/m,
Ke ¼ 0:015 S/m (1 mM KCl).



The definition of Kp used in Eq. (56) coincides with Kp as used in the high-frequency
theory, i.e., it is computed by combining Eqs (22) and (25) [6]. The real and imaginary
parts of  are

Re½
 ¼
1þ

ffiffiffiffiffiffiffi
!�s

p
þ !�s

ð1þ
ffiffiffiffiffiffiffi
!�s

p
Þð1þ !�sÞ

ð58Þ

Im½
 ¼
!�s

ð1þ
ffiffiffiffiffiffiffi
!�s

p
Þð1þ !�sÞ

ð59Þ

where �s ¼ R2=D ðD � 1:9� 10�9 m2/s for KCl). According to Eqs (58) and (59), the
frequency dispersion of  is strongly non-Debye, its frequency decay being stretched
over more than two decades.

In the case of thin double layers, assuming that Kp � Ke, Eq. (56) can be further
approximated and �LFS becomes

�LFS ¼ �4�"0"sR
3 4K

2
e � 6KeKp þ 3K

2
p

8K2
e

þ
3

8

Kp
Ke

	 
2


" #
ð60Þ

In these conditions, the frequency dependence of �LFS coincides with that of .
In Fig. 1 we have plotted the real part of the dimensionless polarizability for spheres,

�LFS=ð3"0"sVÞ, calculated with the Eqs (56) and (58) as a function of the frequency. As is
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FIG. 7 Ionic strength dependence of the real part of the normalized low-frequency value of the
anisotropy of polarizability ��0MW=��

1 for spheroids. Data calculated for symmetric electrolyte by
using the EMW-1 model for a spheroidal particle in the MW regime. Particle semiaxis ¼ 240 nm;

axial ratio ¼ 1=3; � ¼ 75� 10�4��1 m2M�1.



apparent from this figure, the approximate expression is a good description of the low-
frequency behavior of the polarizability. It is interesting to note in Fig. 1 that the low-
frequency limit of the MW predictions for the polarizability (�0MWSÞ coincides with the
high-frequency limit (�1LFSÞ as expressed by Eqs (56–58).

In order to compare better and qualitatively the predictions of the approximate
model with those of the SE approach, we have systematically calculated, with both mod-
els, the zero-frequency polarization at different values of I and �. At zero frequency, the
�LFS expression given by Eq. (56) becomes

�0LFS ¼ 4�"0"sR
3 Kp � 2Ke
4ðKp þ KeÞ

ð61Þ

In Fig. 8 we compare the normalized zero-frequency values of polarizability,
�0LFS=j�

1
j, calculated by using Eq. (61), with the predictions of the zero-frequency values

of the SE model. As apparent, the agreement is good for high ionic strengths and low �
potentials. Outside this limit, the approximate models for the low-frequency behavior of
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FIG. 8 Ionic strength dependence of the real part of the normalized zero-frequency values of the
polarizability �0LFS=�

1 for spheres. Data calculated from the SE model for symmetric electrolyte for

spherical particle, with particle radius R ¼ 135 nm; "0p ¼ 2; "s ¼ 80;� ¼ 75� 10�4 ��1m2 M�1.
Symbols: values calculated by using numerical solutions of SE model [3]; lines: values calculated
by using the low-frequency theory for spheres [Eq. (61)]. Triangles and solid line: � ¼ 100 mV;

Circles and short-dashed line: � ¼ 140 mV: diamonds and long-dashed line: � ¼ 180 mV: squares
and dot–dashed line: � ¼ 220 mV; dotted line: high charge limit.



the electric polarizability of spherical polyelectrolytes can not be trusted, and it is neces-
sary to take into account the complete numerical solution of the SE model.

VI. LOW-FREQUENCY THEORY OF ELECTRIC POLARIZABILITY OF
SPHEROIDS

Having assessed the range of validity of the thin-double-layer approximation for cal-
culating the polarizability of spheres, we now focus on analogous expressions for
spheroids. When the simplifications inherent in the spherical shape are lost, all electro-
kinetic calculations become extremely difficult. As a result, not only no exact numerical
solutions to the SE model for any nonspherical shape exists, but also the single avail-
able approximate theory for spheroids, by O’Brien and Ward [11], calculates the elec-
tric polarizability in the zero-frequency limit only. Following the O’Brien and Ward
approach, the electric polarizability of spheroid at zero frequency is given, for a sym-
metric electrolyte, by the following expressions, along and perpendicularly to the
applied field:

�0LFk ¼ 4�"0"sa
2b

1

3 sinh2 �0 cosh �0

�4Q1 þ 3 cosh �0@Q1I1�s þ 3Q1I1�s
2@Q1ð2@Q1 � 3Q1I1�sÞ

ð62Þ

�0LF? ¼ 4�"0"sa
2b

2

3 cosh �0 sinh
3 �0

�

8 cosh �0@Q
1
1 � 3 cosh �0I2Q

1
1�s þ 3@Q

1
1I2 sinh

2 �0�s
2@Q1

1ð4@Q
1
1 � 3I2Q

1
1�sÞ

ð63Þ

We define ��0LF ¼ �0LFk � �
0
LF?. In Fig. 9 we have plotted the normalized zero-

frequency values of anisotropy of polarizability for spheroids, ��0LF=��
1, calculated

according to Eqs (62) and (63) as a function of the ionic strength at fixed � potential.
Since the theoretical hypotheses in Eqs (62) and (63) are the same as those leading to Eq.
(61), the range of validity of the predictions in Fig. 9 is probably the same as the one
following from the analysis in Fig. 8. Thus, we argue that Eqs (62) and (63) are valid for I
larger than 1 mM KCl and � potential lower than 140 mV.

By inspecting Figs 7 and 9 we observe that the predicted zero-frequency values of
anisotropy of polarizability in the MW and in the low-frequency regimes are of the same
order of magnitude. More specifically, at low ionic strength and low � potential
��0LF=��

1
� ��0MW=��

1, but at higher ionic strength and � potential
��0LF=��

1 < ��0MW=��
1. Thus, we expect that, at low ionic strength and low � poten-

tial the Kerr constant depends only mildly on frequency in the low frequency regime. At
lower � potential, we instead anticipate Bð�Þ to be a decreasing function. This is sketched
in Figs 10a and 10b, where we schematically report the expected behavior of the real
part of �� together with the consequent prediction for Bð�Þ, and where we define the
quantities introduced in the discussion above. Note the two distinct relaxations in the
frequency dependence of ��0 (Debye-like at high frequency and less steep at low fre-
quency) and the different levels attained at low and high frequency.
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VII. COMPARISON BETWEEN FREQUENCY DISPERSION OF KERR
CONSTANT AND DIELECTRIC CONSTANT

In order to assess better the importance of FREB as a new experimental technique for
measuring electrokinetic phenomena, it is useful to compare its predicted behavior with
that of the dielectric constant. Here we want, in particular, to show that the MW polar-
ization process, which is the dominating feature of FREB spectra, is instead hardly
detectable by dielectric measurements.

Following the usual notation, the dielectric increment, �", is defined as
�" ¼ "d � "e, where "d is the dielectric constant of the suspension. It is well known [3]
that the dielectric increment is related to particle polarizability as

�"ð�Þ ¼
N"e
"0"s

�ð�Þ ¼
N

"0"s
"s�

0
�
Ke�

00

!"0

	 

þ i "s�

00
þ
Ke�

0

!"0

	 
� �
ð64Þ

In the above equation, �" and "e are both complex quantities, and �ð�Þ has different
expressions in the low- and high-frequency regimes. In the latter, the dielectric increment
can be evaluated from the MW polarization process. If we denote by �"0MW and �"

1
MW the

dielectric increments at, respectively, the low- and high-frequency limits of the MW
regime, and we further assume that "p � "s (valid for most aqueous dispersions):

�"0MW ��"1MW
"s

¼
9

2
�

�2s

ð1þ �sÞ
2

ð65Þ
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FIG. 9 Ionic strength dependence of the real part of the normalized zero-frequency values of the
anisotropy of polarizability ��0LF=��

1 for spheroids. Data calculated for symmetric electrolyte by

using the O’Brien and Ward theory [Eqs (62), (63)] for spheroidal particle in the low-frequency
regime. Particle semiaxis ¼ 240 nm; axial ratio ¼ 1=3; "0p ¼ 2, "s ¼ 80; � ¼ 75� 10�4��1 m2 M�1.



where the conductivity ratio �s in the case of the sphere becomes �s ¼ Kp=ð2KeÞ. Equation
(65) quantifies the signal (�"0MW ��"1Þ to the background ð"sÞ ratio for the MW feature
as measured by dielectric spectroscopy, and reveals that such a ratio is always smaller than
9�=2, which, for reasonable particle concentrations is, at most, 0.1. This value, large
enough to be, at least in principle, experimentally detected, refers to the limit of large
�s. Considering more realistic situations, �s has to be taken close to unity for low ionic
strengths, and could be much smaller in the thin-double-layer limit. Thus, in the large
majority of realistic experimental conditions, ð�"0MW ��"1MWÞ="s � 0:01, small compared
to typical resolutions in dielectric spectroscopy experiments. This explains why dielectric
measurements have shown MW features only in very specific cases [28].

A similar approach can be adopted when considering the dielectric increment in the
low-frequency regime. Let us call �"0LF and �"1LF the dielectric increments at the low- and
high-frequency limit in the LF regime. We obtain:

�"0LF ��"1LF
"s

�
9

2
�

�2sKe�s

"0"sð1þ 2�sÞ
2

ð66Þ

The right-hand side term in Eq. (66) is typically 102�103 times larger than the right-
hand side term of Eq. (65), confirming the experimental fact that the low-frequency
dielectric dispersion is largely predominant over the whole frequency range.
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FIG. 10 (a) Thick line: schematic plot of the frequency dispersion of the real part of the anisotropy
of the electric polarizability ��0 for spheroidal particles. (b) Thick line: schematic plot of frequency
dispersion of the Kerr constant B for spheroidal particles. Solid lines: values obtained from the low-

frequency model; dashed lines: values obtained fromMWmodel. The arrows indicate low- and high-
frequency values.



This brief analysis is summarized in Fig. 11 where we compare the frequency dis-
persion of the real part of electric polarizability (Fig. 11a) and of the real part of the
dielectric enhancement (Fig. 11b, continuous line), both calculated for a suspension of
charged spheres according to the low-frequency model in Eq. (56) combined with the
EMW model at high frequency (the parameters for the calculation are given in the figure
caption). As visible, the two quantities have dramatically different spectra, especially
because �"0=� does not show noticeable features around �MW. In order to explore the
origin of this difference, we have plotted in Fig. 11b the two terms contributing to �"0

according to the last term in Eq. (64), one of which is simply proportional to �0 (the dashed
line in the figure). The aim of Fig. 11b is to show that, while the MW feature is the
dominant relaxation in the �0 spectrum, when �"0 is computed, the MW relaxation is
basically absent because of an intriguing cancellation. Such a cancellation is better shown
in Fig. 11c, which is a vertical zoom of Fig. 11b. We think that the comparison between
Figs 11a and 11b is a powerful synthesis of the reason why the FREB technique is a very
much better tool than dielectric spectroscopy for studying high-frequency electrokinetic
phenomena.
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FIG. 11 (a) Dimensionless real part of the electric polarizability of a charged sphere. (b), (c) Solid

lines: real part of the specific dielectric enhancement of a suspension of charged spheres, obtained,
according to Eq. (64) as the sum of two terms: �0=ðV"0Þ (short-dashed line) and �Ke�

00=ðV!"20"sÞ
(long dashed line). Panel (c) is a vertical zoom of (b). Calculations were performed for a symmetric

electrolyte according to the low-frequency model in Eq. (56) combined with the EMW model. R ¼

135 nm; "0p ¼ 2, "s ¼ 80, � ¼ 75� 10�4��1 m2M�1; � ¼ 70 mV; I ¼ 0:5 mM.



VIII. ELECTRIC BIREFRINGENCE EXPERIMENTS ON COLLOIDS OF
VARIABLE CHARGE

In the following sections we present experimental results obtained at low and high fre-
quency with colloids of variable charge, and we discuss in detail their comparison with the
theoretical predictions. We first give a short description of the experimental technique and
materials, followed by a presentation and discussion of the EB data.

A. Frequency-resolved Electric Birefringence

The EB experiment consisted of applying a voltage to the electrodes of the Kerr cell
containing the suspension under study and measuring the induced birefringence, �n. In
FREB, the applied voltage was shaped in variable-frequency sine-wave pulses of zero
average, having a duration long enough to reach a stationary value of the induced
anisotropy. Our experiments employed pulses of about 40 ms, frequencies in the
range 1�200 MHz, and field amplitudes between 1 and 10 V/mm. The time-dependent
induced birefringence �nðtÞ was obtained by averaging over about 100 pulses. From the
steady-state value of �nðtÞ measured at different frequencies of the applied field, we
extracted Bð�Þ.

In standard FREB experiments, frequencies range up to a few MHz [15]. In order to
increase the maximum frequency, our experimental setup [21] was modified by devising a
Kerr cell with specialized wiring and contacts to minimize inductive loops and avoid
spurious responses. By making use of radio-frequency equipment to generate and amplify
the applied electric field, the frequency range was then increased by two orders of magni-
tude. An automatic, computer-controlled setup was developed to make measurements
over six decades in frequency within an interval less than the particle sedimentation
time. Typically, with this setup we could measure B at 200 values of frequency (i.e., a
typical FREB spectrum) in 2 h, about a factor 50 less than that of manual experiments.

B. Controlling the Particles’ Charge Via Surfactant Adsorption

The measurements involve suspensions of elongated particles of single poly(tetrafluor-
oethylene) (PTFE) crystals having a 240 nm long semiaxis with an axial ratio close to 3.
The polydispersity in the linear dimension is about 15%. These particles, kindly supplied
by Ausimont (Milano, Italy), are shaped like spherocylinders, which, for the sake of
comparison with theoretical models, will be approximated by prolate spheroids. PTFE
particles were chosen for their special properties. First, their uniaxial internal crystal
structure [29] allowed us to perform measurements on dilute dispersions and still maintain
a favorable signal-to-noise ratio. The average refractive index of a PTFE particle is 1.38
and the optical anisotropy is �n ¼ 0:04, as measured by light-scattering techniques [29].
Second, the highly hydrophobic surface allows the surface charge to be controlled by
adsorption of ionic and nonionic surfactants as described below. Third, since the refractive
index of fluorinated compounds is quite close to that of water, the presence of an adsorbed
layer of hydrogenated surfactant (with a much larger refractive index) can be detected by
measuring the light scattering cross section. In fact, to assess surfactant adsorption, we
measured the laser power transmitted by a suspension of PTFE particles of known con-
centration following the procedure outlined in Ref. [30]. When surfactant molecules are
adsorbed on the particle surface, the scattering cross-section of the particle increases
appreciably because the optical contrast between surfactant and water is much larger
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than that between PTFE and water. This effect allows measuring with accuracy better
than 0.1 ng/mm2 the quantity of surfactant adsorbed on particle surface. Thus, compar-
ison between transmitted intensity data and Bð�Þ data enables comparing the number of
adsorbed molecules with the number of ionized sites which yield particle charge.

In Ref. 30, we presented a more complete description of the PTFE particles. Here,
we want to recall that, as prepared by emulsion polymerization, the original bare PTFE
particles bear a negative surface charge due in part to adsorbed anionic surfactant (fluori-
nated carboxylate) and to the end groups of the polymer chains (fluorinated carboxyl
ions). The amount of adsorbed fluorinated surfactant depends on the details of prepara-
tion, including a final dialysis to lower the ionic strength of the solution.

In this chapter we present data obtained with two different batches of PTFE. This
induces only slight quantitative differences in the surface charge of the particles and, as a
consequence, some slight differences in the Kerr constant. In the figure captions we have
indicated the two different batches of particles with PTFE-1 and PTFE-2.

We have modified the particle charge by allowing the adsorption of various surfac-
tants (nonionic, anionic, or cationic) on the particle surface. We have used three very
common surfactants: Triton X-100 (BDH), 4-(C8H17ÞC6H4ðOCH2CH2ÞnOH, n � 10,
Mw � 650, nonionic; AOT or sodium dioctylsulfosuccinate (BDH), C20H37O7SNa, anio-
nic, Mw ¼ 444:6; HTAB or hexadecyltrimethylammonium bromide (Aldrich),
CH3ðCH2Þ15NðCH3Þ3Br, cationic, Mw ¼ 364:5.

In the past we have extensively studied the effect of adding nonionic surfactant to
PTFE colloidal dispersions. In Ref. 30 we showed that, by controlling the amount of
Triton X-100, we can induce competitive adsorption between the neutral and the ionic
surfactants originally present on the particle surface, and thus modify the number of ionic
surfactant molecules on the latter. When both Triton X-100 concentration, cT, and PTFE
volume fraction, �, are large enough (in order to avoid desorption due to dialysis into the
solvent), the number of adsorbed ionic surfactant molecules per particle is a function of
cT=� alone. Overall, the effect of adding the Triton X-100 is to depress the particle charge
without a noticeable increase in ionic strength. In this work we present part of the data
already presented in Refs 19 and 30, together with new data obtained with various Triton
X-100 concentrations ranging from cT=� ¼ 10�3M to cT=� ¼ 0:1 M.

The effect of adding AOT to PTFE suspensions is instead to increment the (negative)
charge of the particles. Our measurements involved two values of cAOT=�:

1. cAOT=� ¼ 0:1 M corresponds to almost complete coverage. Given the size and
geometry of the particles, this corresponds to 2:3� 105 adsorbed molecules per
particle. If they are fully ionized, the charge density is 18.6 �C/cm2.

2. cAOT=� ¼ 0:01 M corresponds to about 1/10 of complete coverage. This indi-
cates about 3:8� 104 adsorbed molecules per particle, corresponding to a sur-
face charge density of 3.1 �C=cm2. The actual number of ionizable groups per
particle could be slightly larger due to the residual fluorinated surfactant mole-
cules left from the PTFE synthesis.

In order to study the effect of adding cationic surfactant to PTFE suspension, we
have performed some measurements with PTFE particles covered with HTAB. By adding
HTAB to the PTFE suspension, the charge of the particles can be reversed. This effect is
achieved by using HTAB concentrations ðcHTABÞ larger than the point of zero charge, at
which we have flocculation of samples. The measurements described in this chapter refer
to cHTAB=� ¼ 0:01 M, for different ionic strengths. This corresponds to 3:8� 104 adsorbed
molecules per particle.
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C. General Description of Experimental Results

In this section we describe Bð�Þ measurements performed with PTFE particles at different
ionic strengths and different surfactant coverage; Bð�Þ results are presented in Figs 12–15.

Figure 12 shows Bð�Þ measured at various ionic strengths, for dispersions with no
surfactant added. In Fig. 13 we show Bð�Þ measured at fixed ionic strength ðI ¼ 1mM
KClÞ at different Triton X-100 concentrations. Figure 14 shows data obtained with
particles fully covered with AOT (cAOT=� ¼ 0:1 M) at different ionic strengths. In
Fig. 15 we present Bð�Þ at various ionic strengths for PTFE particles in the presence
of HTAB. As apparent from the figures, by adding different surfactants, the frequency
dispersion of the Kerr constant dramatically changes. Note that in the cases of full AOT
or HTAB coverage, we observe a dip in Bð�Þ in the 1–10 MHz range.

The following features are common to all the situations described: (1) at any given
surfactant concentration and frequency, the Kerr constant decreases upon increasing the
ionic strength, in agreement with previous work [21]; (2) for any given suspension, Bð�Þ is a
decreasing function of � in the kilohertz and megahertz regions (with the exception of the
dip region). The dependence on I and � clearly indicates that the Kerr constant is the result
of double-layer polarization processes. The increment of dissolved ions increases the con-
ductivity of the medium around the particles, which in turn more efficiently counteracts
charge displacement. Moreover, kilohertz and megahertz regimes correspond to the time it
takes for ions to diffuse across distances of about, respectively, the colloidal particle size
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FIG. 12 Frequency dependence of the Kerr constant B measured in a � ¼ 10�3 suspension of
PTFE particles where no surfactant has been added. The short vertical segments indicate, approxi-
mately, the transition frequency between the two regimes – low frequency and MW at high fre-

quency. The solid lines represent a fit of the high-frequency data using the MW theory for a
conducting spheroid (EMW-2).



FIG. 13 Frequency dependence of the Kerr constant measured in a � ¼ 10�3 suspension of PTFE
particles at the ionic strength 1 mM KCl. Curves refer to different concentrations of Triton X-100;
the solid lines represent a fit with Eqs (56) and (57).

FIG. 14 Frequency dependence of the Kerr constant measured in a � ¼ 10�3 suspension of PTFE

particles with 10�4 M AOT added. Curves refer to different ionic strengths; vertical and solid lines as
in Fig. 12.



and the Debye length. Accordingly, the high-frequency (� > 200 MHz) asymptotic value
of Bð�Þ appears to be independent of particle charge and ionic strength, in agreement with
the notion that, when ion motions are negligible, Bð�Þ takes the value of uncharged (purely
dielectric) PTFE particles in a purely dielectric medium.

To classify the behavior of Bð�Þ, we will focus separately in the low-frequency
(1 kHz–1 MHz) regime, where ionic diffusion and hydrodynamic motions are relevant,
and in the high-frequency MW (1–200 MHz) regime where the EMW model applies. The
intrinsic separation between the two regimes is particularly evident in some cases (see
curve I � 1 mM in Fig. 12) where two distinct relaxations in different frequency intervals
are evident, but it can be recognized in almost every situation. It should be remarked that
the data presented here explore regimes of frequency and electric charge never considered
before: all the previously published experiments [29–33] on the EB of polyelectrolyte
solutions concerned particles of low charge, in relatively high ionic strength solutions,
studied in the regime of low frequency (� < 1 MHz). Consequently, previous results were
mainly similar to those represented by the low-frequency part of the curves in Fig. 13.�
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FIG. 15 Frequency dependence of the Kerr constant measured in a � ¼ 10�3 suspension of PTFE

particles where 10�5 M HTAB has been added, for the indicated ionic strengths. Vertical and solid
lines as in Fig. 12.

� In our earlier works, in the absence of an electrokinetic theory for EB, the frequency dispersions of
B have been fitted, in the low-frequency regime, using models developed for the real part of the

dielectric constant. We now know that such fittings are not very meaningful, as the Kerr constant is
proportional to the real part of the polarizability, instead. However, since in the low-charge limit
the shape of the two frequency dispersions is similar, see Eq. (60), and given the data precision of

those earlier measurements, the fitting yielded satisfactory results.



To highlight better the two frequency regimes, a short vertical segment separating
them has been drawn in Figs 12–15. In either regime, a ‘‘cut-off frequency’’ correspond-
ing to the frequency of maximum negative slope of Bð�Þ can be defined. The cut-off
frequencies in the low-frequency and MW regimes are denoted by �LF and �MW, respec-
tively (see Fig. 10). Measured values of �MW and �LF differ by about two orders of
magnitude. The I dependence of �MW for bare or surfactant-covered particles is shown
in Fig. 16; �MW changes by more than an order of magnitude over the range of ionic
strength explored, whereas the measured values of �LF are almost independent of ionic
strength. This could be expected since �LF is normally interpreted as the reciprocal of the
polarization time of the double layer ð�LF � D=a2Þ, where a is colloid length scale. On
the other hand, the strong dependence of �MW on I is due to mismatches in ionic
conductivity, and thus in ion transport. In Fig. 16 we have also reported, in analogy
with Fig. 5, the theoretical predictions for �MW according to the EMW model [see Eq.
(35)] for constant q or constant �. Comparison of data with theory, as presented in Fig.
16, supports the notion that bare particles behave as constant �-potential entities,
whereas AOT/HTAB covered particles behave as constant q particles. When particles
are covered with Triton X-100 (i.e., low surface charge) the high-frequency dispersion is
almost flat and thus �MW is hard to define.

In the analysis that follows, we will focus on the quantity Bð�Þ=B1, where B1

is the experimental value of B at � > 200 MHz. Since, according to Eq. (14),
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FIG. 16 Characteristic frequency �MW defined as the frequency of maximum negative slope of Bð�Þ
measured for PTFE particles in presence of different surfactants. Symbols: cAOT=� ¼ 0 (triangles)
cAOT=� ¼ 0:01 M (circles), cAOT=� ¼ 0:1 M (squares), and cHTAB=� ¼ 0:01 M (diamonds). Lines:
EMW-2 model for constant q ¼ 8:0 �C=cm2 and Kpk=Kp? ¼ 2:2 (solid line), constant q ¼ 2:5
�C=cm2 and Kpk=Kp? ¼ 3.5 (long-dashed line), and constant potential � ¼ �70 mV and Kpk=Kp? ¼

6 (short-dashed line).



Bð�Þ=B1
¼ ��0ð�Þ=��1, by dividing the Kerr constant by its asymptotic value, we can

neglect the B dependence on all the nonelectrokinetic quantities while retaining all the
relevant q and I dependences.

The data show different trends in the two regimes. For low frequency we observe
that for particles with low charge (Figs 12 and 13), Bð�Þ decreases smoothly and mono-
tonically, while it appears less dependent on � for highly charged particles. In the MW
regime Bð�Þ drops rather abruptly, in some cases (in the case of highly charged particles)
shows a dip, and reaches its asymptotic value between 1 and 10 MHz.

IX. COMPARISON BETWEEN HIGH-FREQUENCY DATA AND M–W
MODELS

In this section we focus on the data analysis limited to the high-frequency regime, where,
as shown in Sections III and IV, simplifications of the theory are in order. We will make
use of both the EMW-1 model, which assumes the charge to be uniformly distributed on
the spheroid and involves fits with a single free parameter (the total charge �Þ, and the
EMW-2 model, which was developed to deal with nonuniformly charged particles and
involves fits with two free parameters, Kpk and Kp?. As shown in the theory sections of this
chapter, even though the charge distribution is unknown, � can be calculated from Kpk
and Kp? by using the ‘‘mixing rule’’ of Eq. (46).

The fits will be performed in the limited frequency range spanning from the crossover
frequency (marked by vertical segments in Figs 12, 14, and 15) to the high-frequency limit.
We will call B0MW the low-frequency value obtained in the fits. Accordingly B0MW=B

1
¼

��0MW=��
1 has to be compared with the theoretical predictions shown in Fig. 7.

A. Data Analysis at High Frequency

Figures 17a and 17b show, respectively, curve I ¼ 0:1mM of Fig. 14 and curve I ¼ 1mM
of Fig. 12 together with the best fit obtained using the EMW-1 model over the high-
frequency region.

Figure 17a, which refers to particles fully covered with AOT and therefore highly
charged, shows that the EMW-1 calculation captures all the main features of the data
(amplitude, characteristic frequency, and dip). Despite a minor disagreement due to the
EMW-1 model prediction of a larger dip, the one parameter fit is remarkable. For the data
in Fig. 17a, the best fit yields q ¼ 8:1 �C=cm2 and � ¼ 252 mV. Data obtained with fully
AOT-coated particles at various ionic strengths are approximated by the EMW-1 model
with a quality similar to that found for the I ¼ 1 mM data. The situation drastically
worsens when the model is compared with data obtained for particles only partially
covered by ionic surfactant, i.e., particles with lower surface charge, as shown in Fig.
17b. Here, although the EMW-1 model describes the frequency and amplitude of the
Bð�Þ elbow, it fails to predict the disappearance of the dip. However, satisfactory fits to
the FREB data can be obtained by using Eq. (30) and allowing Kpk and Kp? to vary
independently. This is shown in Figs 12, 13, and 15 which show, as continuous lines, the
best fit obtained with the EMW-2 model.

Figure 18 shows best-fit values of Kpk as a function of the ionic strength for the
various dispersions under study; Kpk is strongly dependent on the amount and the nature
of the adsorbed surfactant, but only weakly changes upon changing I .
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Figure 19 shows that, in some cases, the Kpk/Kp? ratio is significantly larger than the
value allowed by the EMW-1 model (Kpk/Kp? ¼ 1:72, dashed line in Fig. 19). Other
interesting features of these data are that Kpk/Kp? is larger with lower surfactant coverage
[where the Bð�Þ dip is smaller] and that Kpk/Kp? is roughtly independent of ionic strength
for a given surfactant coverage. Since the Kpk/Kp? ratio as predicted by the EMW-1 model
cannot exceed 2 [see Eq. (52)] even for the highest axial ratios, the disagreement between
EMW-1 theory and EB experiment, shown in Fig. 17b and related to the value of the Kpk/
Kp? ratio, cannot be the consequence of having adopted an inaccurate description of the
particle shape (spheroids rather than spherocylinders), size, or polydispersity. The dis-
agreement must be related to nongeometrical features, such as the charge distribution
on the surface. A nonuniform surface charge density may originate from electrostatic
interactions between ionic surfactant molecules (favoring surfaces at constant potential)
or may be the consequence of the uneven chemical and physical properties of the surface
of the PTFE particles. Indeed, the sides of PTFE rods have a flatter, more crystalline
surface compared to their tips [34], which could favor (or disfavor) specific surfactant
adsorption. That the local surface properties could be the source of the uneven charge
distribution is also suggested by the weak dependence of Kpk and Kp? on the ionic
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FIG. 17 Best fit on the high-frequency Bð�Þ with EMW-1 model (dashed line) and EMW-2 model
(solid line) for particles of different AOT coverage. (a) PTFE particles fully covered with the anionic
surfactant AOT (curve at I ¼ 0:1 mMKCl of Fig. 14). Experimental conditions: � ¼ 10�3; cAOT=� ¼

0:1 M; I ¼ 0:1 mM KCl. From the fit: � ¼ �252 mV (EMW-1 model); Kpk ¼ 0:26 S/m and Kp? ¼

0:12 S/m (EMW-2 model). (b) PTFE particles with no added surfactant (curve at I ¼ 1 mM KCl of
Fig. 12). Experimental conditions: � ¼ 10�3; csurf=� ¼ 0; I ¼ 1 mM KCl. From the fit; � ¼ �138 mV

(EMW-1); Kpk ¼ 2:5 10�2 S/m and Kp? ¼ 5:5 10�3 S/m (EMW-2 model). The fit with the EMW-2
model is almost indistinguishable from the data.



FIG. 18 Volume conductivity, Kpk, as extracted from EMW-2 best fit on the high-frequency part of
Bð�Þ, for PTFE particles in presence of different surfactants: cAOT=� ¼ 0 (triangles), cAOT=� ¼ 0:01
M (circles), cAOT=� ¼ 0:1 M (squares), and cHTAB=� ¼ 0:01 M (diamonds).

FIG. 19 Kpk=Kp? as extracted from EMW-2 best fit on the high-frequency part of Bð�Þ, at different
ionic strengths for PTFE particles in presence of different surfactants: cAOT=� ¼ 0 (triangles),

cAOT=� ¼ 0:01 M (circles), cAOT=� ¼ 0:1 M (squares), and cHTAB=� ¼ 0:01 M (diamonds). The
dashed line represents Kpk=Kp? predicted by the EMW-1 model (Kpk=Kp? ¼ 1:72Þ.



strength. These considerations, together with the remarkably good fit to the data when
using the MW formulas, indicate the EMW-2 model procedure as the most appropriate to
interpret the data. When this is done we obtain, by virtue of the mixing rule [Eq. (46)], the
I dependence of the surface charge presented in Fig. 20, where the strong dependence of q
on the amount of added (and adsorbed) surfactant is evident. In the case of AOT, the
increment in q is qualitatively proportional to cAOT. Also notice that, at the same surfac-
tant concentration cAOT=� ¼ cHTAB=� ¼ 0:01 M, the HTAB has a more conspicuous effect
on the charge. In this case, the positive surfactant tends to be adsorbed on the surface and/
or to be dissociated more efficiently with respect to the negative surfactant. Since the MW
behavior is undetectable with Triton-covered particles, we cannot, in that case, extract q.

In Fig. 21 we have plotted the normalized values of the anisotropy of polarizability
��0MW=��

1 as obtained from the EB data at low frequency in the MW regime. The data
are taken for bare particles and for particles completely covered by AOT ðcAOT=� ¼ 0:1
M). In Fig. 21 we also show the predictions of the MW theory for ��0MW=��

1, as given
by Eqs (36) and (37), assuming either � or q to be constant. In agreement of the behavior
shown in Figs 16 and 20, bare particles seem to behave as constant-� entities, whereas
AOT-coated particles behave as constant-q entities. While still in need of a microscopic
explanation, this remarkably different behavior of surfactant coated and bare PTFE
surfaces demonstrates that studies of FREB at the high-frequency limit enables one to
access from a new perspective the electrokinetic properties of surfaces.
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FIG. 20 Surface charge density, q, obtained from fitting Bð�Þ data using the EMW-1 (full symbols)
and the EMW-2 models (open symbols) for PTFE particles in presence of different surfactants:
cAOT=� ¼ 0 (triangles), cAOT=� ¼ 0:01 M (circles), cAOT=� ¼ 0:1 M (squares) cHTAB=� ¼ 0:01 M
(diamonds). Lines indicate behavior at: q ¼ 8 �C=cm2 (short-dashed line), q ¼ 2:5 �C=cm2 (long-
dashed line), and � ¼ 40 mV (solid line).



X. COMPARISON BETWEEN LOW-FREQUENCY DATA AND
O’BRIEN–WARD MODEL

In analogy to what was done in Section IX, we define here B0LF as the measured low-
frequency ð� ¼ 1kHz) values of the Kerr constant. In particular, we will focus on the ratio
B0LF=B

1
¼ ��0LF=��

1 to compare it with the theoretical predictions (see Section VI),
available only for the �! 0 limit [11]. In Figs 22–25 we show ��0LF=��

1 measured in
suspensions of PTFE particles covered by different surfactants and at different ionic
strengths. The comparison between Figs 22 and 23 shows the opposite effects of adding
Triton X-100, which decreases the low-frequency value of B, and of adding AOT, which
instead makes B0LF grow. These effects are compared in Fig. 24, where the data referring to
HTAB are also included. The difference between the B values of the uncovered particles
presented in Figs 22–24 is probably a consequence of having used particles from different
batches. A more detailed study of the behavior of ��0LF=��

1 as a function of I is shown
in Fig. 25 for different values of Triton X-100, AOT, and HTAB concentrations. It can be
seen that the dependence of ��0LF=��

1 on I is particularly strong at low ionic strength.
The lines of Fig. 25 have been calculated according to the theory presented in Section VI
and concern particles having different values for their surface � potential. The EB data in
Fig. 25, obtained with PTFE particles either uncovered or covered with Triton X-100,
nicely match with ��0LF=��

1 calculated from the low-frequency model for constant �,
which can therefore be determined from this comparison. The behavior of particles coated
with AOT or HTAB cannot instead be compared with theory, since in such cases
��0LF=��

1 takes values larger than the maximum obtainable from the theory in the
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FIG. 21 Symbols: ionic strength dependence of the real part of the low-frequency normalized value
of the polarizability ��0MW=��

1 measured from Bð�Þ data at high frequency. Lines: ��0MW=��
1

calculated as in Fig. 7; � ¼ 130 mV (solid line); q ¼ 6 �C=cm2 (dashed line).



FIG. 22 Real part of the low-frequency value of the normalized anisotropy of particle polariz-
ability ��0LF=��

1, measured for PTFE-1 particles, as a function of the Triton X-100 concentration

cT=�, at different NaCl ionic strengths. The data are taken at a fixed volume fraction � ¼ 0:5%. The
dashed lines are intended to guide the eye through the data.

FIG. 23 Real part of the low-frequency value of the normalized anisotropy of particle polariz-
ability ��0LF=��

1, measured for PTFE-1 particles, as a function of the AOT concentration cAOT=�,
at different NaCl ionic strengths. The data are taken at fixed volume fraction �� 0:5%. The dashed
lines are a guide to the eye through the data.



limit of high �. This is not too surprising when this behavior is compared to that shown in
Fig. 8, where a similar disagreement was found for spherical particles when comparing the
approximate theory to the exact solution of the SE model. If at high � (or low I) the
approximate theory for spheres underestimates the exact calculation, it seems reasonable
to conclude that the disagreement between theory and experiment in Fig. 25 could thus be
a consequence of the approximations inherent in the asymptotic theory of O’Brien and
Ward [11].

XI. CONCLUSIONS

Our experiments show that charged, anisotropic polyelectrolytes have a nonmonotonic
FREB response over a very wide frequency range. With respect to previous works, this
study covers a broader range of surface properties, from bare PTFE surfaces to surfaces
fully covered by surfactants, and extends the frequency span of experiments up to 200MHz.

The EMW model provides a good description of the observed behavior at high
frequencies. Two versions of the EMW model were used to analyze data. The EMW-1
model, which assumes a uniformly distributed surface charge, accurately represents the
FREB data for particles whose surfaces are saturated with ionic surfactant. Bare or par-
tially covered particles behave differently. To interpret their behavior we used the EMW-2
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FIG. 24 Real part of the low-frequency value of the normalized anisotropy of particle polariz-

ability ��0LF=��
1, measured for PTFE-1 and PTFE-2 particles, for different surfactants as a func-

tion of surfactant concentration csurf=�, at fixed ionic strength I ¼ 1 mM NaCl; csurf is the
concentration of added surfactant. Triton X-100 (triangles), AOT (circles), and HTAB (squares).

The dashed lines are drawn to guide the eye through the data.



model, which allows for nonuniform surface distributions of charge. Overall, the success of
EMWdescription provides an improved understanding of electrokinetic phenomena, offer-
ing a direct proof of MW processes in polyelectrolytes at high frequencies.

At low frequencies the comparison of EB data with the available theory is less
conclusive. The low-frequency FREB data with highly charged particles are systematically
underestimated by the available theories.

The rich behavior of Bð�Þ over such a wide frequency range, the direct access it
provides to the electric polarizability of the particles, the success in interpreting the data
in the high-frequency regime with a model greatly simplified with respect to the complete
SE description, and the flexibility of the EMW model, allowing description of nonsphe-
rical particles suitable for EB experiments, make FREB a powerful technique for studying
polyelectrolytes and characterizing their surface properties.
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FIG. 25 Measured (symbols) and calculated (lines) real part of the low-frequency value of the

normalized anisotropy of particle polarizability ��0LF=��
1, plotted as a function of the ionic

strength I , for PTFE particles in presence of different surfactants. PTFE-1: no surfactant (open
circles); cT=� ¼ 0:1 M (open squares). PTFE-2: no surfactant (filled circles); cAOT=� ¼ 0:1 M (filled

squares), cHTAB=� ¼ 0:01 M (filled diamonds). The lines represent calculations for NaCl at different
� potentials: � ¼ 140 mV (solid line); � ¼ 170 mV (short-dashed line); � ¼ 180 mV (long-dashed line);
high � limit (dotted line).
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Sedimentation Potential and Electric
Conductivity of Suspensions of
Polyelectrolyte-coated Particles

HUAN J. KEH National Taiwan University, Taipei, Taiwan

I. INTRODUCTION

The transport phenomena in suspensions of colloidal particles have received quite an
amount of attention in the past, due to their wide applications in the areas of chemical,
biomedical, agricultural, and environmental engineering and science. The surface of a
colloidal particle is generally not hard and smooth as assumed in many theoretical models.
For instance, coating of colloidal particles with polymers plays an important role in the
control of the stability/flocculation behavior of colloidal suspensions [1]. Even the surfaces
of model colloids such as silica and polystyrene latexes are ‘‘hairy’’ with a gel-like poly-
meric layer extending from the bulk material inside the particle [2]. In particular, the
surface of a biological cell is not a hard smooth wall, but rather is a permeable rough
surface with various appendages ranging from protein molecules of the order of nan-
ometers to cilia of the order of micrometers [3]. Such particles can be modeled as a
composite particle having a central solid core and an outer porous shell [4].

The creeping flow of an incompressible Newtonian fluid past a composite sphere was
solved by Masliyah et al. [5] using the Brinkman equation for the flow field inside the fluid-
permeable surface layer and the Stokes equations for the flow field external to the particle.
An analytical formula for the drag force experienced by the particle was derived as a
function of the radius of the solid core, the thickness of the porous shell, and the perme-
ability of the shell. They also measured the settling velocities of a solid sphere with
attached threads and found that theoretical predictions for the composite sphere are in
excellent agreement with the experimental results. On the other hand, the effects of a thin
layer of adsorbed polymers on the motion of a spherical particle were determined by
Anderson and Kim [6] using a method of matched asymptotic expansions. The result
for the drag force produced by the fluid on the particle was expressed as the hydrodynamic
thickness of the adsorbed polymer layer. Recently, these analyses for the motion of an
isolated polymer-coated sphere have been extended to the cases of motion of a single
polymer-coated sphere in the proximity of boundaries [2, 7, 8] and to the cases of simul-
taneous motion of two or more polymer-coated spheres [2, 9, 10]. Through the use of the
‘‘free-surface’’ and ‘‘zero-vorticity’’ cell models [11–13] for the creeping flow relative to an
assemblage of identical polymer-coated spheres, analytical solutions for the dependence of
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the average drag force of this assemblage on the volume fraction of the particles were also
obtained [14, 15].

The problems of the motion of charged particles in an electrolyte solution are more
complex than those of uncharged particles. Theoretical investigations on the electrokinetic
phenomena of colloidal particles covered by charged porous surface layers have been
performed for many years [3, 16–18]. These investigations provided formulas for the
electrophoretic mobility of such a polyelectrolyte-coated particle by introducing the mod-
ified Brinkman equation for the flow field inside the porous surface layer of the particle
and assuming that the local radii of curvature of the particle are much larger than the
thicknesses of the electric double layer and of the porous surface layer (i.e., the particle
surface is planar and the applied electric field is parallel to it). Experimental results for the
electrophoretic mobility of charged composite particles are also available for human
erythrocytes [19], rat lymphocytes [20], and latex particles coated with poly(N-isopropy-
lacrylamide) hydrogel layers [21]. Based on a formula derived from the theory of a planar
particle surface, these experimental results could be used to calculate the fixed charge
density and the hydrodynamic resistance parameter of the porous surface layer.
Recently, analytical expressions for the electrophoretic mobility of a spherical polyelec-
trolyte-coated particle have been derived [22–24]. It has been found that the electrophore-
tic mobility of a charged composite sphere can be quite different from that of a ‘‘bare’’
rigid sphere.

In this chapter, the effects of particle charges on the sedimentation potential and
electric conductivity of a suspension of polyelectrolyte-coated particles are presented. The
densities of the fixed charges and of the hydrodynamic frictional segments are assumed to
be uniform throughout the porous surface layer of each particle, but no assumption is
made as to the thicknesses of the double layer and of the porous surface layer relative to
the dimension of the particle. In Section II, we summarize the fundamental electrokinetic
equations and boundary conditions which govern the electrolyte ion distributions, the
electrostatic potential profile, and the fluid-flow field inside and outside the porous surface
layer of a polyelectrolyte-coated particle migrating in an unbounded solution. These basic
equations are linearized assuming that the ion concentrations, the electric potential, and
the fluid pressure have only a slight deviation from equilibrium due to the motion of the
particle. In Section III, the electric current density in a suspension of identical charged
particles subjected to a uniformly imposed electric field is described. The suspension is
sufficiently dilute that the suspended particles occupy only a small fraction of the total
volume of the suspension and the double layer surrounding each particle does not overlap
with the others. The average current density is expressed as an integral over a large surface
enclosing a single particle and its adjacent double layer, and the effective conductivity of
the suspension, which is the ratio of the average current density to the applied electric field,
is related to the electrochemical potential energies of the ionic species.

A. Sedimentation Potential in a Suspension of Charged Particles

When charged colloidal particles are moving relative to an electrolyte solution, the elec-
trical double layer surrounding each particle is distorted by the fluid flow around the
particle. The deformation of the double layer resulting from the fluid motion is usually
referred to as the relaxation (or polarization) effect and gives rise to an induced electric
field. The sedimentation potential, which arises in a suspension of settling charged parti-
cles, was first reported by Dorn in 1878 and this phenomenon is often known by his name
[25, 26]. The sedimentation potential gradient (which is of the order 1–10 V/m) not only
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alters the velocity and pressure distributions in the fluid due to its action on the electrolyte
ions but also retards the settling of the particles by an electrophoretic effect.

An important contribution to the sedimentation theory for a dilute suspension of
identical spherical particles with arbitrary double-layer thickness was made by Booth [25].
He solved a set of electrokinetic differential equations using a regular perturbation method
to obtain formulas for the sedimentation velocity and sedimentation potential expressed as
power series in the zeta potential ð�Þ of the particle up to Oð�2Þ and Oð�Þ, respectively.
Numerical results relieving the restriction of low surface potential in Booth’s analysis were
reported by Stigter [27] using a modification of the theory of electrophoresis developed by
Wiersema et al. [28]. It was found that the Onsager reciprocal relation between the sedi-
mentation potential and the electrophoretic mobility derived by de Groot et al. [29] is
satisfied within good computational accuracy. Taking the double-layer distortion from
equilibrium as a small perturbation, Ohshima et al. [30] obtained general expressions and
presented numerical results for the sedimentation velocity and sedimentation potential of
charged spheres over a broad range of zeta potential and double-layer thickness. Other
than cases of spherical particles, the effect of the deformation on the ion cloud surround-
ing a charged cylinder on the sedimentation velocity of the particle has also been inves-
tigated semianalytically [31, 32].

Using the ‘‘zero-vorticity’’ cell model with the condition of zero net electric current,
Levine et al. [33] derived analytical expressions for the sedimentation velocity and sedi-
mentation potential in a suspension of identical charged spheres with low surface potential
as functions of the fractional volume concentration of the particles, based on the assump-
tion that the overlap of the double layers of adjacent particles is negligible on the outer
(virtual) surface of the cell. In the limiting case of a single particle their result somewhat
differs from that obtained by Booth [25], which is not subject to the constraint of zero net
current. This analysis was also presented by Ohshima [34] to demonstrate the Onsager
relation between the sedimentation potential and the electrophoretic mobility of charged
spheres with low zeta potentials in concentrated suspensions. Recently, both the ‘‘free-
surface’’ and the ‘‘zero-vorticity’’ cell models, allowing for the effects of overlap and
polarization of the double layers, have been used to derive closed-form formulas for the
sedimentation velocity and sedimentation potential in concentrated suspensions of
charged spheres with arbitrary double-layer thickness [35].

Booth’s perturbation analysis was also extended to the derivation of the sedimenta-
tion velocity and sedimentation potential in dilute suspensions of charged porous spheres
[36] and charged composite spheres [23] with low densities of the fixed charges. In Section
IV, the sedimentation phenomena in a dilute suspension of polyelectrolyte-coated spheres
in the solution of a symmetric electrolyte are considered. First, the axisymmetric transla-
tional motion of a polyelectrolyte-coated sphere in an unbounded solution is analyzed.
Using the Debye–Huckel approximation, we give the solution of the equilibrium electric
potential and ion concentration distributions in Section IV.A; then, in Section IV.B, the
linearized electrokinetic equations are transformed into a set of differential equations by a
regular perturbation method with the fixed charge densities of the porous surface layer and
of the rigid core surface as the small perturbation parameters. The perturbed ion concen-
tration, electric potential, fluid velocity, and pressure profiles are determined by solving
this set of differential equations subject to the appropriate boundary conditions. A closed-
form expression for the settling velocity of the polyelectrolyte-coated sphere is obtained
from a balance among its gravitational, electrostatic, and hydrodynamic forces. In Section
IV.C, an explicit formula for the sedimentation potential is resulted from letting the net
electric current in the suspension be zero. The Onsager relation between sedimentation and
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electrophoresis is found to be satisfied for the polyelectrolyte-coated spheres. Finally, in
Section IV.D, analytical expressions in some limiting and special cases and typical numer-
ical results for the sedimentation velocity and sedimentation potential for polyelectrolyte-
coated spheres are presented.

B. Electric Conductivity of a Suspension of Charged Particles

When an external electric field is imposed on charged colloidal particles suspended in an
electrolyte solution, the particles and the surrounding ions are driven to migrate. As a
consequence, the fluid is dragged to flow by the motion of the particles and the ions, and
there is an electric current through the suspension. To determine the current density
distribution and transport properties such as the electric conductivity, it is necessary to
find out not only the local electric potential but also the local ionic densities and fluid
velocity. That is, one must first solve a set of coupled electrokinetic equations to obtain the
distributions of electric potential, ionic concentrations, and fluid velocity in the electrolyte
solution, and then compute the average electric current and effective conductivity in the
suspension.

Dukhin and Derjaguin [37] derived a simple formula for the effective electric con-
ductivity of a dilute suspension of impermeable charged particles by considering an infinite
plane slab of suspension immersed in an infinite homogeneous electrolyte subjected to an
electric field perpendicular to the plane of the slab. Extending this analysis, Saville [38] and
O’Brien [39] assumed that the particles and their electrical double layers occupy only a
small fraction of the total volume of the suspension to obtain approximate formulas for
the conductivity using a regular perturbation method for particles with low zeta potential
immersed in a symmetric electrolyte correct to Oð�2Þ. Their results have some discrepancies
with the experimental data reported by Watillon and Stone-Masui [40], who measured the
surface conductances of a number of monodisperse polystyrene latexes over a range of
particle volume fractions. Later, Saville [41] considered the effects of nonspecific adsorp-
tion, which alters the concentrations of ions in the solution outside the double layers, and
of counterions derived from the particle charging processes, and obtained better agree-
ment between theories and experiments.

The basic equations governing the electric conductivity of a dilute suspension of
colloidal particles also describe the electrophoretic phenomena. O’Brien [42] derived
analytical formulas for the electrophoretic mobility and the electric conductivity of a
dilute suspension of dielectric spheres with thin but polarized double layers in a general
electrolyte solution. Using a similar analysis, O’Brien and Ward [43] also determined the
electrophoretic mobility and the effective conductivity of a dilute suspension of ran-
domly oriented spheroids with thin polarized diffuse layers at the particle surfaces. On
the other hand, approximate analytical expressions for the electrophoretic mobility and
the effective conductivity of dilute suspensions of colloidal spheres in symmetric electro-
lytes were obtained by Ohshima et al. [44]. These expressions are correct to order ð�aÞ�1,
where � is Debye–Huckel parameter [defined by Eq. (31)] and a is the particle radius.
When the zeta potential of the particles is small, their reduced result is in agreement with
O’Brien’s [39].

The ‘‘zero-vorticity’’ cell model was also used to evaluate anlytically [45] and numeri-
cally [46] the electric conductivity of a concentrated suspension of identical charged
spheres as a function of the fractional volume concentration of the particles based on
the assumption that the overlap of the double layers of adjacent particles is negligible on
the virtual surface of the cell. Recently, both the ‘‘free-surface’’ and the ‘‘zero-vorticity’’
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cell models allowing for the effects of the overlap and polarization of the double layers
have been used to derive closed-form formulas for the electric conductivity in concentrated
suspensions of charged spheres with arbitrary double-layer thickness [47].

In many practical applications, the electric conductivity of a suspension is known
from direct measurement and the zeta potential of dielectric particles in the suspension can
be calculated. Similarly, one can also measure the electrophoretic mobility of a particle in
order to obtain the zeta potential. O’Brien and Perrins [48] derived a formula for the
electric conductivity of a porous plug composed of closely packed spheres and compared
it with the conductivity data for dilute and concentrated dispersions of monodisperse
polystyrene particles reported by Van der Put and Bijsterbosch [49]. They found significant
differences between the zeta potentials evaluated from measurements of the electric con-
ductivity and of the electrophoretic mobility. Similar differences were also found by
another work [50] in which the conductivities and electrophoretic mobilities of polystyrene
latex systems were measured. On the other hand, Stigter [51] developed a theory based on
the concepts used to describe the conductivity of strong electrolyte solutions, in which the
specific conductance of the suspension was computed by summing the individual contri-
butions of the particle–ion interactions expressed in terms of equivalent conductances. The
differences between the kinetic charges calculated from electrophoresis and from conduc-
tance in this theory were found to be small and within the errors of the experiments and
the theoretical models [52].

Recently, analytical studies for the electric conductivity of dilute suspensions of
charged porous spheres [53] and charged composite spheres [24] were performed under
the assumption that the densities of the fixed charges are low. In Section V, we present
the analysis for the effective conductivity of a suspension of polyelectrolyte-coated par-
ticles. The axisymmetric electrophoretic motion of a polyelectrolyte-coated sphere in an
unbounded electrolyte solution is first considered in Section V.A. By use of the solution
of the equilibrium electric potential distribution obtained in Section IV.A, the linearized
electrokinetic equations are transformed into a set of differential equations by using the
regular perturbation method with the fixed charge densities of the porous surface layer
and of the rigid core surface as the small perturbation parameters. The perturbed
electrochemical potentials of ions and the fluid velocity are determined by solving this
set of differnetial equations subject to the appropriate boundary conditions. An analy-
tical expression for the electric conductivity of a dilute suspension of identical polyelec-
trolyte-coated spheres is derived. Analytical expressions in some limiting and special
cases and typical numerical results for the effects of the fixed charges of polyelectro-
lyte-coated spheres on the effective conductivity of the suspension are presented in
Section V.B.

II. BASIC ELECTROKINETIC EQUATIONS FOR MOTION OF A
POLYELECTROLYTE-COATED PARTICLE

In this section we consider the motion of a polyelectrolyte-coated particle of arbitrary
shape in an unbounded liquid solution containing M ionic species when a constant grav-
itational field and/or electric field is applied. The polyelectrolyte-coated particle is modeled
as a charged rigid particle core covered by a surface layer of charged porous substance in
equilibrium with the surrounding electrolyte solution. The porous surface layer is treated
as a solvent-permeable and ion-penetratable homogenous shell in which fixed-charged
groups are assumed to distribute at a uniform density.
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A. Governing Equations

In the electrolyte solution, conservation of all species, which do not react with one
another, in the steady state requires that

r � Jm ¼ 0; m ¼ 1; 2; . . . ;M ð1Þ

where JmðxÞ is the number flux of species m at position x. If the solution is dilute, the flux
is given by

Jm ¼ nmu� nm
Dm

kT
r�m ð2Þ

with the electrochemical potential energy field of the mth species �mðxÞ defined as

�m ¼ �0
m þ kT ln nm þ zme ð3Þ

Here, nmðxÞ and zm are the concentration (number density) distribution and the valence of
species m, respectively, Dm is the diffusion coefficient of species m which is assumed to be
constant both inside and outside the porous surface layer, uðxÞ is the fluid velocity field
relative to the particle,  ðxÞ is the electric potential distribution, �0

m is a constant, e is the
elementary electric charge, k is Boltzmann’s constant, and T is the absolute temperature.
The first term on the right-hand side of Eq. (2) represents the convection of the ionic
species by the fluid and the second term denotes the diffusion and electrically induced
migration of the species.

We assume that the Reynolds number of the fluid motion is vanishingly small, so the
inertial effect on the fluid momentum balance can be neglected. The fluid flow is governed
by a combination of the Stokes and Brinkman equations modified with the electrostatic
effect:

�r2
u� hðxÞf u ¼ rp� �gþ

XM
m¼1

zmenmr ð4Þ

r � u ¼ 0 ð5Þ

where � and � are the viscosity and density, respectively, of the fluid, f is the friction
coefficient inside the porous surface layer of the particle per unit volume of the fluid, pðxÞ
is the fluid pressure distribution, g is the acceleration of gravity, and hðxÞ is a unit step
function which equals unity if x is inside the surface layer, and zero if x is outside the
polyelectrolyte-coated particle; �; �; f , and g are assumed to be constant. Note that f can
be expressed as 6��asNs, where Ns and as are the number density and the Stokes radius,
respectively, of the hydrodynamic frictional segments in the surface layer.

The local electric potential  and the space charge density are related by Poisson’s
equation:

r
2 ¼ �

4�

"

XM
m¼1

zmenm þ hðxÞQ

" #
ð6Þ

Here, Q is the fixed charge density inside the porous surface layer; " ¼ 4�"0"r, where "r is
the relative permittivity of the electrolyte solution which is assumed to be the same inside
and outside the surface layer, and "0 is the permittivity of a vacuum. Note that the space
charge density in the surface layer is the sum of the densities of the mobile ions and the
fixed charges.
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Because the governing equations are coupled nonlinear partial differential equations,
it is a formidable task to find a general solution of them. Therefore, we shall assume that
the Peclet number is sufficiently small so that the system is only slightly distorted from the
equilibrium state where the particle and fluid are at rest and replace these nonlinear
equations by approximate linear equations. One can write

p ¼ pðeqÞ þ 
p ð7aÞ

nm ¼ nðeqÞm þ 
nm ð7bÞ

 ¼  ðeqÞ
þ 
 ð7cÞ

�m ¼ �ðeqÞ
m þ 
�m ð7dÞ

where pðeqÞðxÞ, nðeqÞm (xÞ,  ðeqÞ
ðxÞ, and �ðeqÞ

m ðxÞ are the equilibrium distributions of pressure,
concentration of species m, electric potential, and electrochemical potential energy of
species m respectively; 
pðxÞ, 
nmðxÞ, 
 ðxÞ, and 
�mðxÞ are the small perturbations to
the equilibrium state (in which neither the gravitational field nor the electric field is
imposed). The equilibrium concentration of any species is related to the equilibrium
potential by the Boltzmann distribution:

nðeqÞm ¼ n1m exp �
zme 

ðeqÞ

kT

 !
ð8Þ

where n1m is the concentration of the type-m ions in the bulk (electrically neutral) solution
where the equilibrium potential is set equal to zero. The perturbed quantities 
�m; 
nm, and

 are linearly related:


�m ¼ kT

nm

n
ðeqÞ
m

þ zme
 ð9Þ

Substituting Eq. (7) into Eqs (1), (4), and (6), canceling their equilibrium compo-
nents, using Eqs (8) and (9), and neglecting the products of the small quantities u, 
nm, 
 
and 
um, one obtains

r
2
�m ¼

zme

kT
r ðeqÞ

� r
�m �
kT

Dm

r ðeqÞ
� u

� �
ð10Þ

r
2
u� hðxÞ�2u ¼

1

�
r
p�

"

4��
r

2 ðeqÞ
r
 þ r

2
 r ðeqÞ
� 	

�
1

�
hðxÞQr
 ð11Þ

r
2
 ¼ �

4�

"

XM
m¼1

zmen
1
m

kT
exp �

zme 
ðeqÞ

kT

 !
ð
�m � zme
 Þ ð12Þ

where � ¼ ðf =�Þ1=2. Note that the reciprocal of the parameter � is the shielding length
characterizing the extent of flow penetration inside the porous surface layer of the particle.
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B. Boundary Conditions

The boundary conditions at the surface of the rigid particle core are

u ¼ 0 ð13aÞ

n � Jm ¼ 0 ð13bÞ

n � r ¼ �
4�

"
 ð13cÞ

where n is the unit normal outward from the particle surface and  is the surface charge
density of the ‘‘bare’’ particle core. In Eq. (13a), we have assumed that the shear plane
coincides with the surface of the rigid core. Equations (13b) and (13c) state that no ions
can penetrate into the rigid core and that the Gauss condition holds at the surface of the
rigid core.

The conditions far from the particle are

u ! �U ð14aÞ

nm ! n1m ð14bÞ

 ! �E1 � x ð14cÞ

Here, U is the translational velocity of the particle and E1 is the uniform applied electric
field. If no electric field is applied (E1 ¼ 0Þ, the electric potential in the bulk solution is set
equal to zero. Equation (14a) takes a reference frame where the particle is at rest and the
velocity of the fluid at infinity is the particle velocity in the opposite direction.

The boundary conditions at the surface of the polyelectrolyte-coated particle (the
boundary between the porous surface layer and the external solution) are

ujsþ ¼ ujs� ð15aÞ

n ���jsþ ¼ n ���js� ð15bÞ

nmjsþ ¼ nmjs� ð15cÞ

Jmjsþ ¼ Jmjs� ð15dÞ

 jsþ ¼  js� ð15eÞ

r jsþ ¼ r js� ð15fÞ

Here, �� is the hydrodynamic stress of the fluid given by

�� ¼ �pIþ �½ruþ ðruÞ
T
� ð16Þ

where I is the unit dyadic. Equations (15a) and (15b) are the continuity requirement of the
fluid velocity and stress tensor at the particle surface. Equations (15c) and (15d) state that
the concentration and flux of species m must be continuous. Equations (15e) and (15f)
indicate that the potential and electric field are also continuous. The continuity of the
electric field results from the assumptions that the relative permittivity of the solution
takes the same value both inside and outside the surface layer of the polyelectrolyte-coated
particle.
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From Eqs (7), (9), (13b), (13c), (14b), and (14c), the conditions for 
�m and 
 can be
obtained as

n � r
�m ¼ 0 ð17aÞ

n � r
 ¼ 0 ð17bÞ

at the rigid core surface of the particle, and


�m ¼ �zmeE1 � x ð18aÞ


 ¼ �E1 � x ð18bÞ

at infinity. Equations (15c)–(15f) yield the following boundary conditions at the surface of
the particle:


�mjsþ ¼ 
�mjs� ð19aÞ

r
�mjsþ ¼ r
�mjs� ð19bÞ


 jsþ ¼ 
 js� ð19cÞ

r
 jsþ ¼ r
 js� ð19dÞ

The fluid velocity u is a small perturbed quantity, and the boundary conditions for u have
been given by Eqs (13a), (14a), (15a), and (15b).

III. AVERAGE CURRENT DENSITY IN A SUSPENSION OF CHARGED
PARTICLES

In this section, we consider the electric current in a dilute suspension of identical charged
particles immersed in a solution containing M ionic species. The particles may be
impermeable to the fluid, porous, or composite. It is assumed that the suspension is
statistically homogeneous and all effects of its boundaries are ignored. When the isotropic
suspension is subjected to a uniform applied electric field E1, one has

E1 ¼ �
1

V

ð
V

r
 dV ð20Þ

where V denotes a sufficiently large volume of suspension to contain many particles. To
obtain Eq. (20), we have used Eq. (7c) and the fact that the volume average of the gradient
of the equilibrium electric potential is zero. There is a resulting volume-average current
density, which is collinear with E1, defined by

hii ¼
1

V

ð
V

iðxÞ dV ð21Þ

where iðxÞ is the current density distribution. The effective electric conductivity � of the
suspension can be assigned by the linear relation:

hii ¼ �E1 ð22Þ

Since the measured electric field and current density are equal to E1 and hii, respectively,
Eq. (22) reduces to the usual experimental definition of electric conductivity, provided that
the suspension is everywhere homogeneous.
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The current density i can be written as

i ¼
XM
m¼1

zmeJm ð23Þ

Substituting Eqs (2), (3), and (7)–(9) into Eq. (23), using the fact that r�ðeqÞ
m ¼ 0, and

neglecting products of the small perturbation quantities, one has

i ¼
XM
m¼1

zmen
ðeqÞ
m u�

Dm

kT
r
�m

� �
ð24Þ

Far from any particle (beyond the double layer), nðeqÞm ! n1m , and Eq. (24) becomes

i ! �
XM
m¼1

zmeDm r
nm þ
zmen

1
m

kT
r
 

� �
ð25Þ

By adding and subtracting the current density given by the above equation in the inte-
grand of Eq. (21), one obtains

hii ¼ �
XM
m¼1

zmeDm

V

ð
V

r
nm þ
zmen

1
m

kT
r
 

� �
dV

þ
1

V

ð
V

iþ
XM
m¼1

zmeDm r
nm þ
zmen

1
m

kT
r
 

� �" #
dV

ð26Þ

Note that the magnitude of i and Dm can be taken as zero inside the dielectric rigid core of
each particle.

In a statistically homogeneous suspension with constant bulk ionic concentrations,
the volume average of r
nm is zero. According to the definition of Eq. (20) the first term
on the right-hand side of Eq. (26) equals �1

E1, where

�1
¼

e2

kT

X1
m¼1

z2mn
1
m Dm ð27Þ

which is the electric conductivity of the electrolyte solution in the absence of the parti-
cles. The integral in the second term on the right-hand side of Eq. (26) can be calculated
by first considering for a single particle as if the others were absent and then multiplying
the result by the particle number N in volume V , since the integrand vanishes beyond
the double layers surrounding the particles and the suspension is assumed to be suffi-
ciently dilute that the double layers do not overlap with one another. Also, the volume
integral can be transformed into a surface integral over a spherical boundary of infinite
radius containing the single particle at its center. With this arrangement, the second term
becomes

N

V

ð
r!1

ðn � irþ
XM
m¼1

zmen
1
m Dm

kT

�mnÞdS ¼

�
N

V

XM
m¼1

zmen
1
m Dm

kT

ð
r!1

ðn � r
�mr� 
�mnÞdS

ð28Þ
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where r is the position vector relative to the particle center. To obtain Eq. (28), the
requirement of the conservation of electric charges (r � i ¼ 0Þ and Eq. (25) have been
used. Therefore, the average current density given by Eq. (26) can be expressed as

hii ¼ �1
E1 �

N

V

XM
m¼1

zmen
1
m Dm

kT

ð
r!1

ðrr
�m � n� 
�mnÞdS ð29Þ

The determination of 
�m in Eq. (29) is concerned with the solution of a set of
basic electrokinetic equations for the electrolyte around a single particle. These electro-
kinetic equations for the case of a polyelectrolye-coated particle are described in the
previous section and their analytical solutions for a spherical particle with low fixed
charge densities in a gravitational field and in an electric field are presented in Sections
IV and V, respectively. From these solutions we shall derive the sedimentation potential
and effective conductivity of a dilute suspension of identical polyelectrolyte-coated
spheres.

IV. SEDIMENTATION POTENTIAL IN A SUSPENSION OF
POLYELECTROLYTE-COATED SPHERES

We first consider the axisymmetric motion of a polyelectrolyte-coated sphere of radius a in
an unbounded solution of a symmetrically charged, binary electrolyte with a constant bulk
concentration n1ðM ¼ 2; zþ ¼ �z� ¼ Z; n1þ ¼ n1� ¼ n1, where subscripts þ and � refer
to the cation and anion, respectively). As illustrated in Fig. 1, the polyelectrolyte-coated
particle has a porous surface layer of constant thickness d so that the radius of the rigid
core is r0 ¼ a� d. The translational velocity of the particle U ¼ Uez, where ez is the unit
vector in the positive axial direction. The origin of the spherical co-ordinate system ðr; �; �Þ
is taken at the center of the particle.
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A. Equilibrium Electric Potential Distribution Around a Polyelectrolyte-
coated Sphere

In this subsection we seek the solution of  ðeqÞ which appears in the governing equations
(10)–(12). Substituting the Boltzmann distribution [Eq. (8)] into Poisson’s equation [Eq.
(6)], one obtains the equilibrium Poisson–Boltzmann equation:

r
2 ðeqÞ

¼
kT

Ze
�2 sinh

Ze ðeqÞ

kT

 !
� hðrÞ

4�Q

"
ð30Þ

where hðrÞ equals unity if r0 < r < a and is zero if r > a; � is the Debye–Huckel parameter
defined for symmetric electrolytes by

� ¼
8�Z2e2n1

"kT

 !1=2

ð31Þ

The solution to Eq. (30) satisfying the boundary conditions (13c), (14c), (15e), and
(15f) at equilbriium is

 ðeqÞ
¼  eq01ðrÞ þ  eq10ðrÞQþOð3; 2Q; Q

2
;Q

3
Þ ð32Þ

where

 ¼
4�Ze

"�kT
ð33aÞ

and

Q ¼
4�ZeQ

"�2kT
ð33bÞ

which are the nondimensional charge densities of the rigid core surface and of the porous
surface layer, respectively, of the polyelectrolyte-coated particle, and

 eq01 ¼
kT

Ze

�r0
�r0 þ 1

� �
r0
r
e��ðr�r0Þ ð34aÞ

 eq10 ¼
kT

Ze
1� 1þ

1

�a

� �
e��d

1þ �r0
½�r0 coshð�r� �r0Þ þ sinhð�r� �r0Þ�

a

r

( )
; if r0 < r < a

ð34bÞ

 eq10 ¼
kT

Ze
1� 1þ

1

�a

� �
e��d

1þ �r0
½�r0 coshð�dÞ þ sinhð�dÞ�

( )
a

r
e��ðr�aÞ; if r > a

ð34cÞ

Note that  ðeqÞ is a function of r only due to spherical symmetry, and the function  eq01ðrÞ
takes the same form in both regions of r0 < r < a and r > a.

Expression (32) for  ðeqÞ as a power series in the fixed charge densities of the particle
up to Oð;QÞ is the equilibrium solution for the linearized Poisson–Boltzmann equation
that is valid for small values of the electric potential (the Debye–Huckel approximation).
That is, the charge densities  and Q of the particle must be small enough for the potential
to remain small. Note that the contribution from the effects of Oð2; Q;Q

2
Þ to  ðeqÞ in

Eq. (32) disappears only for the case of symmetric electrolytes.
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B. Sedimentation Velocity of a Polyelectrolyte-coated Sphere

To solve for the small quantities u, 
p, 
��, and 
 for the sedimentation of a polyelec-
trolyte-coated sphere in a symmetric electrolyte in terms of the particle velocity U when
the parameters  and Q are small, these variables can be written as perturbation expan-
sions in powers of  and Q:

u ¼ u00 þ u01 þ u10Qþ u02
2
þ u11Qþ u20Q

2
þ � � � ð35aÞ


p ¼ p00 þ p01 þ p10Qþ p02
2
þ p11Qþ p20Q

2
þ � � � ð35bÞ


�� ¼ �00� þ �01� þ �10�Qþ �02�
2
þ �11�Qþ �20�Q

2
þ � � � ð35cÞ


 ¼  00 þ  01 þ  10Qþ  02
2
þ  11Qþ  20Q

2
þ � � � ð35dÞ

U ¼ U00 þU01 þU10QþU02
2
þU11QþU20Q

2
þ � � � ð35eÞ

where the functions uij , pij , �ij�,  ij , and Uij are independent of  and Q. Both �00� and
 00 must equal zero as a result of not imposing the concentration gradient and electric
field.

Substituting the expansions given by Eq. (35) and  ðeqÞ and n
ðeqÞ
� given by Eqs (32)

and (8) into the governing equations (10)–(12) and boundary conditions (13a), (14a),
(15a), (15b), and (17)–(19) (taking E1 ¼ 0Þ, and equating like powers of  and Q on
both sides of the respective equations, we can obtain a group of linear differential equa-
tions and boundary conditions for each set of the functions uij, pij , �ij with i and j equal to
0, 1, 2, . . .. After solving this group of equations, the results for the r and � components of
u, 
p (to the orders of 2, Q, and Q

2
), 
��; and 
 [to the orders of  and Q, which will be

sufficient for the calculation of the sedimentation velocity and potential to Oð2; Q;Q
2
Þ]

can be written as

ur ¼ fU00F00rðrÞ þU01F00rðrÞ þU10F00rðrÞQþ ½U02F00rðrÞ þU00F02rðrÞ�
2

þ ½U11F00rðrÞ þU00F11rðrÞ�Qþ ½U20F00rðrÞ þU00F20rðrÞ�Q
2
g cos �

ð36aÞ

u� ¼ fU00F00�ðrÞ þU01F00�ðrÞ þU10F00�ðrÞQþ ½U02F00�ðrÞ þU00F02�ðrÞ�
2

þ ½U11F00�ðrÞ þU00F11�ðrÞ�Qþ ½U20F00�ðrÞ þU00F20�ðrÞ�Q
2
g cos �

ð36bÞ


p ¼
�

a
fU00FP00ðrÞ þU01FP00ðrÞ þU10FP00ðrÞQþ ½U02FP00ðrÞ þU00FP02ðrÞ

þ
a"�2

4��
U00 eq01ðrÞF 01ðrÞ�

2
þ ½U11FP00ðrÞ þU00FP11ðrÞ þ

a"�2

4��
U00

� ð eq01ðrÞF 10ðrÞ þ  eq10ðrÞF 01ðrÞÞ�Qþ ½U20FP00ðrÞ þU00FP20ðrÞ

þ
a"�2

4��
U00 eq10ðrÞF 10ðrÞ�Q

2
g cos �

ð36cÞ


�� ¼ U00½F01�ðrÞ þ F10�ðrÞQ� cos � ð37Þ


 ¼ U00½F 01ðrÞ þ F 10ðrÞQ� cos � ð38Þ
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Here, FijrðrÞ;Fij�ðrÞ;FPijðrÞ;Fij�ðrÞ, and F ijðrÞ with i and j equal to 0, 1, and 2 are functions
of r given by Eqs [A4], {A19], [A20], and [A26] in Ref. 23.

The total force exerted on a charged sphere of radius a settling in an electrolyte
solution can be expressed as

Ftotal ¼ Fg þ Fe þ Fh ð39Þ

Here, Fg is the gravitational force (and buoyant force), Fe is the electric force, and Fh is the
hydrodynamic drag force acting on the particle.

The gravitational force is given by

Fg ¼ Vt½�pð�p � �Þ þ �cð�c � �Þ�gez ð40Þ

where Vt is the dry volume of the polyelectrolyte-coated particle, �p and �c are, respec-
tively, the true densities of the porous surface layer and the rigid core of the particle, �p
and �c are the dry volume fractions of the surface layer and the rigid core, respectively, and
gezð¼ gÞ is the gravitational acceleration.

The electric force acting on the charged particle can be represented by the integral of
the electrostatic force density over the fluid volume outside the particle:

Fe ¼ �
"

4�

ð
r>a

r r2 dV ð41Þ

As the net electric force acting on the particle at the equilibrium state is zero, the leading
order of the electric force is given by

Fe ¼ �
"

2

ð�
0

ð1
a

ðr
 r2 ðeqÞ
þ r ðeqÞ

r
2
 Þr2 sin �drd� ð42Þ

The hydrodynamic drag force acting on the spherical particle is given by the integral
of the fluid pressure and viscous stress on the particle surface:

Fh ¼ 2�a2
ð�
0

f�
per þ �½ruþ ðruÞ
T
� � erg sin � d� ð43Þ

where er is the unit vector in the r direction.
At the steady state, the total force acting on the settling particle is zero. Using this

constraint after the substitution of Eqs (40), (42), and (43) [with the help of Eqs (32), (36),
and (38) for a symmetric electrolyte] into Eq. (39), one obtains

U00 ¼
Vt½�pð�p � �Þ þ �cð�c � �Þ�g

4��aC006

ð44aÞ

U01 ¼ 0 ð44bÞ

U10 ¼ 0 ð44cÞ

U02 ¼
U00

C006

�C026 þ

ð1
a

r

a

� 	3
G02ðrÞdr

 �
ð44dÞ

U11 ¼
U00

C006

�C116 þ

ð1
a

r

a

� 	3
G11ðrÞdr

 �
ð44eÞ

u20 ¼
U00

C006

�C206 þ

ð1
a

r

a

� 	3
G20ðrÞdr

 �
ð44fÞ
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where functions G02ðrÞ, G11ðrÞ, and G20ðrÞ and coefficients C006, C026, C116, and C206 are
defined by Eqs [41], [A6f], and [A27f] in Ref. 23. Note that U00 is the sedimentation
velocity of an uncharged polymer-coated sphere, which was obtained by Masliyah et al.
[5], and C006 is a function of parameters �a and r0=a only. The definite integrals in the
closed-form equations (44d), (44e), and (44f) as well as in coefficients C026, C116, and C206

can be performed numerically.
From Eqs (35e) and (44), the settling velocity of the polyelectrolyte-coated sphere

can be expressed as

U ¼ U00½1� ð�aÞ2H1
2
� ð�aÞ3H2Q� ð�aÞ4H3Q

2
þOð3; 2Q; Q

2
;Q

3
Þ� ð45Þ

where the dimensionless coefficients:

H1 ¼ �
U02

ð�aÞ2U00

ð46aÞ

H2 ¼ �
U11

ð�aÞ3U00

ð46bÞ

H3 ¼ �
U20

ð�aÞ4U00

ð46cÞ

and their typical numerical results calculated by using Eq. (44) will be given in Section
IV.D. Note that ð�aÞ22; ð�aÞ3Q, ð�aÞ4Q

2
are independent of � or n1. For a given elec-

trolyte solution, coefficients H1, H2, and H3 are functions of parameters �a; �a, and r0=a
only.

C. Sedimentation Potential

We now consider a dilute suspension of identical polyelectrolyte-coated spheres of radius a
in the solution of a symmetric electrolyte. The electric fields around the individual particles
superimpose to give a sedimentation field ESED in the suspension. Since the suspension is
statistically homogeneous, ESED is uniform and can be regarded as the average of the
gradient of electric potential over a sufficiently large volume V of the suspension to
contain many particles. From Eq. (20):

ESED ¼ �
1

V

ð
V

r
 dV ð47Þ

In order to calculate ESED, we use the requirement that there exists no net current in the
suspension. That is, the volume-average current density expressed by Eq. (21) or (29) must
be zero.

For a symmetric electrolyte with the absolute value of valence Z, the average current
density given by Eq. (29) becomes

hii ¼ �1
ESED �

Z2e2n1N

kTV

ð
r!1

½Dþðrr
�þ � n� 
�þnÞ �D ðrr
�� � n� 
� nÞ�dS

ð48Þ
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Substituting Eq. (37) into Eq. (48) and using the requirement that hii ¼ 0, one has

ESED ¼ lim
r!1

4�r2Z2e2n1NU00

3kTV�1
Dþðr

dF01þ

dr
� F01þ

 �
�D r

dF01�

dr
� F01�

� �� �


þ Dþ r
dF10þ

dr
� F10þ

� �
�D� r

dF10�

dr
� F10�

� � �
QþO 3; 2Q; Q

2
;Q

3
� 	�

ez

ð49Þ

After making relative calculations, the sedimentation potential field can be expressed as

ESED ¼ �� �pð�p � �Þ þ �c �c � �ð Þ
� � �E

�1
g ð50Þ

Here, � ¼ NVt=V is the true volume fraction of the polyelectrolyte-coated particles and �E

is the electrophoretic mobility of a polyelectrolyte-coated sphere of radius a at low electric
potential:

�E ¼ H
a

�
þHQ

a2Q

�
þO 3; 2Q; Q

2
;Q

3
� 	

ð51Þ

where the dimensionless coefficients H and HQ have the closed forms:

H ¼
�Ze

6a2C006kT

ð1
r0

ð2r3 þ r30ÞF00rðrÞ
d eq01

dr
dr ð52aÞ

HQ ¼
Ze

6a3C006kT

ð1
r0

ð2r3 þ r30ÞF00rðrÞ
d eq10

dr
dr ð52bÞ

In Eq. (52), functions  eq01ðrÞ and  eq10ðrÞ are given by Eq. (34). Again, the contribution
from the second-order effects of the fixed charge densities of the particles to ESED and �E

in Eqs (49) and (51) vanishes only for symmetric electrolytes. The numerical results for
coefficients H and HQ calculated from Eq. (52) will be given in Section IV.D. For a
specific electrolyte solution, these coefficients are functions of parameters �a; �a, and r0=a
only. It is understood that the result given by Eqs (50)–(52) is only valid with the require-
ments that �� 1 and �a��1=3

� 1.
Equation (50) is an Onsager reciprocal relation connecting the sedimentation poten-

tial with the electrophoretic mobility (correct to order �Þ derived by de Groot et al. [29] on
the basis of irreversible thermodynamics. For a dilute suspension of impermeable rigid
spheres, this relation has also been demonstrated by Ohshima et al. [30]. For the situation
of combined sedimentation and electrophoresis in a dilute suspension of colloidal parti-
cles, the average electric current density hii and mass flux hji can be expressed in terms of
the Onsager transport coefficients b11, b12, b21, and b22 as

hii ¼ b11E1 þ b12g ð53aÞ

hji ¼ b21E1 þ b22g ð53bÞ

with

b11 ¼ � ð54aÞ

b12 ¼ b21 ¼ � �pð�p � �Þ þ �cð�c � �Þ
� �

�E ð54bÞ
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b22 ¼ �½�pð�p � �Þ þ �cð�c � �Þ�
U

g
ð54cÞ

where � is the electric conductivity of the suspension defined by Eq. (22). For polyelec-
trolyte-coated spheres in a symmetric electrolyte, � ¼ �1

þOð;QÞ with �1
¼ ðDþ þ

D�ÞZ
2e2n1=kT as given by Eq. (27), �E is given by Eq. (51) to the first orders of  and Q,

and U can be evaluated using Eq. (45) to the second orders. The details for the calculation
of � will be presented in Section V.

D. Discussion

In this subsection, we first consider several limiting cases and a special case of the expres-
sions (45) and (51) for the sedimentation velocity and electrophoretic mobility (or sedi-
mentation potential), respectively, of polyelectrolyte-coated spheres. The correctness of
these expressions may be confirmed by examining some of the limiting cases for which
analytical solutions are already known. Numerical results of some typical cases are then
presented.

When there is no permeable layer on the surface of the rigid particle core, one has
d ¼ 0, r0 ¼ a, �p ¼ 0, �c ¼ 1, Q ¼ 0, and � ¼ 0. Equations (44a), (45), and (51) then
reduce to

U00 ¼
Vtð�c � �Þg

6��a
ð55aÞ

U ¼ U00 1�
"2

96��

1

Dþ

þ
1

D�

� �
kT

Ze

� �2 �a

�aþ 1

� �2

�1ð�a; 1Þ þOð3Þ�

"
ð55bÞ

�E ¼
a

�

1

�aþ 1

� �
�2ð�a; 1Þ þOð3Þ ð55cÞ

where �1 and �2 are functions defined by

�1ðx; yÞ ¼ y3e2x½5E6ðxÞ � 3E4ðxÞ�
2
� 8ex½E5ðxÞ � E3ðxÞ�

þ e2x½7E8ð2xÞ � 3E4ð2xÞ � 4E3ð2xÞ�
ð56aÞ

�2ðx; yÞ ¼
2

3
þ
1

3
y3 � y3ex½5E7ðxÞ � 2E5ðxÞ� ð56bÞ

and

EnðxÞ ¼

ð1
1

t�ne�xtdt ð57Þ

Equation (55a) is the result of Stokes’ law. From Eq. (32), by letting r0 ¼ a, one can obtain
the following relationship between the surface (zeta) potential � and the surface charge
density of the rigid sphere at equilibrium:

 ¼
"ð�aþ 1Þ

4�a
� ð58Þ

Substituting the above equation into Eqs (55b) and (55c), these degenerated results are the
same as those of a rigid sphere with a low surface potential [30].
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When the particle is a homogeneous porous sphere, one has r0 ¼ 0, d ¼ a; �p ¼ 1,
�c ¼ 0, and  ¼ 0. In this limiting case, Eqs. (44a), (45), and (51) become

U00 ¼
Vtð�c � �Þg

6��a

2ð�aÞ3 coshð�aÞ þ 3�1ð�aÞ

2ð�aÞ2�1ð�aÞ

" #
ð59aÞ

U ¼ U00 þ
U00Q

2

3ð�aÞ2�1ð�aÞ
f3�1ð�aÞ

ða
0

r

a

� 	3
G20ðrÞdrþ 6

ða
0

�1ð�rÞG20ðrÞdr

þ ½2ð�aÞ3 coshð�aÞ þ 3�1ð�aÞ�

ð1
a

r

a

� 	3
G20ðrÞdr� 3ð�aÞ2�1ð�aÞ

ð1
a

r

a

� 	2
G20ðrÞdr

þ ½ð�2a2 þ 6Þ�1ð�aÞ � 2ð�aÞ2 sinhð�aÞ�

ð1
a

G20ðrÞdrg þOðQ
3
Þ

ð59bÞ

�E ¼
Q

��2
1þ

1

3

�

�

� �2

1þ e�2�a
�
1� e�2�a

�a

 !
þ
1

3

�2

�2 � �2

 !
1þ

1

�a

� �(

�
�

�

� �2�að1þ e�2�a
Þ � 1þ e�2�a

�a cothð�aÞ � 1
� 1þ e�2�a

" #)
þOðQ

3
Þ

ð59cÞ

where the function �1ðxÞ ¼ x cosh x� sinh x. Equations (59b) and (59c) are identical to the
formulas for the sedimentation velocity and electrophoretic mobility, respectively, of a
charged porous sphere derived previously [22, 36, 53, 54].

When �! 1 (very high segment density in the surface layer of the polyelectrolyte-
coated particle), the resistance to the fluid motion inside the porous surface layer is
infinitely large and the velocity profile in the surface layer disappears. The ions can still
penetrate the surface layer, and the equilibrium potential distributiont  ðeqÞ is the same as
given by Eq. (32). For this limiting case, Eqs (44a), (45), and (51) become

U00 ¼
Vt½�pð�p � �Þ þ �cð�c � �Þ�g

6��a
ð60aÞ

U ¼ U00 1�
"

96��

1

Dþ

þ
1

D

� �
 ðeqÞ að Þ

h i2
�1 �a;

r0
a

� 	
þO 3; 2Q; Q

2
;Q

3
� 	� �

ð60bÞ

�E ¼
" ðeqÞ

ðaÞ

4��
�2 �a;

r0
a

� 	
þO 3; 2Q; Q

2
;Q

3
� 	

ð60cÞ

Note that in this case the mobile ions can penetrate the surface layer, and the fixed charges
are distributed not only at the rigid core surface but also in the surface layer of the particle.
Thus, the equilibrium potential distribution  ðeqÞ

ðrÞ, which is given by Eq. (32), and the
results for the sedimentation velocity and sedimentation potential (or electrophoretic
mobility) are generally different from those in the case of the true nonporous spheres of
radius a.

When �! 0 (very low segment density), the surface layer of the polyelectrolyte-
coated particle does not exert any resistance to the fluid motion. In this case, the function
F00rðrÞ in Eq. (36a) for the r component of the fluid velocity reduces to
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F00rðrÞ ¼ �
1

2

r0
r

� 	3
þ
3

2

r0
r

� 	
� 1 ð61Þ

and Eqs (44a), (45), and (51) become

U00 ¼
Vt½�pð�p � �Þ þ �cð�c � �Þ�g

6��r0
ð62aÞ

U ¼ U00 1�
2a

3r0

ð1
r0

r

a

� 	3
F00rðrÞ G02ðrÞ

2
þ G11ðrÞQþ G20ðrÞQ

2
h i

dr

�

þO 3; 2Q; Q
2
;Q

3
� 	o ð62bÞ

�E ¼
Ze

9r0�kT

ð1
r0

ð2r3 þ r30ÞF00rðrÞð�
d eq01

dr
þQ

d eq10

dr
ÞdrþOð3; 2Q; Q

2
;Q

3
Þ

ð62cÞ

To use the general expressions (44a), (45), and (51) for the sedimentation velocity
and electrophoretic mobility and their simplified formulas (55), (59), (60), and (62) in the
limiting cases, the parameters �a; �a; r0=a, , and Q of the colloidal system have to be
determined. Experimental data for the surface layers of human erythrocytes [19] and rat
lymphocytes [20] in electrolyte solutions indicate that the shielding length 1=� has values of
about 3 nm and the magnitude of Q ranges from quite low to about 1:6� 106 C/m3,
depending on the pH value and ionic strength of the electrolyte solution. For some
temperature-sensitive poly(N-isopropylacrylamide) hydrogel layers on latex particles in
salt solutions [21], values of 1=� were found to be about 1–50 nm and the magnitude of
Q could be as high as 8:7� 106 C/m3. As to the surface charge density, an experimental
study of the adsorption of poly(vinyl alcohol) on to AgI reported that the value of 
changes from 0 to �0:035 C/m2 upon increasing the pAg from 5.6 to 11, while experi-
mental data for a positively charged polystyrene latex used as the adsorbent for the
polyelectrolyte poly(acrylic acid) showed that  can have a value of 0.16 C/m2 [55]. It is
widely understood that the Debye length 1=� is in the range from angstroms to about 1
mm, depending on the ionic strength of the solution. For a composite particle with  ¼

2� 10�3 C/m2 and Q ¼ 2� 106 C/m3 in an aqueous solution with 1=� ¼ 1 nm, one
obtains the dimensionless charge densities  ffi 0:1 and Q ffi 0:1.

According to Eqs (45) and (46), the sedimentation velocity of a charged polyelec-
trolyte-coated sphere in a given electrolyte solution can be calculated to the second orders
2, Q, and Q2. The corrections for the effects of the fixed distributed charges to U start
from orders 2, Q, and Q2, instead of  and Q. The reason is that these effects are due to
the interaction between the particle charges and the local induced sedimentation potential
gradient; both are of orders  and Q, and thus the corrections are of orders 2, Q, and
Q2. Figure 2 shows plots of numerical results for the dimensionless coefficients H1;H2,
and H3 in Eq. (46) as functions of the parameters �a and �a for the sedimentation velocity
of a polyelectrolyte-coated sphere of r0=a ¼ 0:5 in an aqueous solution of KCl at room
temperature. The values "k2T2=4��D�Z

2e2 ¼ 0:26 are used in the calculations. It is found
from the numerical results that H1;H2, and H3 are always positive values and satisfy the
relation H2 � 4H1H3. With this relation of inequality, Eq. (45) illustrates that the presence
of the particle charges would reduce the magnitude of the sedimentation velocity.

Figure 2 illustrates that, for specified values of r0=a and the shielding ratio �a, the
effects of the particle charges on the sedimentation velocity are maximal at some values
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FIG. 2 The dimensionless coefficients H1, (a); H2, (b); and H3, (c) in Eq. (45) for a sedimenting
polyelectrolyte-coated sphere of r0=a ¼ 0:5 at various values of �a and �a.



of �a and fade out when the value of �a is getting small or large. The reason for this
behavior is obvious. The limit �a ! 0 means that the effect of the presence of the
counterions around the particle is negligible (viz, the particle is not affected by the
electrostatic interaction with the surrounding counterions in hydrodynamic behavior),
while the limit �a ! 1 indicates that the total charge density is zero everywhere and the
total electric force on the particle vanishes. Both limits result in H1 ¼ H2 ¼ H3 ¼ 0 [as
they are calculated from Eq. (46)] and the same sedimentation velocity as that of an
uncharged polymer-coated particle, regardless of the values of r0=a and �a. On the other
hand, Fig. 2 also shows that H1;H2, and H3 increase monotonically with decreasing �a
for given values of �a and r0=a. These dimensionless coefficients are sensitive functions
of �a over the range �a ¼ 1�10.

The dimensionless coefficients H and HQ for the sedimentation potential or elec-
trophoretic mobility in the KCl solution calculated from Eq. (52) are plotted as functions
of the parameters �a and �a in Fig. 3. It can be seen that these coefficients, which are
always positive, are monotonic decreasing functions of �a for given values of �a and r0=a
and are also monotonic decreasing functions of �a for fixed values of �a and r0=a. When �a
is small, H and HQ have the same order of magnitude; however, when �a is large, the
magnitude of H is much smaller than that of HQ. Note that both H and HQ are not
sensitive functions of �a when �a � 1. Also, these dimensionless coefficients are not sen-
sitive functions of �a when �a � 1, similar to the relevant results for charged impermeable
spheres [30] and charged porous spheres [36].

Theoretical studies [56, 57] have predicted that a nonuniformly charged but ‘‘neu-
tral’’ impermeable spherical particle (with zero area-averaged zeta potential) can translate
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in electric fields. It would be of interest to know whether polyelectrolyte-coated spheres
with zero net charge ½4�r20 þ ð4�=3Þða3 � r30ÞQ ¼ 0� can undergo electrophoresis or pro-
duce sedimentation potential, and be retarded by this potential gradient during the sedi-
mentation. For such spherically symmetric ‘‘neutral’’ polyelectrolyte-coated particles [with
 ¼ �s�aQ=3, where s ¼ ða=r0Þ

2
� ðr0=aÞ�; Eqs (45) and (51) become

U ¼ U00½1� ð�aÞ4H0Q
2
þOðQ

3
Þ� ð63aÞ
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FIG. 3 The dimensionless coefficients H (a) and HQ (b) in Eq. (51) for a dilute suspension of
identical polyelectrolyte-coated spheres of r0=a ¼ 0:5 at various values of �a and �a.



�E ¼ H�
a2Q

�
þOðQ

3
Þ ð63bÞ

where

H0 ¼ H3 �
s

3
H2 þ

s2

9
H1 ð64aÞ

H� ¼ HQ �
s

3
H ð64bÞ

Figure 4 illustrates the numerical results for the dimensionless coefficientsH0 andH�

associated with polyelectrolyte-coated spheres in KCl solution as functions of the para-
meters �a and �a. It can be seen that H0 is positive and the presence of the fixed-charge
distribution in the ‘‘neutral’’ particle would reduce its settling velocity. The tendency of the
dependence of H0 on �a is quite similar to that of the coefficient H3 presented in Fig. 2c,
except that the values of H0 are about two orders of magnitude smaller and its maxima for
fixed values of �a and r0=a occur at values of �a about an order of magnitude larger. On
the other hand, H� is always positive so that the ‘‘neutral’’ polyelectrolyte-coated spheres
can experience electrophoresis or generate sedimentation potential. The direction of the
electrophoretic velocity or the induced potential gradient is decided by the fixed charges in
the porous surface layers (rather than the surface charges of the rigid cores) of the par-
ticles. Similar to the coefficient HQ showni n Fig. 3b, H� is not necessarily a monotonic
function of �a as �a is large. The trend of the dependence of H� on �a is quite different
from that of HQ. When �a is large, the coefficients H� and HQ have the same order of
magnitude. However, when �a is as low as 0.1, the values of H� are about three orders of
magnitude lower than the values of HQ.

V. ELECTRIC CONDUCTIVITY OF A SUSPENSION OF
POLYELECTROLYTE-COATED SPHERES

In this section we present the effective electric conductivity of a dilute suspension of
identical polyelectrolyte-coated spheres in the solution of a symmetrical electrolyte. The
definition of the effective conductivity has been given in Section III. The linearized elec-
trokinetic equations in Section II are solved for a polyelectrolyte-coated sphere in a uni-
formly applied electric field E1 using the regular perturbation method.

A. Analysis

We need to solve the small quantities 
��; u, and U (equal to �EE1Þ in the form of
perturbation expansions in powers of  and Q given by Eqs (35a), (35c), and (35e) (in
which Uij ¼ �EijE1 with i and j equal to 0, 1, 2, . . .). Substituting the expansions given by
Eq. (35) and  ðeqÞ given by Eq. (32) into the linearized governing equations (10)–(12) and
the boundary conditions (13a), (14a), (15a), (15b), and (17)–(19), and equating like powers
of  and Q on both sides of the respective equations, we obtain a group of differential
equations and boundary conditions for each set of the functions �ij� and uij with i and j
equal to 0, 1, 2, . . .. It is obvious that
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�00� ¼ �ZeE1 rþ
r30
2r2

 !
cos � ð65Þ

The zeroth-order terms of u and �E disappear because an uncharged particle will not move
by applying an electric field.

The first-order solutions for �ij� and the r and � components of uij are

�ij� ¼ E1Fij�ðrÞ cos � ð66Þ
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FIG. 4 The dimensionless coefficients H0 (a) and H� (b) in Eq. (63) for the sedimentation of
polyelectrolyte-coated spheres of r0=a ¼ 0:5 with zero net charge at various values of �a and �a.



uijr ¼ E1FijrðrÞ cos � ð67aÞ

uij� ¼ E1Fij�ðrÞ sin � ð67bÞ

where Fij�ðrÞ, FijrðrÞ, and Fij�ðrÞ with i þ j ¼ 1 are functions of r given by Eqs (40)–(43) in
Ref. 24.

According to a characteristic of electrophoretic motion, the velocity field far from
the particle (beyond the double layer) has the form [44, 58]:

u ! ��EE1ez þOðr�2
Þ ð68Þ

Equation (68) satisfies the requirement that the net force on a large surface enclosing the
particle and its adjacent double layer must be zero. Using this relationship and Eq. (67),
one can obtain the first-order term for the electrophoretic mobility of a polyelectrolyte-
coated sphere expressed as

�EijðrÞ ¼
1

C006

C001

ðr0
a

r

a

� 	3
GijðrÞdrþ C002

ðr0
a

GijðrÞdr



þ C003

ðr0
a

�1ð�rÞGijðrÞdrþ C004

ðr0
a

�1ð�rÞGijðrÞdr

�C005

ð1
a

GijðrÞdr� C006

ð1
a

r

a

� 	2
GijðrÞdrþ

ð1
a

r

a

� 	3
GijðrÞdr

� ð69Þ

where the function �1ðxÞ ¼ x sinh x� cosh x; the functions GijðrÞ and constants C001,
C002; . . . ; and C006 are given by Eqs (42) and (A11)–(A16) in Ref. 24.

Among the second-order terms in the perturbation procedure, the only distributions
we need in the following calculations are the electrochemical potential energies �02�, �11�,
and �20�. Their solution is

�ij�ðrÞ ¼ �
ZeE1

3kT

r30
2r2

ð1
r

Kij�ðrÞdrþ r

ð1
r

Kij�ðrÞdrþ
1

r2

ðr
r0

r3Kij�ðrÞdr

" #
cos � ð70Þ

where

K02�ðrÞ ¼
dF01�

dr
�

kT

D�

F01r

� �
d eq01

dr
ð71aÞ

K11�ðrÞ ¼
dF01�

dr
�

kT

D�

F01r

� �
d eq10

dr
þ

dF10�

dr
�

kT

D�

F10r

� �
d eq01

dr
ð71bÞ

K20�ðrÞ ¼
dF10�

dr
�

kT

D�

F10rÞ
d eq10

dr

�
ð71cÞ

By substituting Eqs (35c), (65), (66), and (70) into Eq. (29), making relevant calcula-
tions, and then comparing the result with Eq. (22), the effective conductivity of a dilute
suspension of identical polyelectrolyte-coated spheres is obtained as

� ¼ �1 1�
1� �c"p
1� "p

�
3

2

r0
a

� 	3
þ�01�a þ�10ð�aÞ

2Qþ�02ð�aÞ
22

�

þ�11ð�aÞ
3Qþ�20ð�aÞ

4Q
2
þOð3; 2Q; Q

2
;Q

3
Þ

�� ð72Þ
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Here, "p is the porosity of the surface layer of a polyelectrolyte-coated sphere, �c is the
volume fraction of the rigid core of the particle, � is the true volume fraction of the dry
polyelectrolyte-coated particles, and

�ij ¼
ZðDþ �D�Þ

Dþ þD�

Xij; ifði; jÞ ¼ ð0; 1Þ or ð1; 0Þ ð73aÞ

�ij ¼ �
"k2T2

2��ðDþ þD�Þe
2
Yij � Z2Zij; if ði; jÞ ¼ ð0; 2Þ; ð1; 1Þ; or ð2; 0Þ ð73bÞ

In Eq. (73):

X01 ¼ �3 �r0;
r0
a

� 	
ð74aÞ
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exE5ðxÞ

 �
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The function En in the above equation has been defined by Eq. (57).
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Note that Eq. (72) is correct to order �. The parameters Xij and Zij depend on the
parameters �a and r0=a only, while Yij are functions of �a. �a, and r0=a. The coefficients
�01 and �10, which are independent of the shielding parameter �, disappear for a
symmetry electrolyte when the diffusivities of the cation and anion take the same
value. As to the coefficients �02, �11, and �20, for a symmetric electrolyte, the first
term of the right-hand side of Eq. (73b) (which is a function of parameters �a and �a)
denotes the effect due to the convection of the fluid, while the second term (which is
independent of �aÞ represents the effect due to the deviations of the electrochemical
potential distributions from their combined equilibrium and applied values. Although
the parameters Xij , Yij, Zij are positive values, the coefficients �01 and �10 can be either
positive or negative, depending on the diffusion coefficients of the ionic species in the
electrolyte solution, and the coefficients �02, �11, and �20 are always negative. It is
understood that the result given by Eqs (72)–(75) is only valid with the requirements that
�� 1 and �a��1=3

� 1.

B. Discussion

In this subsection, we first consider two limiting cases and a special case of the expression
(72) for the effective conductivity of a dilute suspension of identical polyelectrolyte-coated
spheres. The correctness of this expression may be confirmed by examining these limiting
caes for which analytical solutions are already known. Then, numerical results of the
dimensionless parameters X01;X10;Yij , and Zij (with i þ j ¼ 2Þ in association with the
coefficients �ij by Eq. (73) for some typical cases will be presented.

When there is no permeable layer on the surface of each rigid particle core in the
suspension, one has d ¼ 0, r0 ¼ a, �c ¼ 1, Q ¼ 0, and � ¼ 0. Equation (72) for a symmetric
electrolyte then reduces to
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Here, function �3 is defined by Eq. (76b);

Y02 ¼
1

ð1þ �aÞ2
1

2�a
þ

2

�a
þ

2

ð�aÞ2
þ e�aE5ð�aÞ

 �
1þ

ð�aÞ2

4
e�a E3 �aÞ � E5ð�að Þð Þ

" #(

� 3þ
15

2�a

� �
e�aE6ð�aÞ þ e2�a

3�a

4
E5ð�aÞðE4ð�aÞ � E6ð�aÞÞ þ

1

2
E6ð2�aÞ

 ��
ð78aÞ

and

Z02¼
1

ð1þ �aÞ2
5

4�a
þ

3

2ð�aÞ2
�

6

�a
þ

6

ð�aÞ2

 �
e�aE5ð�aÞ � e2�a

3

2
E5ð�aÞð Þ

2
þ
1

4
E6ð2�aÞ

 �� �
ð78bÞ

where function EnðxÞ is given by Eq. (57). Substituting Eq. (58) into Eq. (77), this degen-
erated result is the same as that of a dilute suspension of identical rigid spheres with low
surface (zeta) potential obtained by O’Brien [39]. Note that there is a typographical error
in Eq. [5.34] of O’Brien’s paper.
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When the particles are homogeneous porous spheres, one has r0 ¼ 0; d ¼ a; �c ¼ 0,
and  ¼ 0. In this limiting case, Eq. (72) for a symmetric electrolyte becomes
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and function �1ðxÞ ¼ x cosh x� sinh x. Equation (79) is identical to the formula for the
effective conductivity of a dilute suspension of charged porous spheres previously derived
[53].

The dimensionless parameters X01, X10, Yij, and Zij (with i þ j ¼ 2Þ defined by Eq.
(73) can be calculated for given values of the parameters �a, �a, and r0=a using Eqs (74)
and (75), and some typical results are plotted in Figs 5–7. It can be seen in Fig. 5 that both
X01 and X10 (or the magnitudes of �01 and �10) decrease monotonically with increasing �a
for a given value of r0=a. The magnitude of X10 can be quite large even for a particle with a
relatively thin porous surface layer (say, with r0=a ffi 0:95Þ. Figure 6 indicates that the
parameters Y02, Y11, and Y20 are monotonic decreasing functions of �a for given values
of �a and r0=a, and they decrease monotonically with increasing �a for given values of �a
and r0=a. Figure 7 illustrates that the parameters Z02, Z11, and Z20 decrease monotonically
with increasing �a for a given value of r0=a.

Equations (63) and (64) demonstrate that polyelectrolyte-coated spheres with zero
net charge ( ¼ �s�aQ=3Þ can undergo electrophoresis in an electric field and produce
sedimentation potential under gravity. It would be of interest to know whether the
electric conductivity of a dilute suspension of such ‘‘neutral’’ particles differs from
that of a corresponding suspension of polymer-coated spheres with  ¼ 0 and Q ¼ 0.
For such ‘‘neutral’’ polyelectrolyte-coated spheres, Eq. (72) for a symmetric electrolyte
becomes
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where

X0 ¼ �X10 þ
s

3
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Y0 ¼ Y20 �
s

3
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9
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3
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s2

9
Z02 ð82cÞ
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FIG. 5 The dimensionless parameters X01 (a) and X10 (b) in Eq. (73a) for the conductivity coeffi-
cients �01 and �10 at various values of �a and r0=a.
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FIG. 6 The dimensionless parameters Y02, (a); Y11, (b); and Y20, (c) in Eq. (73b) for the conduc-

tivity coefficients �02, �11, and �20 of a dilute suspension of identical polyelectrolyte-coated spheres
of r0=a ¼ 0:5 at various values of �a and �a.



Numerical results for the dimensionless parameters X0, Y0, and Z0 calculated using
Eq. (82) are drawn as functions of the parameters �a and r0=a in Fig. 8. It can be seen that
X0, Y0, and Z0 are all positive and the presence of the fixed-charge distribution in the
‘‘neutral’’ particles would influence the effective conductivity of the suspension. The direc-
tion of the influence is decided by the fixed charges in the porous surface layers (rather
than the surface charges of the rigid cores) of the particles. The parameters X0 and Z0

decrease monotonically with the increase in �a for a given value of r0=a, while Y0 is not
necessarily a monotonic function of �a for fixed values of �a and r0=a. The parameters Y0

and Z0 decrease monotonically with increasing r0=a for fixed values of �a and �a, while X0

approaches zero in both limiting cases of r0=a ¼ 0 and r0=a ¼ 1 and has a maximum for a
given value of �a. Further calculations also show that the parameter Y0 is a monotonic
decreasing function of �a for constant values of �a and r0=a. In general, the trends of the
dependence of X0;Y0, and Z0 on �a and r0=a are quite different from those of X10, Y20,
and Z20 presented in Figs 5–7.

VI. CONCLUSIONS

The steady-state electrokinetic phenomena in a dilute suspension of polyelectrolyte-coated
particles under the action of a gravitational field and/or an external electric field in an
unbounded electrolyte solution are presented in this chapter. The porous surface layer of
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FIG. 7 The dimensionless parameters Z02, (a); Z11, (b); and Z20, (c) in Eq. (73b) for the conduc-
tivity coefficients �02, �11, and �20 at various values of �a and r0=a.



each particle is treated as a solvent-permeable and ion-penetrable shell in which fixed-
charged groups and frictional segments are distributed at uniform densities. Solving the
linearized continuity equations of ions, the Poisson–Boltzmann equation, and combined
modified Stokes/Brinkman flow equations applicable in the system of an isolated poly-
electrolyte-coated sphere by a regular perturbation method, we obtain the ion concentra-
tion (electrochemical potential energy) distributions, the electric potential profile, and the
fluid flow field.

The sedimentation of a polyelectrolyte-coated sphere is considered in Section IV.
Since the electric potential distribution differs from the equilibrium values, an electric
force acting on the particle is induced. The total force exerted on the particle is the sum
of the gravitational, electrostatic, and hydrodynamic forces, and the requirement that the
total force is zero leads to an explicit formula, Eq. (45), for the settling velocity of the
polyelectrolyte-coated sphere. The corrections for the effects of the fixed distributed
charges to the settling velocity begin at the second orders ð2; Q, and Q2). Numerical
results indicate that these effects have a maximum at a finite value of �a and disappear
when �a approaches zero and infinity. The explicit formula, Eq. (50), for the sedimentation
potential is derived by letting the net current in the suspension be zero. The Onsager
reciprocal relation is satisfied between the sedimentation potential and the electrophoretic
mobility. Expressions (45) and (50) for the sedimentation velocity and sedimentation
potential (or electrophoretic mobility) in a dilute suspension of polyelectrolyte-coated
spheres reduce to the corresponding formulas for the charged solid spheres and the
charged porous spheres, respectively, in the limiting cases of r0=a ¼ 1 and r0=a ¼ 0.
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FIG. 8 The dimensionless parameters X0, (a); Y0, (b); and Z0, (c) in Eq. (81) for a dilute suspension
of identical polyelectrolyte-coated spheres with zero net charge at various values of �a and r0=a.



It is worth repeating that the Onsager relation between sedimentation and electro-
phoresis holds not only for impermeable charged particles but also for porous or compo-
site ones. Another electrokinetic phenomenon in a circular capillary with the solution-
permeable surface charge layer under the Debye–Huckel approximation has been gener-
ally studied [59], and similarly, the electro-osmotic flow rate and the streaming potential
were shown to satisfy the Onsager reciprocity principle whether the capillary wall adsorbs
a surface charge layer or not. Hence, different electrokinetic processes could reflect the
same intrinsic phenomena, and measurements of one type of process can be used to check
those on another. For instance, one can first measure the sedimentation potential in a
dilute suspension of particles and then predict the electrophoretic mobility of the particles
in the same system without any other measurements.

The effective electric conductivity of a dilute suspension of polyelectrolyte-coated
spheres in an electrolyte solution is presented in Section V. The average electric current
density passing through the suspension is expressed as an integral over a large spherical
surface surrounding a single particle plus its double layer, and is related to the electro-
chemical potential energies of the electrolyte ions. An analytical expression, Eq. (72), is
obtained for the effective electric conductivity of a dilute suspension of identical polyelec-
trolyte-coated spheres as a power series in the two fixed charge densities of the particles up
to Oð2; Q;Q2

Þ. According to this formula, the presence of the fixed charges in the
polyelectrolyte-coated particles can result in an increase or a decrease in the effective
conductivity relative to that of a corresponding suspension of uncharged particles,
depending on the diffusion coefficients of the electrolyte ions and the fixed-charge densities

Sedimentation Potential and Electric Conductivity 477



of the particles. Expressions (77) and (79) for the electric conductivity of a dilute suspen-
sion of identical spheres in a symmetric electrolyte in the limiting cases of r0=a ¼ 1 and
r0=a ¼ 0 reduce to the corresponding formulas for the charged solid spheres and the
charged porous spheres, respectively.

Equations (45), (50), and (72), with Eqs (46), (51), and (73), are obtained on the basis
of the Debye–Huckel approximation for the equilibrium potential distribution around a
polyelectrolyte-coated sphere. Similar formulas for the sedimentation velocity of an
impermeable rigid sphere and for the electric conductivity of a dilute suspension of iden-
tical impermeable spheres with low zeta potential were shown to give good approxima-
tions for the case of reasonably high zeta potential (with errors less than 0.1% for
�e=kT � 2 in a KCl solution [30], of about 5% in another KCl solution, and less than
2% in a HClO4 solution for the case of �e=kT ¼ �2 [39]). Therefore, the results of this
chapter might be used tentatively for the situation of reasonably high electric potentials.
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Sedimentation and Flotation Potential:
Theory and Measurements

MASATAKA OZAKI Yokohama City University, Yokohama, Japan

HIROSHI SASAKI Waseda University, Tokyo, Japan

I. INTRODUCTION

The flow of charged colloidal particles through a liquid due to the gravitational force
produces an electrical current developing an electrical potential difference in the liquid.
This electrokinetic phenomenon is the sedimentation current or potential and it is known
as the Dorn effect after his first experimental observations [1]. When the density of the
dispersed material is lower than that of the liquid medium, as in the case of gas bubbles
in a liquid, the related phenomenon of flotation potential can also occur. While the number
of experimental determinations of sedimentation potential is rather scarce, the number of
experimental studies on the electrokinetics of gas bubbles is even more limited. Thus, in
some old studies, McTaggart [2], Alty [3], Komagata [4], and Bach and Gilman [5] employed
the electrophoretic mobility technique, and Collins et al. [6] reported the zeta potential of gas
bubbles in aqueous solutions obtained with a device by which the electrophoretic mobility of
a small bubble could be evaluated at the stationary level. In the papers of Usui and cow-
orkers [7–9], finely divided argon gas bubbles were allowed to float through an aqueous
surfactant solution, and the Dorn potential (flotation potential for gas bubbles and sedi-
mentation potential for solid particles in aqueous media) generated was used to calculate the
zeta potential. Except for these investigations and those conducted by some researchers in
the former Soviet Union [10, 11], little work has been devoted to flotation potential.

In this work, we show how sedimentation and flotation potentials can be measured,
and how they can be applied to zeta potential estimations in hematite particles and gas
bubbles, respectively. It must be mentioned that previous investigations on the latter topic
have been restricted to aqueous solutions of surfactants, and no study has been carried out
on solutions of inorganic electrolytes. Hence, we will focus our discussion on the flotation
potential of gas bubbles in aqueous solutions.

II. THEORY

When a colloidal particle sediments at a constant speed �, the force due to gravitation is
balanced by the frictional force. Therefore, the following equation holds:
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6��a� ¼
4

3
�a3ð�� �0Þg ð1Þ

where a is the radius of the particle, � is the viscosity of the dispersing medium, � the
density of the particle, �0 is the density of the medium, and g is the acceleration due to
gravity. The current density I which arises when the charged particles move is expressed by

I ¼ nQ� ¼
2

9

nQa2ð�� �0Þg

�
ð2Þ

where n is the number of particles in a unit volume of the dispersion, and Q is the electrical
charge on the particle. In electrophoresis, QE, the force acting on the particle is balanced
by the frictional force, 6�a��e. Therefore,

QE ¼ 6��a�e ð3Þ

holds, where E is the electric field, and �e is the electrophoretic velocity. The electrophore-
tic mobility u is related to �e by u ¼ �e=E, and u is related to �, the zeta potential, by

u ¼
"r"0f ð�aÞ

�
� ð4Þ

as described elsewhere in this book, where "r is the relative permittivity of the medium, "0
is the permittivity of vacuum, and � is the reciprocal thickness of the electrical double
layer. In the case when �a � 1, that is, the size of the colloidal particle is far larger than the
thickness of the electrical double layer, f ð�aÞ becomes 1. In this case, Eq. (4) is called the
Smoluchowski equation. From Eqs (3) and (4) we obtain:

Q ¼ 6�a"r"0f ð�aÞ� ð5Þ

Therefore, I can be expressed by

I ¼
4�"r"0na

3f ð�aÞð�� �0Þg

3�
� ð6Þ

The electrical resistance, R of a liquid column of unit area with length l is expressed by

R ¼
l

	
ð7Þ

where 	 is the specific conductivity of the dispersion. Therefore, �
, the potential differ-
ence (sedimentation potential) measured between two electrodes inserted at the ends of the
column separated by l can be expressed by

�
 ¼ RI ¼
4�"r"0na

3lf ð�aÞð�� �0Þg

3�	
� ð8Þ

Replacing �
=l by Es, and n by 
=ð4�a
3=3Þ, where 
 is the volume fraction of the particles

in the dispersion, if we then put f ð�aÞ ¼ 1 we obtain the well-known Smoluchowski
equation [12]:

Es ¼
"r"0
ð�� �0Þg

�	
� ð9Þ

where Es is the sedimentation potential in volts per meter (or, more properly, the sedi-
mentation field). This equation for the sedimentation potential is valid only when the fluid
flow around the particle is laminar, the surface conductance is negligibly small, and the
double-layer thickness is far less than the particle radius. Furthermore, it is also assumed
that the particles are nonconducting, monodisperse, and spherical.
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As the concentration of the colloids increases, particle–particle interactions occur,
and Eq. (9) is no longer valid. Levine and Neale developed a theory useful for low zeta
potential in a wide range of �a and 
, based on the Kuwabara cell model [13]. According
to the Levine theory, correction factors must be applied to calculate zeta potential using
sedimentation potential data. The model was further developed by Ohshima [14] to derive
a simple and convenient expression for the sedimentation potential expressed as

Es ¼

ð1� 
Þð��0Þg

ð1þ 
=2Þ	0
uð�a; 
Þ ð10Þ

where uð�a; 
Þ is the electrophoretic mobility depending both on �a and 
, and 	0 is the
specific conductivity of the dispersing medium without particles. The complete expression
for uð�a; 
Þ was derived by Ohshima [15]. However, this theory is only valid for small zeta
potential.

In the case of flotation potential of gas bubbles, and according to the Dukhin–
Derjaguin theory [16–18], i.e., the diffusion–electrical theory of the Dorn effect, the
Dorn effect of bubbles in aqueous solutions is quite different from that of solid particles.
This is mainly because the potential is strongly affected by such factors as Reynolds
number, Peclet number, and surface activity of surfactants absorbed on bubble surfaces.
Hence, the Smoluchowski equation holds only under limited conditions.

III. EXPERIMENTAL METHODS

A. Sedimentation Potential

For the estimation of the zeta potential, the sedimentation potential method requires only
the concentration and the conductivity of the suspension, the density of the particle, and
the potential difference developed between both ends of the column. It must also be
emphasized that this method is applicable to concentrated systems. However, as above
mentioned, the sedimentation method has been used only rarely [12, 19–23]. This may be
partly because of the difficulty in measuring the sedimentation potential accurately, as the
effects of drifts and/or lack of symmetry of the measuring electrodes are relatively large
compared to the magnitude of the potential. This is so in spite of the relatively high values
typically attained by the sedimentation potential (of the order of � 0:1�1 mV), which is
not difficult to measure using a high-impedance digital millivolt meter. Among the mea-
surements made so far, careful precautions were taken about the design of the apparatus
for the sedimentation potential measurement. Quist and Washburn [19] developed an
apparatus with which the colloidal dispersion was introduced into the column for the
sedimentation potential measurement from another chamber connected through a stop-
cock, and the electric potential developed by the introduction of the colloidal dispersion
was subsequently measured. Thus, the effects due to the ambiguity of the electrodes were
minimized. Later, setups similar to that developed by Quist and Washburn were employed
by Moza and Biswas [20] and Marlow and Rowell [21]. The latter authors found good
agreement between zeta potentials obtained by the sedimentation potential and by elec-
trophoresis in conditions where the Smoluchowski theory is valid. According to their
conclusion, the sedimentation potential method is useful in aqueous dispersions of large
particles below 1.8% volume concentration. They also showed the validity of sedimenta-
tion potential measurements for the determination of � at higher volume fractions, taking
into account corrections due to both electrical and hydrodynamic interactions, based on
the Levine’s cell model. Hidalgo-Alvarez et al. [22] also measured the zeta potential of
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quartz particles by the sedimentation method and achieved good agreement with the
results obtained by the streaming potential method.

It has been found that difficulties in accurate measurement of the sedimentation
potential arising from the electrodes could be overcome by rotating the sedimentation
column followed by measurement of the potential difference developed by the rotation
[23]. A newly developed rotating-column method is described below, suggesting its applic-
ability to concentrated colloidal dispersions.

A schematic drawing of the apparatus for the rotating-column method is shown in
Fig. 1. The Pyrex glass column length is 60 cm with an inner diameter of 0.5–1 cm. The
column is supported at its center on a rotatable axis, so that it can be rotated 3608. Ag–
AgCl electrodes were prepared by electrolyzing silver wires in hydrochloric acid and were
refreshed before each measurement. Test measurements with the apparatus were per-
formed using hematite and silica dispersions prepared by the methods described in the
literature [24, 25]. The sample dispersion was introduced into the column, taking care not
to introduce air bubbles, after being adjusted to the desired solid content for a specific
ionic concentration. The column was electrically shielded with aluminum foil in order to
prevent introduction of any electrical noise. The electric potential differences developed on
each rotation were measured with a high-impedance digital voltmeter, connected to a
personal computer. The electric potential difference developed by a rotation of 1808 is
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FIG. 1 Schematic drawing of rotating-column apparatus for measurement of the sedimentation
potential: a, sample column; b, Ag–AgCl electrode; c, electrode chamber; d, Teflon stopcock; e, axis

of rotation; f, high-impedance digital millivoltmeter; g, personal computer; , angle of rotation; l,
length of the column.



equal to twice the sedimentation potential. Therefore, in this method, only the change in
the potential difference is important, and the drifts and lack of symmetry of the electrodes
are thus eliminated. The change in the measured potential difference on rotation is shown
in Fig. 2. As observed in this figure, although the measured potential is drifting, the change
in the potential difference can be read with high accuracy. The variation in the sedimenta-
tion potential as a function of sin  where  is the rotating angle, is shown in Fig. 3. The
sedimentation potential is proportional to sin , thus indicating that the measured poten-
tial is proportional to the effective length of the column. This is because the sedimentation
velocity of the particles along the column is proportional to sin .

B. Flotation Potential

Figure 4 shows the experimental setup used for measuring the Dorn effect of bubbles. A
side tube is connected to the bubbling cell for measuring the gas holdup, i.e., the increment
of the liquid column height upon introduction of gas bubbles. That height was measured,
as a function of time, by a pressure transducer which was connected to the side tube. When
finely divided gas bubbles are allowed to rise through an aqueous solution, then the Dorn
potential is created between the electrodes. The latter was measured by means of an
electrometer through KCl–agar bridges and saturated calomel electrodes, and was
recorded as a function of time. According to the Smoluchowski equation [Eq. (9)], the
relation between the zeta potential and the Dorn potential �
 is given by

� ¼
	��



ð�� �0Þ"r"0gl
ð11Þ

By substitution of the relation:


 ¼
�V

V þ�V
ð12Þ

into Eq. (11), we obtain:

� ¼
ðV þ�VÞ�	�


�Vð�� �0Þ"r"0gl
ð13Þ
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FIG. 2 Change and drift of the sedimentation potential for each rotation. The sedimentation
potential changes with each rotation of the column.
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FIG. 3 Variation in the sedimentation potential as a function of sin , where  is the angle of the
rotation of the column.

FIG. 4 Schematic drawing of the apparatus used for measuring the Dorn effect of bubbles: (1)

Pyrex glass tube; (2) gas disperser; (3) 0.1 M KCl–agar bridge; (4) vinyl tube filled with 0.1 M KCl
solution; (5) saturated calomel electrode; (6) 0.1 M KCl solution; L ¼ 480 mm; H ¼ 660 mm.



where V is the volume of the medium, and �V is the total volume of particles (bubbles)
included in the medium. This equation was confirmed by Quist and Washburn [19] and
Elton and Pearce [26], who used solid particles. If we neglect the term �V as compared to
V , Eq. (13) can be rewritten as follows:

� ¼
H�	

ð�� �0Þ"r"0gl

�


�H
ð14Þ

where H is the liquid column height, and �H is the increment of the latter upon intro-
duction of gas bubbles. Inserting appropriate numerical values into Eq. (14), we can
obtain the zeta potential in millivolts at 208C:

� ¼ 1:98� 106	
�


�H
ð15Þ

Hence, all we have to do in order to obtain the zeta potential is to measure 	 (in S/cm) and
�
=�H (in mV/cm).

Figure 5 shows some examples of the Dorn potential recorded as a function of time
with a 3� 10�3 M NaBr aqueous solution. The solution contains 4:2� 10�2 M ethanol in
order to make the bubble size fine. Normally, the bubble diameters were less than 0.5 mm.
If we introduce argon bubbles, the Dorn potential increases and reaches a stationary
value. When we stop bubbling, the potential and the liquid column height decrease to
their initial levels. Note also that if we increase the gas flow rate, the Dorn potential (and
also �HÞ increases, as shown in the figure.

The Dorn potential obtained in this way is found to be proportional to �H in the
range of low values of this quantity, although such a range increases in the presence of
surfactants. From the slope �
=�H and the specific conductance 	, we calculated the zeta
potential by making use of Eq. (15). The mean diameter of the gas bubbles was assessed
from the increment of the liquid column height, �H, upon introduction of the gas. The
total volume of the liquid column ð�H � A, where A is the area of the cross-section of the
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FIG. 5 Example of Dorn potential recorded as a function of time at various flow rates ðQÞ for 3�
10�3 M NaBr, in the presence of 4:2� 10�2 M ethanol.



tube) should be equal to the gas flow rate, Q, multiplied by the retention time of the
bubbles:

�H � A ¼
QðH þ�HÞ

U
ð16Þ

where U is the ascending velocity of the bubbles. Under experimental conditions, U was
found to be proportional to the bubble diameter, d:

U ¼ k� d ð17Þ

where k is a proportionality constant, determined experimentally as approximately 125 s�1

[27]. The procedure for determining d by means of Eqs (16) and (17) was called the Q=�H
(this quantity is proportional to the bubble diameter, dÞ method by Usui et al. [8].

Figure 6 shows the zeta potential of bubbles as a function of their diameter, as
determined by the Q=�H method. The solid symbols represent data obtained by averaging
the zeta potential and d values, respectively. The values of negative zeta potentials increase
with decreasing bubble size in each system. It is clearly seen that the smaller the bubble size
the larger the zeta potential.

Classical electrokinetic theory does not predict any dependence of � on particle size.
Thus, Fig. 7 shows the zeta potential of glass beads determined by the sedimentation
method as a function of their mean diameter. Obviously, no appreciable variation in
zeta potential with particle size is found. In the case of moving bubbles, a somewhat
different situation must be considered: owing to the flow, the surface charges are displaced
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FIG. 6 Zeta potential of bubbles as a function of the mean diameter, determined by the Q=�H

method. Bubbler number: r, No. 1;&; No. 2;�: No. 3;*: No. 4. The filled symbols represent mean
zeta potentials calculated by using the average of bubble diameters obtained by the Q=�H method.



backwards resulting in a weaker electric dipole and, hence, a reduced Dorn potential.
Thus, the zeta potential extrapolated to d ¼ 0 should correspond to the value which the
gas/water interface might have under static conditions.

IV. APPLICATIONS

A. Sedimentation Potential of Hematite Particles

Figure 8 shows the dependence of the zeta potential of a hematite dispersion, estimated
using Eq. (9), on the solid concentration of the dispersion. Constant potentials were
obtained in the range of the solid contents examined. The variation in zeta potential of
a hematite dispersion with pH is shown in Fig. 9 together with the results obtained by an
electrophoresis apparatus (the Pen-Kem System 3000), using the Smoluchowski equation
relating electrophoretic mobility and �, for dilute suspensions. As observed, the zeta
potentials of hematite particles obtained by sedimentation potential and electrophoresis
agree well within experimental uncertainty.

B. Effects of Presence of Surfactants on Flotation Potential of Bubbles

Figure 10 shows the electrokinetically determined adsorption densities of Sodium
Hexadecyl Sulfate (SHS) on bubble surfaces of different sizes in the presence of 1 and

Sedimentation and Flotation Potential 489

FIG. 7 Zeta potential of glass beads as a function of their diameter.

FIG. 8 Dependence of the zeta potential of hematite on the solid concentration at pH 4.



FIG. 9 Variation of the zeta potential of the hematite dispersion as a function of pH. (*) zeta
potential measured by the sedimentation method; (*) zeta potential measured by electrophoresis.

FIG. 10 Electrokinetic adsorption densities of SHS; �exp and �Gibbs represent the adsorption iso-
therms of SHS at the solution–air interface. (From Ref. 28.) (*) Reproduction of the electrokinetic
adsorption density of SHS with bubbler No. 3. Arrows indicate the bubbler number; PQ represents
the electrokinetic adsorption density extrapolated to d ¼ 0.
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10 �M SHS, as obtained using different bubblers. The adsorption densities of SHS
obtained by Matsuura et al. [28], using radiotracer measurements (exp) and surface ten-
sion determinations (Gibbs), are also included in the figure. The data from Fig. 6, which
were obtained with bubbler No. 3, are reproduced in Fig. 10 for comparison. The adsorp-
tion density was calculated using the Gouy–Chapman theory, i.e.,

Ne� ¼ ��d ¼
2"r"0kT

�

� �1=2
�ðn0Þ

1=2 sinh
Ze�

2kT

� �
ð18Þ

where � is the electrokinetic adsorption density in moles per square centimeter, N is
Avogadro’s number, e is the elementary charge, �d is the diffuse layer charge density
per unit area, k is Boltzmann’s constant, T is the absolute temperature, n0 is the number
concentration of ions, and Z is the valency of the ion. Under dynamic conditions, �SHS
increases almost linearly with surfactant concentration until an equilibrium value is
reached. The electrokinetic adsorption densities, evaluated from the zeta potential at a
bubble size of zero, are shown by the lines PQ, where P refers to the value obtained from
the photographic method by camera [27], and Z from data in Fig. 6 (Q=�H method). If
one takes the SHS concentration of 2� 10�5 M as an example, a condition which yields an
almost complete monolayer in the equilibrium state, the adsorption density in the dynamic
state corresponds to only ffi 10% of a monolayer. The discrepancy in adsorption density
between the equilibrium and dynamic (floating bubble) states tends to increase with
decreasing concentration.

It is interesting to show the effect of inorganic electrolyte on the zeta potential of
bubbles in the presence of a cationic surfactant. Figure 11 shows the zeta potential of
bubbles as a function of NaCl concentration in the absence (*) and in the presence (*) of
10�5 M hexadecyltrimethylammonium bromide (HTAB). In the absence of NaCl, the zeta
potential shows a positive value, i.e., +0.3 V. The zeta potential changes its sign from
positive to negative with increasing NcCl concentration in the presence of HTAB. The
profile of this curve with increasing NaCl concentration shows a similar trend in the case
of the solution in the absence of HTAB.
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FIG. 11 Zeta potential of bubbles as a function of NaCl concentration in the absence (*) and in
the presence (*) of 10�5 M HTAB. Ethanol: 4:2� 10�2 M.



V. CONCLUSIONS

The examples discussed show that both the sedimentation and flotation potentials can be
measured with high accuracy. The former is free of errors due to the drifts and/or the
asymmetry of the measuring electrodes if the rotating-column method is used. It should
also be emphasized that this method is applicable to concentrated systems for which many
commercial electrophoresis apparatus are not useful. In the case of flotation potential, the
experimental difficulties coexist with the lack of theoretical models. In this respect, it must
be mentioned that Dukhin et al. [29] have reviewed the dynamic adsorption layer on
buoyant bubbles and discussed the comparison between theory and experimental results.
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I. INTRODUCTION

It is well known that when charged colloidal particles sediment due to gravity, a potential
difference is produced between two vertically spaced electrodes. This electrokinetic phe-
nomenon is called sedimentation potential or Dorn effect, and it is clear that if we exter-
nally short-circuit the electrodes, an electric current, the sedimentation current, will flow
[1]. If we now assume that the particles are subjected to an applied acoustic field, the
constant gravitational acceleration will be in fact replaced by a harmonically changing one
provoked by the inertial forces associated with the sound wave. An acoustic potential or
current will also be generated that will change harmonically with time: the phenomenon is
now called colloid vibration potential (CVP) or colloid vibration current (CVI). Figure 1
illustrates schematically their origin: a particle with its double layer is moving relative to
the liquid, and this motion involves ions of the double layer. In this case we consider the
positive counterions opposing the negatively charged particle surface. The hydrodynamic
surface current Is reduces the number of positive ions near the right particle pole and
enriches the double layer with extra ions near the left pole. As a result, the double layer
shifts from the original equilibrium. A negative extra diffuse charge dominates at the right
pole, whereas the positive one dominates at the left pole. The net result is that the motion
has induced a dipole moment.

This induced dipole moment generates an electric field which is usually referred to
as a CVP. This CVP is external to the particle double layer. It affects ions in the bulk of
the electroneutral solution beyond the double layer, generating an electric current In.
This electric current serves an important purpose: it compensates for the surface current
Is and makes the whole picture self-consistent. A related electrokinetic phenomenon is
the electrokinetic sonic amplitude (ESA) effect: in this case, the externally applied field is
an alternating electric field. The subsequent oscillation of the charged colloid units
provokes small pressure disturbances around them, and if the density of the particle
and the medium are different, a macroscopic harmonic sound wave will be produced [1,
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2]. Hence, both CVP (or CVI) and ESA can be termed electroacoustic electrokinetic
phenomena. There is growing interest in them in the colloid science community, mainly
since commercial CVI (www.dispersion.com) and ESA (www.matec.com) devices became
available in the 1980s.

This work is mainly devoted to CVI, based on the authors’ experience and involve-
ment in this electrokinetic phenomenon. A new theory of CVI in concentrated suspensions
will be developed and experimental data with silica and rutile dispersions will be presented.
The validity of the theoretical model will be discussed in terms of its agreement with
experimental results and with exact low-frequency asymptotic theories, available for arbi-
trary suspension concentration, such as Smoluchowski formula and the fundamental
Onsager reciprocity relations of the thermodynamics of irreversible processes.

II. THEORY

A. Background

There are two quite different approaches to deriving an electroacoustic theory.
Historically, the first began with works by Booth and Enderby [3, 4]. They tried to
solve a system of classical electrokinetic equations without using any thermodynamic
relationships. It was very complex because they took into account surface conductivity
effects without effective simplifications connected with small values of Debye screening
length as compared to particle radius. Although this initial theory was valid only for dilute
systems, the approach was later expanded by Marlow et al. [5], who tried to generalize it
for concentrated systems using a Levine cell model [6]. This approach leads to somewhat
complicated mathematical formulas. Perhaps this was the reason why it was abandoned.

An alternative approach to electroacoustic theory was suggested later by O’Brien [7,
8]. He introduced the concept of dynamic electrophoretic mobility �d, and derived a
relationship between the quantity and the measured electroacoustic parameters such as
CVI or ESA:
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FIG. 1 Mechanism of double-layer polarization generating sedimentation current for a single par-
ticle.



ESA ¼ Ccal���dE

CVI ¼ Ccal���drP
ð1Þ

where Ccal is a cell constant, � is the volume fraction of solids, P is the hydrodynamic
pressure, and E is the external electric field strength. The quantity � is a contrast between
particle ð�pÞ and liquid ð�mÞ densities:

� ¼
�p � �m
�m

ð2Þ

According to O’Brien, a complete functional dependence of ESA (CVI) on the key
parameters like � potential, particle size, and frequency is incorporated into dynamic
electrophoretic mobility. The coefficient of proportionality between ESA (CVI) and �d

is frequency independent, as well as independent of particle size and � potential. This
peculiarity of Eq. (1) made dynamic electrophoretic mobility a central parameter of the
electroacoustic theory.

The first theory of dynamic electrophoretic mobility, which relates this parameter
to other properties of the dispersed system, was created initially by O’Brien for the dilute
case only, neglecting particle–particle interactions. We can call this version the ‘‘dilute
O’Brien’s theory.’’ Later he applied the Levine cell model trying to expand dynamic
electrophoretic theory to concentrated systems [8]. This work was generalized by
Ohshima [9], and can be termed the ‘‘O’Brien–Levine’’ theory. The last development
of this approach was made recently by Dukhin and coworkers [10–12]. We used the
Shilov–Zharkikh cell model [13] for dynamic electrophoretic mobility. We call the com-
bination of O’Brien’s relationship and our dynamic electrophoretic mobility theory the
‘‘hybrid O’Brien’s theory.’’ A block diagram of these various versions of the electro-
acoustic theory is presented in Fig. 2, which help us to understand this somewhat
complicated situation.

Recently, the authors of this chapter returned to the original Enderby–Booth
approach [3, 4] in order to generalize it for concentrates. We have done this using the
Kuwabara cell model [14] for calculating the hydrodynamic drag coefficient, and the
Shilov–Zharkikh cell model [13] for electrokinetics. In addition, we used a well-known
‘‘coupled-phase model’’ for describing the relative motion between the particles and the
liquid in the concentrated system. The coupled-phase model allowed us to eliminate the
assumption of superposition of hydrodynamic fields for incorporating particle polydisper-
sity into the theory. In order to distinguish this new theory from other treatments, we
suggest using the abbreviation ‘‘DSOG theory.’’ The theory was initially developed in Ref.
15, assuming a negligible surface conductivity, reflected in the low values of the Dukhin
number ‘‘Du’’ [16]:

Du ¼
��

Kma
� 1 ð3Þ

where �� is the surface conductivity, Km is the bulk conductivity of the equilibrium
medium, and a is the particle radius.

Later, we generalized it by including surface conductivity at frequencies below the
Maxwell–Wagner frequency, when the displacement current is negligible as compared to
that of the background of conductivity current [17]. We are presenting this most recent
version in this chapter, which means that there is no restriction on the value of Du [16].
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We restrict consideration to the simpler case of CVI and/or CVP, when a pressure
gradient is the driving force generating the electroacoustic signal. We would like to be
cautious concerning expanding this new theory to the ESA phenomenon. It turned out
that the problem of frames of reference has different implications for these different
electroacoustic effects.

As mentioned, we use a ‘‘coupled-phase model’’ [17–19] for describing the speed
of the particle relative to the liquid. The Kuwabara cell model [14] yields the required
hydrodynamic parameters such as the drag coefficient and we connect this parameter
with the generated electric field by using the Shilov–Zharkikh cell model [13]. The
DSOG theory is thus currently valid for polydisperse suspensions, without using the
superposition assumption. In this work, we also describe the derivation of exact asymp-
totic solutions at the quasistationary limit, using just Onsager relationships and the
Smoluchowski law [20], without any cell model. It is found that the DSOG theory
satisfies the requirement of transition to the quasistationary limit at any volume
fraction.

This situation resembles somewhat the problem of the sedimentation potential.
There is a simple way to create the theory of sedimentation potential by using the
Onsager reciprocal relationship. However, it turns out that a straight derivation rooted
down to the basic physical equations is also very helpful. In the case of the sedimentation
potential such a derivation, as performed by Ohshima [21], provides an important back-
ground and confirmation for Onsager-based theory.
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FIG. 2 Block diagram illustrating various versions of electroacoustic theory.



B. Frames of Reference

When sound is the driving force (the case of CVI or CVP), the correct inertial frame is the
laboratory frame of reference, since the acoustic wavelength is much shorter than the size
of the sample chamber. Therefore, particles move with different phases inside the narrow
sound beam. The chamber as an entity remains immobile.

The question of the frame of reference is more complicated in the case of the electric
field as a driving force (ESA). The wavelength of the electric field is much longer, and as a
result all particles move in phase. This motion exerts a certain force on the chamber. The
motion of the chamber depends on its mass and that of the sample. Depending on the
construction of the instrument, the inertial system might be related either to the chamber
or to the center of mass, or to some intermediate case, depending on the chamber-to-
sample mass ratio. It means that in the case of ESA, the final expression relating the
measured ESA signal with properties of the dispersed system might contain a multiplier
which depends on the mass of the chamber.

C. Coupled-phase Model

Let us consider an infinitesimal volume element in the field of the sound wave. There is an
external force acting on this element, proportional to the pressure gradient of the sound
wave, rP. This external force is applied to both the particles and liquid and is distributed
between them according to the volume fraction �.

Both particles and liquid move with an acceleration created by the sound-wave
pressure gradient. In addition, because of inertia effects, the particles move relative to
the liquid, which causes viscous friction forces to act between the particles and liquid.

The balance of these forces can be presented using the following system of equations
written separately for particles and liquid:

��rP� ��p
@up
@t

þ �ðup � umÞ ð4Þ

�ð1� �ÞrP ¼ ð1 ¼ �Þ�m
@um
@t
�ðup � umÞ ð5Þ

where um, and up are, respectively, the velocities of the medium and the particles in the
laboratory frame of reference, t is the time, and � is a friction coefficient which is propor-
tional to the volume fraction and particle hydrodynamic drag coefficient �:

� ¼
9	��

2a2
Ff ¼ 6
	a�ðup � umÞ ð6Þ

where 	 is dynamic viscosity, and a is the particle’s radius.
The system of equations (4–6) is well known in the field of acoustics. It has been used

in several papers [7–9] for calculating sound speed and acoustic attenuation. It is valid
without any restriction on volume fraction. Importantly, it is known that this system of
equations yields a correct transition to the dilute case.

This system of equations is normally referred to as the ‘‘coupled-phase model’’. The
word ‘‘model’’ usually suggests the existence of some alternative formulation, but it is hard
to imagine what one can change in this set of force balance equations, which essentially
express Newton’s second and third laws. Perhaps the word ‘‘model’’ is not suitable in this
case.
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This system of equations can be solved for the speed of the particle relative to the
liquid. The time and space dependence of the unknowns um and up is assumed to be a
monochromatic wave Aeið!t�kxÞ, where i is an imaginary unit, and k is a complex wave-
number. As a result, the system of equations (3)–(4) yields the following relationship
between the pressure gradient and the speed of the particle relative to the fluid:

�ðup � umÞ ¼
�ð�p � �sÞ

�s þ i!�ð1� �Þ
�p�m
�

rP ð7Þ

where �s ¼ ��p þ ð1� �Þ�m.
The model was generalized for polydisperse systems in Ref. 15. The velocity of the

particles which belong to the ith size fraction ui � um is given by the following expression:

ui � um ¼

�p
�m

� 1

� �
rP

j!�p þ
�i
�i

� �
1þ

�p
ð1� �Þ�m

XN
i¼1

�i

j!�p þ
�i
�i

0
B@

1
CA

ð8Þ

where

�i ¼
9	�i�

2a2i

and the Stokes drag on the ith size fraction is

FiStokes ¼ 6
	a�ðui � umÞ

The relative motion of the particles disturbs the double layers surrounding them and
as a consequence induces the electroacoustic phenomenon. The relationship between par-
ticle motion and the resulting electroacoustic signal is described next.

D. CVI as a Sedimentation Current

As already mentioned (Fig. 1), the analogy between CVI and sedimentation current is
rather obvious. Simply put, charged particles sedimenting in a gravitational field will
develop a measurable sedimentation current through externally short-circuited electrodes.
The concept is extended to CVI by replacing the gravitational acceleration by a variable
inertial one due to the action of the harmonic sound wave. The next step is to add a
quantitative description to this simple qualitative picture. In order to do this, we must find
a relationship between the CVP and the speed of the relative motion between particle and
liquid (�p � umÞ. We did this under the assumption that the double-layer thickness must be
much less than the particle radius a [23]:

�a� 1 ð9Þ

where � is reciprocal Debye length. It is possible to eliminate this restriction in the future
following well known papers by Babchin and coworkers [24, 25].

We assume that the sound frequency ! is below the Maxwell–Wagner frequency !e

[26]:

!� !e ¼
Km

""0
ð10Þ
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where ""0 is the dielectric permittivity of the medium. The strong inequality (10) permits us
to neglect the contribution of displacement currents in comparison with that of conduc-
tivity currents.

The thin double-layer condition allows us to describe the distribution of the electric
potential � outside of the quasiflat double layer using the Laplace equation:

�� ¼ 0 ð11Þ

The general solution of this equation:

� ¼ �Er cos  þ
d

r2
cos  ð12Þ

contains two unknown constants E and d. Two boundary conditions are required for
calculating these constants.

The surface boundary condition reflects the continuity of the bulk current I ¼ �Km

rn� and the surface current Is:

Kmrn� ¼ divsIs ð13Þ

where the surface current Is contains two components, hydrodynamic (convective) and
electromigration:

Is ¼ �""0�
@u
@r






r¼1

���
1

a

@�

@






r¼a

ð14Þ

where � is the electrokinetic potential. Substitution of Eq. (14) into Eq. (13) yields the first
boundary condition:

2��

a
� Km

� �
E �

2��

a
þ 2Km

� �
3

a3
¼ �

1

a
""0�

1

sin 

@u
@r






r¼a

ð15Þ

We use the cell model concept for deriving the second boundary condition.
According to this concept, we redistribute liquid equally beween particles, and assume
that the liquid associated with each particle creates a spherical cell of radius b. This radius
is related with the particle radius according to the following expression:

b3 ¼
a3

�

We prefer to use the Shilov–Zharkikh cell model [13] over the Levine one [6]. All
arguments for this decision are given in Ref. 10. These two cell models yield different
expressions for the macroscopic electric field hEi:

hEiLevine ¼ �
1

cos 

@�

@r






r¼b

ð16Þ

hEiShilov ¼
�

b cos 






r¼b

ð17Þ

The cell boundary condition corresponding to CVI (external short circuit) specifies the
zero value of hEi in terms of the condition on the cell surface. In the Shilov–Zharkikh cell
model it becomes

@�

@r






r¼b

¼
�r¼b
b cos 

¼ �E þ
d

b3
¼ 0 ð18Þ
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In order to find the CVP we should calculate the unknown constants E and d using
Eqs (15) and (18) and substitute this result into the following expression for the CVI

CVI ¼ hIijhEi¼0 ¼
jrjr¼b
cos 

¼ �

Km

@�

@r






r¼b

cos 
¼ Km E þ

2d

b3

� �
ð19Þ

As a result of Eqs (15), (18) and (19) we obtain the following relationship between
CVI and the tangential fluid velocity:

CVI ¼
3�

��

Kma
þ 1

� �
�

��

Kma
� 0:5

� �
�

""0�

a

1

sin 

@u
@r






r¼a

ð20Þ

where Ks is the complex conductivity of the system r and  are the spherical co-ordinates
associated with the particle center, and ur and u are the radial and tangential velocities of
the liquid motion relative to the particle.

The next step in the development of this CVI theory is the calculation of the hydro-

dynamic field
@u
@r r¼a assuming that the speed of the particle with respect to the liquid is

given by expression (7). This is done in the next section.

E. Calculation of Hydrodynamic Field Using Nonstationary Kuwabara
Cell Model

In this section we calculate the particle drag coefficient � and the tangential velocity of the
liquid u which is a part of Eq. (20). We perform this calculation assuming that the liquid is
incompressible. This condition is valid only when the wavelength � is much larger than the
particle size:

�� a ð21Þ

This is the so-called long-wavelength requirement. It allows us to use, in the scale of
the particle (cell) size, the hydrodynamic equations for incompressible liquids:

�m
d ~uu

dt
¼ nr � r � ~uuþ rP ð22Þ

r  ~uu ¼ 0 ð23Þ

This system of equations has been solved by Dukhin and Goetz [19] for a Happel cell
model. Here, we suggest another solution, using the Kuwabara cell model [14]. Both
models apply the same boundary conditions at the surface of the particle:

urðr ¼ aÞ ¼ up � um ð24Þ

uðr ¼ aÞ ¼ �ðup � umÞ ð25Þ

However, the boundary conditions at the surface of the cell are quite different for the
Kuwabara cell model and are given by the following equations:

rot ur¼b ¼ 0 ð26Þ

urðr ¼ bÞ ¼ 0 ð27Þ
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The general solution for the velocity field contains three unknown constants C;C1;
and C2:

urðrÞ ¼ C 1�
b3

r3

 !
þ 1:5

ðb
r

1�
x3

r3

 !
hðxÞdx ð28Þ

uðrÞ ¼ �C 1þ
b3

2r3

 !
� 1:5

ðb
r

1þ
x3

2r3

 !
hðxÞdx ð29Þ

hðxÞ ¼ C1h1ðxÞ þ C2hxðxÞ ð30Þ

The values of these constants and special functions are given in the appendix. The
final expressions for the drag coefficient and tangential velocity are

� ¼ !�m�
3

4I

dh

dx
þ
h

x

� �
x¼�

� i

� �
ð31Þ

1

sin 

du
dr

� �
r¼a

¼
3ðup � umÞhð�Þ

2I
ð32Þ

where � ¼ a !
p

=2�; � ¼ b�=a, � being the kinematic viscosity, and 	 the dynamic viscosity.

F. CVI for Polydisperse System with Surface Conductivity

Let us assume now that we have a polydisperse system with N size fractions. Each fraction
of particles has particle radius ai, volume fraction �i, drag coefficient �i, and particle
velocity ui in the laboratory frame of reference. We assume that the density of the particles
is the same for all fractions, as well as their surface conductivity, ��, and � potential. The
total volume fraction of the dispersed phase is �. Generalization of the cell model concept
for a polydisperse system, which is described in Ref. 19, yields the following relationship
between fractional particle radius and radius of the shell bi:

b3i ¼
a3i
�

ð33Þ

or, equivalently,

�i ¼ � ð34Þ

The VI generated by the ith fraction equals:

CVIi ¼
3�

��

Kmai
þ 1

� �
�

��

Kmai
� 0:5

� �
�

""0�

ai

1

sin 

@ui
@r






r¼a

ð35Þ

The radial derivative of the tangential velocity has been calculated in our previous
paper [15]:

1

sin 

@ui
@r






r¼a

¼
3ðuip � umÞhð�iÞ

Ið�iÞ
ð36Þ

where h and I are special functions given in the appendix.
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We can use either Eq. (7) or (8) for calculating the speed of the liquid relative to the
particle surface only if we neglect the electro-osmotic flow caused by CVP. This electro-
osmotic flow is a secondary effect, but it would still need justification for being neglected.
This is done in Ref. 27 where we show that the electro-osmotic flow is reciprocally propor-
tional to ð�aÞ2.

The final expression for CVI can be obtained as a sum of the fractional currents
generated by the fractional dipole moments. This expression is

CVI ¼
9""o�ð�p � �mÞrP

4	

XN
i¼1

1

ðDui þ 1Þ � ðDui � 0:5Þ�

�ihð�iÞ

j�iIð�iÞ �p � �m
3Hi

2Ii
þ 1

� �� �

1�
�p

1� �

XN
i¼1

�i
3Hi

2Ii
þ 1

� �

�p � �m
3Hi

2Ii
þ 1

� � ð37Þ

where �i ¼ ai !
p

=2�, �i ¼ bi�i=a;Hi ¼ Hð�iÞ; Ii ¼ Ið�iÞ, and the special functions h;H;
and I are given in the Appendix.

According to the assumption of monodisperse surface conductivity, the value of the
fractional Dukhin number equals:

Dui ¼
��

Kmai
ð38Þ

Expression (37) for CVI is rather complex. It is important to have some reference
point for testing its validity. We have managed to create a simplified version of the
electroacoustic theory using quasistationary low-frequency limit. It turns out that upon
restricting the frequency one can derive an electroacoustic theory for concentrates without
using any cell model at all. This simple theory is described in the next section.

G. Low-frequency Asymptotic Limit

The Onsager reciprocity relationship follows from the time reversibility of the equations of
motion on the molecular level. It links together various kinetic coefficients. This relation-
ship is certainly valid in the stationary case. Much less is known about its validity in the
case of alternating fields. This means that we can use this relationship only in the quasista-
tionary limiting case of low frequency, i.e., when ! is much lower than the characteristic
hydrodynamic, !hd, and electrodynamic (Maxwell–Wagner), !ed, frequencies:

!� !hd ¼
�

a2
ð39Þ

!� !ed ¼
Km

""m
ð40Þ

The well-known Saxen–Onsager reciprocal relation provides the following link [28]:

hVi

hIi






hrPreli¼0

¼
hCVP!!0i

hrPreli






hIi¼0

ð41Þ

between two kinetic coefficients:
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1. Electro-osmotic coefficient: ratio between the electro-osmotic flow hVi and the
macroscopic electric current density hIi, flowing under the action of an external
electric field, applied to the suspension and causing the electro-osmotic flow of
liquid under the condition of zero macroscopic pressure gradient.

2. Streaming potential coefficient: ratio between streaming potential (or in our case,
quasistationary CVP) and effective pressure gradient hrPreli, which moves the
liquid relative to the particles and causes the CVP under the condition of zero
macroscopic electric current.

In order to use this relationship in the case of CVI we need to know the effective
pressure gradient rPrel. This parameter can be easily obtained following the ‘‘coupled-
phase model’’ [17–19, 22] for characterizing particle motion in the sound field for con-
centrated systems. The total friction force exerted on a particle equals ��ðup � umÞ. A
force of the same value but opposite direction exerted on the liquid is due to of the
pressure gradient which moves liquid relative to the particle. In the extreme case of low
frequency, Eq. (7) leads to the following expression for this effective pressure gradient:

rPrelj!!o ¼ �ðup � umÞj!!0 ¼
�ð�p � �sÞ

�s
rP ð42Þ

In addition, we can also use the fact that the CVP equals the CVI divided by the
conductivity of the system Ks. As a result, from Eqs (41) and (42), and taking into account
the definition of the static mobility ð� ¼ hVi=hEijrP¼0 ¼ KShVi=hIijrP¼0Þ, we obtain the
following expression for CVI:

CVI!!0 ¼ CVP�
!!0Ks ¼

hVi

hIi






�

hrPi¼0

Ks

�ð�p � �sÞ

�s
rP ð43Þ

This is the equation for CVI at the low-frequency limit. Using the Smoluchowski law
for electro-osmosis [10, 20], it is possible to obtain the following equation:

hVi

hIi






hrPi¼0

¼ �
""0�

	

1

Km

ð44Þ

which would be explicitly asymptotically valid in concentrated systems, and would simul-
taneously be free from the assumptions of any electrokinetic cell model. Note that con-
ditions which restrict the applicability of the Smoluchowski equation have been used,
together with the assumption that the duble layer is quasiflat [10] and that the Dukhin
number [Eq. (38)] is very small, that is, the surface conductivity is negligible [14]. The small
Du condition allows us to apply the Maxwell–Wagner theory [26] for expressing the
conductivity ratio through the volume fraction:

Ks

Km

¼
1� �

1þ 0:5�
ð45Þ

As a result we obtain the following equation for the asymptotic value of CVI at low
frequency:

CVI!!0 ¼
""0� ð1� �Þ�ð�p � �sÞ

	ð1þ 0:5�Þ

ð�p � �sÞ

�s
rP ð46Þ

This is a very important result because it provides a test for electroacoustic theory.
Comparing Eqs (37) and (46), it becomes clear that the DSOG theory satisfies this test
because the ratio of the special functions I=H goes to 0 at low frequency (see Appendix).
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If O’Brien’s theory is used, the application of relation (1) to quasistationary CVI
requires the low-frequency asymptotic value of electrophoretic mobility �d.
Substitution into Eq. (1) of the Smoluchowski law for stationary electrophoresis [10,
20] in the form of Eq. (44) (valid in concentrated systems) leads to the following
expression for CVI:

CVI!!0 ¼
""0� ð1� �Þ�

	ð1þ 0:5�Þ

ð�p � �mÞ

�m
rP ð47Þ

The discrepancy between Eqs (47) and (46) comes from the different density con-
trasts. O’Brien’s theory operates with particle–media density contrast, whereas DSOG
theory replaces it with particle–dispersion density contrast. The following qualitative
analysis helps us to understand the origin of this discrepancy between the two theories.

H. Qualitative Analysis

We think that it is helpful to get some heuristic understanding of the physical phenomena
that take place when an ultrasound pulse passes through a dispersed system. This descrip-
tion provides answers to some general questions. For instance, why do we need density
contrast in the case of ESA when the particles already move relative to the liquid under the
influence of an electric field? Why do we need a density contrast to generate CVI at low
frequency when the particles already move in phase with the liquid?

As far as we know, there are no simple published answers to these questions. In order
to find these answers we utilize the analogy between sedimentation potential and electro-
acoustic phenomena. Marlow et al. have used this analogy before [5] and we will give
further justification for this approach.

Let us consider a volume element of the concentrated dispersed system in the pre-
sence of the sound wave (Fig. 3). The size of this element is selected such that it is much
larger than the particle size and also larger than the average distance between particles. As
a result, the element contains many particles and at the same time is much smaller than the
wavelength.

This dispersion element moves with a certain velocity and acceleration in response to
the gradient of acoustic pressure. As a result, an inertia force is applied to the element. At
this point we can use the principle of equivalence between inertia and gravity. The effect of
the inertia force created by the sound wave is equivalent to the effect of the gravity force.
Gravity acts on both the particle and liquid inside the dispersion element. The densities of
the particles and liquid are different and the forces are different as well. Force acting on
the particles depends on the ratio of the densities.

The question arises to what density should we take into account. To answer this
question let us consider the forces acting on a given particle in the gravity field. The first
force is the weight of the particle, which is proportional to its density �p. This force will be
partially balanced by the pressure of the surrounding liquid and other particles. The
pressure is equivalent to that generated by an effective medium with density equal to
the density of the dispersed system. This becomes more clear when one considers a larger
particle surrounded by smaller ones as shown in Fig. 3.

We are coming to the well-known conclusion that this force is proportional to the
density difference between particle �p and dispersed system �s. From one point of view
(representing the medium and surrounding particle as a continuous medium) such a con-
clusion may come directly from Archimedes law, as the liquid being expelled by our
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particle is the suspension, not only dispersion medium, and so the buoyant force is pro-
portional to the difference between particle, �p, and suspension, �m, densities.

From another point of view (representing separately dispersion medium and particles
surrounding our isolated particle), this conclusion follows from the following considera-
tions, illustrated in Fig. 4. This figure shows sedimentation of a small spherical cloud of
particles in the liquid. Case 1 corresponds to the situation when the cloud settles as one
entity, and liquid envelops this settling cloud from outside. Case 2 corresponds to the
different situation when liquid is forced to move through the cloud. There will be a differ-
ence between forces exerted on the particles within the cloud. There is an additional force in
case 2, caused by liquid being pushed through the array of particles.

Electroacoustic phenomena correspond to case 2. It happens because the width of
the sound pulse W is much larger than the wavelength � at high ultrasound
frequencies:

W � � ð48Þ

The balance of forces exerted on the particles in a given element of the dispersion
consists of the effective gravity force, the buoyancy force, and the friction force related to
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the filtration of the liquid through the array of particles. As a result, particles move relative
to the liquid with a speed up � um, which is proportional to the density difference between
particle and system �p � �s.

The motion of the particles relative to the liquid disturbs their double layers, and as a
result generates an electroacoustic signal. This electroacoustic signal is zero when the
speed of the particle equals the speed of the medium, which happens when the density
of the particle equals that of the dispersed system. This means that the electroacoustic
signal must be proportional to ð�p � �sÞ.

III. EXPERIMENTAL

The main goal of the experiments presented below is to test the validity of the DSOG
theory in concentrated systems. Equilibrium dilution is the logical experimental protocol
for achieving this goal because it provides a simple criterion of the theory. Equilibrium
dilution maintains the same chemical composition of the dispersion medium for all volume
fractions. As a result, parameters which are sensitive to the chemistry must be the same for
all volume fractions. It means that the � potential calculated from CVI is supposed to
remain the same for all volume fractions, as long as double layers do not overlap.
Variation in � potential with volume fraction is the indication that the theory does not
reflect volume fraction dependence properly.

We perform the dilution test with two different dispersions: silica Ludox and rutile R-
746 produced by Dupont. We use two different techniques for producing the equilibrium
dispersion medium for dilution: dialysis and centrifugation. Electroacoustic experiments
were performed with the acoustic and electroacoustic spectrometer DT-1200 [29, 30]. The
next section describes a method of CVI measurement employed by this instrument.

A. CVI Measurement

The electroacoustic spectrometer consists of two parts: electronic part and sensor part. All
electronics are placed on two special-purpose boards (signal processor and interface). It
requires also a conventional data acquisition card (DAC). The signal processor board and
DAC are placed inside a personal computer which operates by interfacing with the user,
using Windows 95 based software.
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The electroacoustic sensor has two parts: a piezoelectric transducer with a critical
frequency of 10 MHz and an electroacoustic antenna (Fig. 4). There is another design
where the sensing electrode is placed on the surface of the transducers. We call this design
‘‘electroacoustic probe’’.

The antenna is designed as two coaxial electrodes separated by a nonconducting
rigid ceramic insert. Internal electrical impedance between these electrodes can be selected,
depending on the conductivity range of the samples by means of an internal transformer.
The transformer is selected such that the input impedance is significantly less than the
external impedance of the sample, so that the resulting signal is proportional to the short-
circuit current. This transformer is located just behind the central electrode in order to
minimize the stray capacitance.

The transmitting transducer and the receiving antenna are mounted in the opposite
walls of the sample chamber such that the gap between the faces is 5 mm.

The signal processor generates the transmit gate which defines the 1-W pulse gener-
ated in the interface module as well as the necessary signals to set the frequency.
Electroacoustic measurements can be performed either for one frequency or for the chosen
set of frequencies from 1 to 100 MHz. The transducer converts these pulses into sound
pulses with some certain efficiency. The sound pulse propagates through the quartz delay
rod and eventually through the sample. An acoustic pulse propagating through the sample
excites particles, disturbing their double layers. Particles gain dipole moments because of
this excitation. These dipole moments generate an electric field that changes the electric
potential of the central electrode of the electroacoustic antenna, and the difference
between the electric potentials of the central and external reference electrodes gives rise
to an electric current, registered as a CVI.

The value of this current is very low. The system averages at least 800 pulses in order
to achieve a high signal-to-noise ratio, although the number of pulses depends on the
properties of colloid. Thus, measurement of CVI in low-conducting oil-based systems
requires averaging millions of pulses. In principle, this method makes it possible to mea-
sure any low-energy signals.

We suggest interpreting this measurement as propagation of the pulse through the
transmission line with certain energy losses at different points. This approach allows us to
eliminate measurement of the absolute powers. We simply compare pulse intensity before
and after transmission and take into account all internal energy losses. This idea is accom-
plished as described below.

At the beginning of each measurement, the interface routes the pulses to a reference
attenuator channel consisting of a fixed 40-dB attenuator, and similarly routes the output
of this precision attenuator to the input section of the signal processor. Since the precision
attenuator has a known response over the entire frequency range, this step allows us to
characterize all energy losses in the measuring circuits at each frequency. The next step in
the measurement is to determine the losses in the electroacoustic sensor. The signal pro-
cessor now commands the interface to substitute the electroacoustic sensor for the refer-
ence attenuator. The 1-W pulses are now sent to the transmitting transducer which
converts these electric pulses into sound pulses. We have certain energy losses at this
point. These losses depend on the transducer efficiency and are pretty much constant.

The sound pulses propagate through the quartz delay rod (see Fig. 4) and eventually
reach the surface of the transducer which faces the dispersion. It loses some energy at this
point because of the reflection caused by mismatch of the acoustic impedances of the delay
rod ðZtrÞ and dispersed system ðZsÞ.
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Some part of the pulse passes into the gap between the transducers, which is filled
with the dispersion under test, and propagates through it. It loses energy during propaga-
tion due to the attenuation. Finally, this sound pulse reaches the electroacoustic antenna
which converts it back into an electric signal. This conversion also involves energy losses.

The final electric pulse is routed through the interface to the input signal port on the
signal processor where the signal level of the acoustic sensor output is measured.
Comparison of the amplitude and phase of the electroacoustic sensor output pulse with
that of the reference channel output pulse allows the program to calculate precisely the
overall loss in the sensor at each frequency.

The experimental output of the electroacoustic sensor Sexp is the ratio of the intensity
of the input electric pulse to the transducer, Im, to the output electric pulse in the antenna
Iout (Fig. 4):

Sexp ¼
Iout
Iin

ð49Þ

The intensity of the input electric pulse is related to the intensity of the sound pulse
in the delay rod through some constant Ctr; which is a measure of the transducer efficiency
and energy losses at this point:

Irod ¼ CtrIin ð50Þ

The intensity of the sound in the delay rod is proportional to the square of the sound
pressure here, Prod:

Prod ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�rodcrodCtrIin

p
ð51Þ

where �rod and c are the density and sound speed in the rod material.
At the other end, we can use the definition of the electric pulse intensity as the square

ot the electric current in the antenna, which is the CVI:

Iout ¼ ðCVIÞ2Cant ð52Þ

where the constant Cant depends on geometrical factors of the CVI space distribution in
the vicinity of the antenna, and on the electric properties of the antenna only for the
proper ratio of the electric impedances of the antenna and dispersed system.

Substituting Eq. (51) into the Eq. (49) and taking into account Eq. (52), we obtain
the following expression relating CVI with the measured parameter Sexp:

CVI

Prod

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S exp =CtrCant2�rodcrod

p
ð53Þ

The value of CVI depends on the pressure near the antenna surface Pant. This
pressure is lower than the pressure in the rod, Prod, because of the reflection losses on
the rod surface and attenuation of the pulse in the dispersion. There are two ways to take
these effects into account. We can either measure corresponding losses using reflected
pulses or we can calculate these losses. If we choose the second way we should use the
following corrections:

Pant ¼ Prod

2Zs
Zs þ Zrod

exp �
� L

2

� �
ð54Þ
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where � is attenuation of the sound intensity expressed in neper/cm, and L is the distance
between the transducer and antenna in centimeters. These corrections lead to the following
expression for CVI:

CVI

Pant

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sexp=2CantCtr�rodcrod

q Zs þ Z

2Zs
exp

� L

2

� �
ð55Þ

The pressure gradient rP in Eqs (37) and (46) for CVI equals Pant. Using this fact,
we obtain the following equation, relating properties of the dispersion with the measured
parameter Sexp:

3""0� ð1� �Þ�

2	ð1þ 0:5�Þ

ð�p � �sÞ

�s
Gða; �Þ ¼

cCcal

f
1� i

� c

2!

� � ffiffiffiffi
S

p

exp

Zs þ Zrod

2Zs
exp

� L

2

� �
ð56Þ

where c is the speed of sound in the dispersion, f is frequency in Hz, and the function G is
defined in Eq. (47).

Equation (56) contains an unknown calibration constant Ccal, which is independent
of the properties of the dispersion. This constant can be calibrated out using calibration
with a known colloid. We use for this purpose silica Ludox at 10 wt% diluted with KCl
10�2 mol/L. These silica particles have a � potential of �38 mV at pH 9.3.

Equation (56) can be used for calculating either � potential only, in the case of a
single frequency measurement, or both � potential and particle size in the case of multiple
frequencies.

DSOG theory yields a new range of frequencies. This theory predicts that the critical
frequency becomes higher with increasing volume fraction. Computer calculations show
that this shift is about one order of magnitude for a volume fraction of 40%. It means that
the optimum frequency range according to the new theory is

�=a2 < ! < 40�=a2 ð57Þ

if we want to cover volume fractions up to 40%.

B. Materials and Experimental Protocol

We used silica Ludox and rutile R-746 from Dupont for this experiment. Selection of the
silica Ludox is related to the small size of these particles. It allows us to eliminate any
particle size dependence in Eq. (56) because Gða; �Þ ¼ 1 for small particles. Using small
particles gives one a more simplifying advantage: it eliminates the contribution of attenua-
tion because small particles do not attenuate sound at low frequency. It means that the
choice of small particles allows us to test volume fraction dependence only. This is impor-
tant because this dependence is the most pronounced difference between different theories.

Silica Ludox TM satisfies all specified conditions because its nominal particle size on
an area basis reported by DuPont is about 22 nm. We measured the size using acoustics,
and obtained the particle size distribution (PSD) on a weight basis. It is quite close to the
nominal value, as will be shown below, taking into account the difference in PSD basis. At
the same time, the particle size should not be too small for the given ionic strength in order
to satisfy the thin-double-layer restriction [Eq. (9)]. Silica Ludox meets this requirement
because of the relatively high ionic strength of about 0.1 mol/L. Otherwise we would have
to generalize the theory removing the thin-double-layer restriction according Babchin and
coworkers [24, 25].
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The selection of rutile as the second dispersion gives us an opportunity to test
particle size dependence and enhance the density contrast contribution. We used rutile
R-746 produced by DuPont. This product was a concentrated stable dispersion with a
weight fraction of solids of 76.8%. We took 100 ml of this dispersion and weighed it. This
weight was 234 g which, yields particles’ material average density of 3.9 g/cm3. This
density was somewhat lower than that of the regular rutile, perhaps because of the stabi-
lizing additives.

The equilibrium dilution protocol requires a pure solvent which is identical to the
medium of the given dispersed system. In principle, one can try to separate the dispersed
phase and dispersion medium using either sedimentation or centrifugation. This method
does not work for silica Ludox because the particle size is too small.

The other way to create an equilibrium solution for small Ludox is dialysis. We used
this method. Dialysis allows us to equilibrate the dispersion medium with the external
solution over some period of time. We used regenerated cellulose tubular membrane
Cell�Sept4 with pore size 12–14 kDa, the external solution being KCl (0.1 mol/L) adjusted
to pH 9.5 using hydrochloric acid. Membrane filled with silica Ludox was placed in the
KCl solution, which was continuously mixed with a magnetic stirer. We prepared two
samples in order to check reproducibility.

In addition, we prepared another setup using KCl solution of pH 3. This setup
allowed us to estimate the equilibration time. The initial pH of the silica Ludox was
about 9 at 238C. We monitored the change of pH in the external solution, and the
corresponding kinetic curve is shown in Fig. 5. It is seen that the pH becomes 8.6 after
3h of equilibration, this value being close to the final pH value of 8.7 after 12 days of
equilibration. We waited 12 days because the equilibration time depends on the diffusion
coefficient, which is highest for Hþ ions. The higher the diffusion coefficient, the lower the
equilibration time.
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Before starting dilution we checked again the weight fraction of the silica Ludox
using a pyncometer. We were concerned about losing silica particles through the mem-
brane pores into the solution. The weight fraction remained unchanged which means that
the pores were too small for silica particles.

We had two sets of 50% silica with their corresponding equilibrium solutions. This
allowed us to check two ways of dilution, as we used on set for diluting from the high
weight fraction down. We did this by adding solution to the dispersed system. We used the
opposite procedure with the other sample. We added dispersed system to the solution.

In the case of rutile, we used centrifugation of the initial 76.8 wt% dispersion in
order to create equilibrium supernatant. We used this supernatant for preparing equili-
brium 1.1 v/v% rutile dispersion, diluting the initial dispersion. After making measure-
ments with this dilute system, we added more initial dispersion for preparing the next
volume fraction: 3.2 v/v%. We proceeded this way, preparing more and more concen-
trated systems. All together 11 different volume fractions from 1.1 to 45.9 v/v% were
tested (see Fig. 7).

For each volume fraction, we measured the attenuation spectra, sound speed, pH,
conductivity, temperature and magnitude and phase of CVI. Attenuation spectra were
measured within the frequency range 3–100 MHz, sound speed at 10 MHz, conductivity at
3 MHz, magnitude of CVI at 3 MHz, and phase of CVI at 1.5 MHz. Some of the results
are discussed below.

IV. RESULTS AND DISCUSSION

The measured attenuation spectra are shown in Figs 6 and 7. It is seen that attenuation for
silica Ludox is much lower than for rutile. This happens because of the smaller size and
lower density contrast for silica. The attenuation spectra of silica become almost indis-
tinguishable at volume fractions above 9%. This reflects a nonlinear dependence of the
attenuation on the volume fraction. This nonlinearity appears because of the particle–
particle interaction that shifts the critical frequency to higher values.

This peculiarity of the attenuation spectra was known before [19]. It is even more
pronounced for rutile (Fig. 7). Attenuation at low frequency decreases with increasing
volume fraction above 16.6 vol%. It is exactly the same effect which makes the attenuation
constant for silica.

The described theory takes into account this nonlinear effect. As a result, the particle
size calculated from this attenuation spectra is almost constant for all volume fractions for
both silica and rutile (Fig. 8). The slight increase at high volume fraction can be caused by
aggregation. It is important to mention here that dilute case theory would yield a size
decreasing dramatically with volume fraction.

It is seen that our size is somewhat larger than nominal, due perhaps to the different
technique applied by Dupont for characterizing the size of these particles. It is also clear
that the nominal size corresponds to the dilute system whereas we measured size for the
concentrated one.

It is seen (Fig. 6) that the attenuation for silica at 3 MHz is indeed negligible. It
means that our expectations for eliminating this contribution to the CVI measurement
using small particles were true. At the same time we have appreciable attenuation for rutile
at 3 MHz. This gives us a chance to verify the way we correct CVI for sound attenuation
[Eq. (56)].
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The sound speed of the silica Ludox dispersion varies only within 2% for weight
fractions changing from 1 to 50% (see Fig. 9), thus eliminating the contribution from the
change in acoustic impedance to the measured CVI for silica as well.

Figures 10 and 11 illustrate the � potential values, calculated from the measured CVI
using various theoretical models. One can see that the DSOG theory yields a � potential,
which remains almost the same within the complete volume fraction range. Variations do
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FIG. 6 Attenuation spectra measured for silica Ludox TM at different volume fractions.

FIG. 7 Attenuation spectra measured for rutile R-746 at different volume fractions.



not exceed 10%, and its evident from the figures that this level of accuracy could not be
achieved by any of the other theories.

V. APPLICATIONS

Electroacoustics can provide very fast single-point measurements of the � potential. For
instance, typical measurement in aqueous systems using DT instruments [29, 30] takes
about 15 s. These measurements are very precise, usually it is about 0.1–0.3 mV. Sample
handling and preparation is very simple because there is no need to dilute the sample.
However, the greatest advantage of electroacoustics is the possibility of performing fast
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FIG. 8 Median particle size of silica and rutile calculated from the attenuation spectra of Figs. 6
and 7.
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FIG. 9 Measured and calculated sound speed of the silica Ludox TM versus volume fraction.

FIG. 10 Electrokinetic � potential calculated from the measured CVI at various volume fractions
using different electroacoustic theories for silica Ludox.



and precise automatic titrations. We show here several different titrations performed with
DT instruments.

Figure 12 shows results of the typical pH titration performed with colloidal silica
Ludox diluted down to 10% wt using KCl (0.01 mol/L). One can see that electroacoustics
allows us to measure very low � potentials, even below 1 mV, with very high precision. It is
thus very useful for determining isoelectric points.

Control of pH alone is not sufficient in many cases. For instance, preparation of
a table precipitated calcium carbonate (PCC) slurry at 3 v/v% requires a special
arrangement, since the � potential right after dispersing the solids in distilled water
is very low: 1.3 mV. One can use sodium hexametaphosphate in order to increase the
surface charge and improve the aggregative stability of this slurry. Electroacoustics
allows us to determine the optimum dose of hexametaphosphate. The results of the
corresponding surfactant titration are shown in Fig. 13. It is seen that the � potential
reaches saturation at a hexametaphosphate concentration of about 0.5% by weight
relative to the weight of the PCC solid phase. This illustrates the electroacoustic
capabilities of equilibrium titrations.

Electroacoustics might be useful for kinetic experiments as well. One of the most
interesting observations we have ever made was done with zirconia slurry. Zirconia is
known as a complex material for electrokinetic characterization. We used to have
problems running equilibrium titrations using electroacoustics. It turned out that
these problems are related to the very long equilibration time of zirconia surfaces.
Figure 14 shows the results of continuous �-potential measurements for zirconia slurry.
This slurry was prepared at 3 vol% by adding the powder to a 0.01 mol/L KCl
solution, adjusted initially to pH 4 in order to provide a significant � potential. It is
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FIG. 11 Electrokinetic � potential calculated from the measured CVI at various volume fractions

using different electroacoustic theories, for rutile R-746 from Dupont. (*) From Refs. 8 and 9; (&)
from Refs. 10–12 (^) new theory, monodisperse; (^) new theory, polydisperse.



516 Dukhin et al.

FIG. 12 pH titration of Ludox diluted with 0.01 M down to 10 wt%.

FIG. 13 Surfactant titration of PCC slurry with 0.1 g/g hexametaphosphate solution.



seen that zirconia required about 2 h for the � potential and pH to equilibrate. It is
not surprising now that equilibrium titrations with this material are not successful.

These various examples illustrate the potential use of electroacoustic techniques for
the characterization of electrical surface properties.

VI. CONCLUSIONS

We have presented the principles of a new electroacoustic theory (DSOG), which was
derived without using any relationship between electroacoustic signal and dynamic elec-
trophoretic mobility. This theory is based on the coupled-phase model and the cell model
concept. We managed to extend this theory to polydisperse systems without using a super-
position assumption for the hydrodynamic part of the problem. The DSOG theory is
considered to be valid for polydisperse concentrated dispersions with a thin double
layer and any surface conductivity.

We have shown the results of the equilibrium dilution experimental test. The test
with silica Ludox TM confirmed that DSOG theory gives correct volume fraction depen-
dence within the whole available range of the volume fraction up to 30%.

Equilibrium dilution tests with a stable rutile dispersion proved that DSOG theory
gives the correct particle size dependence within the volume fraction range from 1.1% up
to 45.9%, as well as volume fraction dependence. We have shown that this new theory
yields almost constant � potential ð�10% variation) within the whole volume fraction
range. Polydispersity of the rutile sample was not a significant factor, at least compared
with volume fraction and particle size.
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FIG. 14 Equilibration of 3 vol% zirconia slurry prepared in 0.01 M KCl, with pH adjusted initially
to 4. It is seen that equilibration takes about 2 h.



We would like to stress that DSOG electroacoustic theory has been created so far for
CVI only. It is not clear yet how to apply it to ESA effects. Required modifications will
depend on the design of the instrument including the ratio of masses of the chamber and
the sample. This ratio determines an appropriate frame of reference. At the same time, the
basic physical framework should work for ESA effects as well as for CVI.

We have shown several applications of the electroacoustic technique for character-
izing the electrical surface properties of various slurries. These examples illustrate the
importance of electroacoustics for colloid science.

VII. APPENDIX SPECIAL FUNCTIONS

There are several special functions used in this theory. They are specified in this section.

Hð�Þ ¼
ihð�Þ

2�
�
idhðxÞ

2dx
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Electrokinetics in Porous Media
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France

JEAN-FRANÇOIS THOVERT Laboratoire de Combustion et Détonique, Poitiers,
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I. INTRODUCTION

Electro-osmotic effects are important in many situations of practical interest which are
characterized by very different length scales. These phenomena are generated by the flow
of electrolytes through or around charged solid surfaces. Polyelectrolytes and colloidal
particles on the one hand, and porous media on the other, offer examples of such solid
media. In the first case, the basic length scale is submicrometer while in the second
manifestations of the local phenomena which occur at the pore scale can be found at
much larger length scales.

For the sake of brevity, this review is good to be focused on porous media. An inter-
esting andunusual applicationof these developments is the analysis of the anomalous electric
andmagnetic fields which are observed before earthquakes and volcanic activity; it has been
proposed that these fields could be generated by the electrokinetic effect induced by water
flow resulting from internal stresses, thermal buoyancy effects, and meteoritic waters.

A major difficulty is the determination of the relevant coefficients to be used in such
macroscopic descriptions which necessitate at least two successive changes of scale (cf. Fig.
1). The first one goes from the plug scale l1 to the core scale l2; starting from the local
equations in the pore [1], macroscopic coefficients at the plug scale could be derived. The
same upward scaling was done for a single fracture [2].

Another increase in scale is necessary since all real porous media are heterogeneous
and since their local properties such as porosity depend upon space. It necessitates a
methodology to perform this second change of scale from the plug scale l2 to the field
scale l3 and it includes semiempirical laws derived from the first change of scale (cf. [3]).

The first change of scale from l1 to l2 and its physical background can be summarized
as follows. Consider an electrolyte flowing through a fracture with electrically charged
walls. Far from the surfaces, the solute may be considered neutral. However, near the
surfaces, the ion distribution within the fluid is disturbed. For example, a negatively
charged face attracts positive ions from the solution and repels negative ones. Thus, in
the region adjacent to the fracture surfaces, the electrolyte is charged. This zone is called
the Debye–Hückel sheath layer. Its thickness ��1 may vary from several Angströms up to
a few tens of nanometers.

Because of this electrical perturbation within the solution, if the medium is embodied
in an external electric field E, the ions are set in motion; this creates an electric current I
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passing through the material. In addition, a nonzero volumetric body force acts on the
electrolyte, in the double layer, due to its net electric charge. Therefore, the fluid flows in
the Debye layer and, as a result of viscous friction, in all the bulk although the solute
experiences no body force in this region. This implies an interstitial flow with a certain
seepage velocity U , in the absence of any macroscopic pressure gradient applied to the
medium. Such a process is called electro-osmosis. Inversely, in the presence of a macro-
scopic pressure gradient rP, the fluid percolates through the fracture with a Darcy seepage
velocity U . Additionally, the electrolyte motion within the double layer affects the equili-
brium ion distribution and entails macroscopic electric current density I, occurring in the
absence of any external electric field. These coupling phenomena are the basis of our
study.

When the electric field and the pressure gradients are not too large, the fluxes I and
U are linearly related to them by the following relations:

I ¼ r � E � a � rP ð1aÞ

U ¼ b � E �
K

�
� rP ð1bÞ

where r and K are the conductivity and permeability tensors, respectively, and a and b are
the electro-osmotic coupling tensors (with a ¼ bt by virtue of Onsager’s irreversible ther-
modynamic theorem [4]). This situation has been analysed for porous media [1], for
aggregates [5], and for fractures [2]. Note that it has been reviewed in Ref. 6.

Conservation of mass and current requires that U and I satisfy the continuity
equations:

r � I ¼ 0;r �U ¼ 0 ð2Þ

The second change of scale goes from l2 to l3 (cf. [3]); the overbar denotes quantities
defined at the field scale l3. The tensors K , r; a, and b are random or deterministic func-
tions of space; I and U are given by Eq. (1) and they are solutions of Eq. (2). One has to
determine the average seepage velocity U and the average current density I when the
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FIG. 1 Illustration of the length scales involved in the problem: (a) displays pores (in black) of a
scale l1 and the plug scale l2 where porosity can be defined; (b) displays the porosity variations
represented by gray levels at the field scale l3. When the porosity variations are statistically homo-

geneous, the random porous medium can be replaced by a spatially periodic medium (c) where
computations are performed.



medium is submitted to an average pressure gradient rP and an average electric potential
gradient r� at the scale l3. Because of the linearity of the previous set of equations, the
fluxes U and I are expected to be linearly related to the gradients rP and r� [cf. Eq. (1)].
Specifically,

U ¼ �
K

�
� rP� b � r ð3aÞ

I ¼ �a � rP� r � r ð3bÞ

where the second-order tensors K, �, and � represent the macroscopic permeability, con-
ductivity, and electro-osmotic coupling tensors, respectively. Again it can be proved that
b ¼ at, where t denotes the transposition operator.

We tried to keep notations as compact as possible. On the microscopic scale, all
fields are denoted by lower case letters such as the velocity u and the pressure p. On the
plug scale l2, they are denoted by upper case letters such as the seepage velocity U, the
pressure P, and the electric current I . On the field scale l3, they are denoted by upper case
letters with overbars, such as U and I .

This review is organized as follows. The general microscopic electrokinetic equations
which govern the flow of an electrolyte are presented in Section II as well as the relevant
boundary conditions. Section III is devoted to the presentation of the change of scale from
l1 to l2. The macroscopic cofficients which appear in Eq. (1) are derived in a general way.
The porous media and the fractures for which these coefficients have been systematically
evaluated are then described. Finally, two semiempirical laws are derived for the electro-
osmotic coupling coefficients in porous media and in fractures.

Section IV presents the derivation of the coefficients on the field scale l3 when the
coefficients at the plug scale l2 are known. Various theoretical considerations are given,
including a theoretical expansion for lognormal media. Results of numerical studies for
stratified and fractured media are summarized.

This review is ended by some preliminary results summarized in Section V which
show that the electrokinetic effect provides correct orders of magnitude for the electro-
magnetic measurements performed at La Fournaise volcano.

II. ELECTROKINETIC EQUATIONS AT THE MICROSCOPIC SCALE

All the relevant microscopic equations which govern electro-osmotic phenomena are given
in this section, as well as a general description of the spatially periodic porous media.

A. Flux of the Ionic Species

Consider an N-component Newtonian electrolyte of density �f , dynamic viscosity � ¼
constant, and dielectric constant �el, flowing with velocity uðR; tÞ in interstices of a porous
material. Let  ðR; tÞ be the electric potential prevailing within the solute. The flux ji of
each ith ion species, composing the solute, is given by the following constitutive equation
[7]:

ji ¼ �DirRni � ezibinirR þ niu; i ¼ 1; 2; . . . ;N ð4Þ
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where rR ¼ @=@R, ni is the ion’s concentration in molecules per volume,  is the electric
potential; Di and bi are the ion’s diffusivity and electric mobility, related by the Stokes–
Einstein equation:

Di ¼ bikT ð5Þ

Furthermore, zi is the ion’s algebraic valency ð> or < 0Þ and e is the electron charge
ðe > 0Þ; ji and the concentration ni obey the continuity (species conservation) equation:

@ni
@t
þ rR � ji ¼ 0 ð6Þ

B. Flow Velocity Field

We will be concerned with dense porous materials, wherein the percolation flow velocity is
normally small and the characteristic Reynolds number is much less than unity. In these
circumstances the (generally nonsteady) flow velocity field is governed by the Stokes
equations:

�r2
Ru� �f

@u

@t
¼ rRpþ f ; r � u ¼ 0 ð7Þ

where �f and � are the density and the constant dynamic viscosity of the electrolyte,
respectively, p is the pressure, and f is the electric volumetric force density:

f ¼ ��rR ¼ �
X

enizirR ð8Þ

with

� ¼ e
XN
i¼1

nizi ð9Þ

being the electric charge density.

C. Electric Potential

The electric potential is given by the Poisson equation:

r
2
R ¼ �

�

�
¼ �

e

�el

XN
i¼1

nizi ð10Þ

It is assumed that for any nonsteady process of ion transport, transient phenomena asso-
ciated with the electric potential occur so fast that one can use Eq. (4) in a quasisteady
approximation, i.e., assuming that  ¼  ðR; tÞ satisfies Eq. (10) with time t being a para-
meter. This means that the electromagnetic wave propagation characteristic time L=c is
much smaller than the characteristic time L2=Di, associated with the diffusive species’ trans-
port, L and c being the characteristic interstitial scale and velocity of light, respectively.

D. Boundary Conditions

Equations (6–10) have to be solved subject to the following boundary conditions on the
liquid–solid interface S:
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m � ji ¼ 0 ð11aÞ

u ¼ 0 ð11bÞ

 ¼  or m � rR ¼ �
�s
�el

ð11cÞ

where m is the outer normal to S, �s its surface charge density, and  its zeta potential. The
two boundary conditions, namely, the Dirichlet or Neuman condition on the electric field,
are met in the literature (see [7], [18]).

III. MACROSCOPIC PROPERTIES AT THE PLUG SCALE

A. General Analysis

The previous system of equations and boundary conditions is by no means easy to solve in
general. For porous media and fractures schematized as spatially periodic media, the
system at equilibrium is analyzed first. The general system is then linearized close to
equilibrium and made dimensionless.

1. Equilibrium Ion Density Distribution

Suppose that neither an external electric field nor a pressure (or concentration) gradient is
imposed on the porous medium. One can then rewrite Eq. (6) in the following form:

rr � j
o
i ¼ 0 i ¼ 1; 2; . . . ;N ð12Þ

with the obvious zero-flux solution which, with the help of Eqs (4–5), may be written as

joi ¼ 0 ¼ �DirRn
o
i �

ezi
kT

Din
o
i rR 

o i ¼ 1; 2; . . . ;N ð13Þ

In the above, the superscript 0, appearing on ni and  , refers to equilibrium conditions.
From Eq. (13), one obtains the familiar Boltzmann distribution for noi :

noi ¼ n1i �
ezi
kT

 o
Þ

�
ð14Þ

where n1i is a certain value of noi . To obtain the equilibrium potential distribution  o
ðRÞ,

introduction of Eq. (14) into Eq. (10) yields the Poisson–Boltzmann equation:

r
2
R 

o
¼ �

e

�el

XN
i¼1

n1i zi exp �
ezi
kT

 o
� �

ð15Þ

This equation is to be solved subject to the equilibrium boundary condition [cf. Eq. (11c)]:

 o
¼  or m � rR 

o
¼ �

�s
�el

ð16Þ

Usually, the surface potential  is taken to be constant on S.
With the help of Eqs (8) and (14), the flow velocity field equation (7) is reduced to

0 ¼ rRp
o
þ rR 

o
XN
i¼1

n1i ezi exp �
ezi
kT

 o
� �

ð17Þ
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2. Equilibrium Ion Density Distribution in Spatially Periodic Porous Media

In order to complete the problem formulation, one should specify the porous microstruc-
ture of the material. Several types of ordered and disordered microstructures will be
considered here, which are all characterized by the spatial periodicity property [8]. This
periodicity will hold for three dimensions for porous media and for two dimensions for
fractures; for the sake of brevity, only the three-dimensional (3D) periodicity is presented
here. The porous medium is assumed to consist of a multitude of identical unit cells �,
indefinitely reproduced within an infinite space (see Fig. 2). Therefore, the solution of Eqs
(6)–(11) is to be sought in the 3D space R3 with

R ¼ rþ Rn ¼ rþ n1l1 þ n2l2 þ n3l3 ð18Þ

where l1; l2; l3 are the three basic vectors characterizing the unit cell of the porous medium
and the trio of integers n ¼ ðn1; n2; n3Þ belongs to Z3 [8, 9]; r is the local position vector
within the unit cell.

At equilibrium, all properties, appearing in Eqs (14)–(15) are spatially periodic
functions, i.e., only depend upon the intracell local position vector r:

noi ðRÞ ¼ noi ðrÞ ði ¼ 1; 2; . . . ;NÞ; poðRÞ ¼ poðrÞ and  o
ðRÞ ¼  o

ðrÞ ð19Þ

and may be considered only within the unit cell �, on the external faces of which the
periodicity conditions should be imposed. These will be formulated in the form [9]:

½j o
jj ¼ 0; ½jrr 

o
jj ¼ 0 ð20Þ

where ½j . . . jj denotes the difference between the values of a function at the opposite points
(r; rþ ljÞ, lying at the corresponding unit cell boundaries.

A last condition should be added to this set of conditions, which is called the
macroscopic electroneutrality condition. The sum of all the charges within the unit cell
is equal to zero:

XN
i¼1

ð
�

noi zid�þ

ð
S

�oi dS

� �
¼ 0 ð21Þ
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FIG. 2 Schematic view of a spatially periodic medium.



3. Dimensionless Linearized Transport Equations

(a) Small Perturbations. The resolution of the conservation equations (6), (7), and
(10) presents some major difficulties. A simplification is possible if the perturbations of
concentration, potential, pressure, and velocity fields, generated by the introduction of
an electrical or pressure macroscopic gradient, are assumed to be small in comparison
with their equilibrium values. This approximation enables us to replace these equations
by linearized equations written in terms of the small perturbations �niðR; tÞ; � ðR; tÞ;
�pðR; tÞ; and �uðR; tÞ:

ni ¼ noi ðrÞ þ �niðR; tÞ ð22aÞ

 ¼  o
ðrÞ þ � ðR; tÞ and ½j� jj ¼ �E � l j ð22bÞ

p ¼ poðrÞ þ �pðR; tÞ and p½j�pjj ¼ rP � l j ð22cÞ

u ¼ �uðr; tÞ and ½j�uj ¼ 0 ð22dÞ

where E and rP are the macroscopic electric field and the macroscopic pressure gradient
on the plug scale l2.

At this stage, it is convenient to introduce the ionic potentials �i, instead of the
concentrations ni, which one defines as

ni ¼ n1i �
ezi
kT
ð o

þ � þ �iÞ
h i

¼ noi exp �
ezi
kT
ð� þ �iÞ

h i
ð23aÞ

where noi is given by

noi ¼ exp �
ezi
kT

 o
h i

ð23bÞ

(b) Dimensionless Formulation. Finally, every dimensional quality X may be normal-
ized by a scaling quantity X�. The corresponding dimensionless variable X 0 is given by

X 0
¼

X

X�
ð24Þ

For instance, the position vector r is normalized by the Debye–Hückel length so that

r� ¼ ��1
¼

ffiffiffiffiffiffiffiffiffiffiffi
�elkT

e2n�

r
;with n� ¼

XN
i¼1

z2i n
1
i ð25Þ

Table 1 provides the various scaling quantities and the dimensionless quantities. Note that,

in order to linearize relation (23b), the normalized surface potential 0 ¼
e

kT
is supposed to

be small with respect to 1.

Using the above scaling relationships, one can write the following set of non-
dimensionless equations:

r
0
� j0i ¼ 0 ; j0i ¼ n0

0

i ziD
0
ir
0�0i þ n0

0

i þ n0
0

i u
0

ð26aÞ

r
02 00

¼ �
XN
i¼1

n1
0

i zi expð�zi 
00
Þ ð26bÞ

r
02�0i ¼ r

0 00
� zir

0�0i þ
1

D0i
u0

� �
ð26cÞ

r
02u0 ¼ r0p0 �

XN
i¼1

n1
0

i zi expð�zi 
00
Þr

0�0i ; r
0
� u0 ¼ 0 ð26dÞ
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The system (26) is to be solved subject to the boundary conditions formulated on the
surface S of bed elements and to the periodicity conditions. Nondimensional forms of
these conditions are

on S
 0 ¼ 0 or m0 � r0 0i ¼ ��

0
s

m0 � r0�0i ¼ 0
u0 ¼ 0

8<
: ð27aÞ

½ju0j ¼ 0 ; ½j�0ijj ¼ E0 � l 0j ; ½j�p
0
jj ¼ r

0P0 � l 0j ð27bÞ

It is now possible to solve the system of equations (26), subject to the conditions (27)
as will be detailed in Section III.C.

B. Macroscopic Coefficients at the Plug Scale; Circular Tube and Plane
Channel

1. Definitions

Consider first an external electric field of intensity E applied to a porous material. In its
dimensionless form, the flux of ionic species is given by

j0i ¼ noi ziD
0
ir�

0
i þ n0

0

i u
0

ð28Þ

The electric current density flowing through the porous medium, resulting from applica-
tion of E 0, is

I 0 ¼
1

�

ð
�

XN
i¼1

zi j
0d� ¼

1

�

ð
�

XN
i¼1

n0
0

i z
2
i D

0
ir�

0
id� þ

1

�

ð
�

XN
i¼1

n0
0

i u
0d� ð29Þ

The electro-osmotic velocity U 0 may be calculated by integrating the velocity u0 through-
out the unit cell volume:

U 0
¼

1

�

ð
�

u0d� ð30Þ

Because of the linearity of the previous system of equations and boundary conditions, all
solutions should be proportional to E. The conductivity tensor � of the medium is defined
by

I 0 ¼ r � E0 ; r ¼ ��r0 ð31Þ

and the electro-osmosis tensor b by
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TABLE 1 Definitions of the Scaling Quantities

n�
PN

i¼1 n
1
i z

2
i

 � ¼ �� ¼ � kT=e
��s 2el � 

�
¼2el �ðkT=eÞ

p� n�kT ¼2el ðkT=eÞ
2�2

u� p�=�� ¼ ð2el �ÞðkT=eÞ
2�

D� u�=� ¼ ð2el =�ÞðkT=eÞ
2

�� 2el kTn
�=� ¼ ð1=�Þð2el kT�=eÞ

2

�� ¼ �� 2el kT=�e
K� ��2



U 0
¼ b0 � E0 ; b ¼ ��b0 ð32Þ

where �� and �� are defined in Table 1. In order to follow common notations, r; a; and b

are lower case letters in contradiction with our rule stated at the end of Section I. In the
following, the conductivity r is sometimes normalized by the conductivity r1 of the
undisturbed fluid, instead of ��, as is customary for porous media. These two quantities
are related by

r1 ¼ ��
XN
i¼1

n1
0

i z2i D
0
i ð33Þ

Let us consider now an external pressure gradient rP applied to the same porous material.
Again, the solvent and the charge fluxes are proportional to the driving force rP. Thus,
the permeability tensor K and the electro-osmosis tensor a are defined by

U 0
¼ �K 0

� rP0;K ¼ K�K 0
ð34aÞ

I 0 ¼ �a0 � rP0 ; a ¼ ��a0 ð34bÞ

where K� and �� are defined in Table 1. Since both problems considered in this section are
linear, a superposition of the two generalized forces, i.e., simultaneous application of the
pressure gradient and of the electric field, leads to the relationship (1) with the electro-
osmotic tensors r; a; b and K . This is true only under the assumption that the ion dis-
tribution is slightly distorted, either by application of rP or E. The condition imposed on
the latter quantity is obviously

E0 � 0 ð35Þ

The comparable condition to be imposed on rP may also be obtained. Application of rP
results in a force which must be much smaller than the electric forces near the walls
(en��Þ. Therefore, the restriction on rP is

krP0k � 0 ð36Þ

We are now ready to present elementary analytical results.

2. Circular Tube

Consider a tube of diameter 2a. The unit cell is formed by the region 0 < r < a, 0 < z < L,
where L is an arbitrary length. The external field E and the pressure gradient rP are
applied parallel to the tube axis. The local equations (26) can be analytically integrated [1],
and the four global transport coefficients are given by

�0 ¼
D01 þD02

2
þ 0

I1ð�aÞ

�aI0ð�aÞ
ðD01 �D02Þ ð37aÞ

�0 ¼ �0 ¼ 0
2I1ð�Þ

�aI0ð�aÞ
� 1

� �
ð37bÞ

K 0
¼ ð�aÞ2=8 ð37cÞ

3. Plane Channel

Assume that we consider a plane channel of height 2h. The unit cell region is a paralle-
lepipedic region of height 2h, of width w and of length L; again the width and the length
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are arbitrary. The local equations can be analytically integrated, and the four global
transport coefficients are given by

�0k ¼
D01 þD02

2
þ

1

2
0ðD01 �D02Þ

tanhð�hÞ

�h
þ
02

2

tanhð�hÞ

�h
�

1

cosh2
ð�hÞ

� �
ð38aÞ

�0 ¼ �0 ¼ 0
tanhð�hÞ

�h
� 1

� �
ð38bÞ

K 0
¼
ð�hÞ3

3
ð38cÞ

C. Numerical Simulation of Electro-osmotic Processes

The resolution of the linearized dimensionless electrokinetic equations requires three steps
(cf. [1]). First, the equilibrium potential  o0 is calculated by solving Eq. (26b). This opera-
tion is fast, though  o0 is solved with a high accuracy in order to make possible the
determination of u0 and �0i. Equation (26c) and (26d) are then solved iteratively, until
convergence of I and U . These computations usually converge in a few iterations. The
required accuracy is of the order of 10�4 for the velocity and the ionic potentials, whereas
it is of the order of 10�12 for the electrical potential. The numerical routine has been
thoroughly tested [1, 10].

D. Porous Media

The purpose of this short section is to present the major situations where computations
were performed [1]. Porous media can be classified as nonconsolidated and consolidated
materials. Soils, clays, and packings of various sorts belong to the first class, while rocks
such as sandstones and limestones belong to the second one. Both classes have been
investigated.

A thorough study of regular packings has been carried out [1]. Computations were
conducted for simple cubic arrays of spheres and ellipsoids for various solid concentra-
tions in an aqueous solution of HClO4. Of course, the conductivity and permeability of
cubic sphere packings is isotropic, as may be reasoned from linear superposition.
Computations were also performed for simple cubic arrays of oblate ellipsoids of revolu-
tion with aspect ratio of 5/1 and with solid concentrations varying from 0.02 up to 0.524;
the double-layer thickness was kept equal to �R ¼ 2:81. Finally, Ref. 1 provides detailed
results for orthorhombic arrays of ellipsoids of revolution with an aspect ratio of 5/1, in an
attempt to describe the porous geometric structure of clays, which are composed of plate-
like particles.

Random packings were also thoroughly studied [1]; they were built by simulating the
sequential deposition of particles in a parallelepipedic cell with periodicity conditions
along the two horizontal directions. After a particle is introduced at a random location
from above the cell, it settles vertically along the z axis until it touches a grain already in
place. It then rolls and glides until it reaches an equilibrium position, where it sits at least
on three supporting points. While reaching its equilibrium position, it undergoes rotations
and translations (without bouncing) along the bed surface until it reaches the lowest
position. The numerical procedure is described in detail in Ref. 11. An example of such
a packing of ellipsoids with an aspect ratio 5 is displayed in Fig. 3. Flat ellipsoids tend to
settle with their largest section parallel to the xy plane. The average solid fraction is equal
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to 0.595 for spheres and to 0.596 for ellipsoids. The transport properties of these random
beds were investigated along the two horizontal x and y directions since the packings
obtained in the above procedure are statistically isotropic in the horizontal plane.

Finally, electro-osmotic transport coefficients for reconstructed porous media, based
on Fontainebleau sandstones, were calculated. These media are generated randomly,
according to statistical geometrical characteristics measured on real materials. The recon-
struction procedure has been described elsewhere [8, 12] and only the main points are
given here. First, measurements are performed on a thin section of a given porous med-
ium. A phase function ZðrÞ is introduced:

ZðrÞ ¼
1 if r belongs to phase 1
0 if r belongs to phase 2

�
ð39Þ

where r denotes the spatial position with respect to an arbitrary origin. Phase 1 corre-
sponds to the pore space and phase 2 to the solid space. The porosity � and the correlation
function RuÞ can be defined by the statistical averages (denoted by brackets):

� ¼< ZðrÞ > ð40aÞ

RzðuÞ ¼
< ½ZðrÞ � �½Zðrþ uÞ � � >

< ðZðrÞ � �Þ2 >
ð40bÞ

or equivalently, because Z2
ðrÞ ¼ ZðrÞ :
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FIG. 3 Examples of a bed of 5� 5� 1 ellipsoids obtained by sequential deposition.



RzðuÞ ¼
< ½ZðrÞ � �½Zðrþ uÞ � � >

�ð1� �Þ
ð40cÞ

On a given sample, these measurements were performed using image analysis [8, 12]
in a single, arbitrary chosen plane, since the considered materials were isotropic. Hence, u
can be replaced by its absolute value u. The process of reconstruction of a 3D homoge-
neous and isotropic random medium of a given porosity � and a given correlation function
RzðuÞ is equivalent to generating a random discrete function ZðrÞ which satisfies the
properties specified in Eq. (40). It can be shown that such ZðrÞ can be derived from a
Gaussian field XðrÞ when the latter is successively passed through a linear and a nonlinear
filter [8].

For the present investigation, porous media have been reconstructed using the data
measured on two samples of Fontainebleau sandstones, with porosities � ¼ 0:21 and
� ¼ 0:31, respectively. The length scale L is the correlation length deduced from the
correlation function by

L ¼

ð1
0

RZðuÞdu ð41Þ

An example of a reconstructed sample with � ¼ 0:31 is displayed in Fig. 4. The
correlation length scale L, as measured by image analysis was about 20 mm, which exceeds
the Debye layer thickness by at least two orders of magnitude. Nevertheless, we performed
calculations with the dimensionless parameter �L ¼ 1=

ffiffiffiffiffi
10

p
, 1,

ffiffiffiffiffi
10

p
. This corresponds to

the situation where the geometry of the reconstructed samples was scaled down about 100
times.

E. Fractures

Let us present briefly fracture geometry and the cases which were analyzed. Fractures are
relatively plane rock discontinuities which can be viewed as a void volume located between
two solid walls (Fig. 5). Usually, the upper and lower surfaces are described by their
heights above an arbitrary reference plane z ¼ 0 [13] such as
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FIG. 4 Example of a reconstructed sample with � ¼ 0:31.



z�ðx; yÞ ¼ h�0 þ h�ðx; yÞ ð42Þ

where h�0 are the mean planes of each surface and h� are functions of the co-ordinates x
and y. The surfaces of fractures may be characterized by the probability densities �ðFÞ
which are often assumed to be Gaussian [14]:

�ðFÞ ¼
1ffiffiffiffiffiffi
2�

p
�F

exp �
ðF� < F >Þ2

2�2
F

" #
; with F ¼ hþ; h�;w ð43Þ

where < F > is the statistical average, �2
F the variance and w the difference between zþ and

z�. At a given point ðx; yÞ, the aperture of a fracture is defined as b ¼ w if w � 0 and b ¼ 0
if w < 0, and the mean aperture as bm ¼ hþ0 � h�0 .

The upper and lower surfaces can be correlated with one another or not; this is
expressed by the dimensionless parameter � ranging between 0, for uncorrelated surfaces,
and 1, for perfectly correlated surfaces:

� ¼ 1�
�2
w

2�2
h

ð44Þ

Statistical properties of fractures in the xy plane are defined by means of a covar-
iance function CF ðrÞ of the z� fields, so that

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2 þ�y2

q

CF ðrÞ ¼< fFðx; yÞ� < F >gfFðxþ�x; yþ�yÞ� < F >g > ð45Þ

with F ¼ z�. Two types of random fractures were considered. First, Gaussian fractures are
described by a Gaussian covariance function, with the correlation length l:

CF ðrÞ ¼ �
2
F exp �

r

l

� �2� �
ð46Þ

Second, self-affine fractures are described by

CF ðrÞ ¼ �
2
F exp �

r

l

� �2H� �
ð47Þ

where H is the roughness or Hurst exponent, ranging between 0 and 1.
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FIG. 5 Geometry of random fractures in the xz plane; conventions and notations.



Deterministic fractures were studied in Ref. (2), including the plane channel com-
prised between the two solid walls z�� ¼ 0. Sinusoidal fractures were generated with
limiting surfaces given by

h��ðx; yÞ ¼ � sin 2�
x

l

� �
sin 2�

y

l

� �
ð48Þ

The method of Fourier transforms can then be used to generate random fractures [13]. The
functions h�� are Gaussian and the two surfaces are supposed to have the same spatial
correlation length l.

The geometry of a fracture is fully described by its type (for instance deterministic,

Gaussian, or self-affine) and by the three parameters
bm
�h

,
l

�h
, and �. It is equivalent to

consider �h as the length unit. According to Refs 14–16, these quantities were measured in
real samples and found to belong to the following intervals

0 <
bm
�h
< 2:6 and 1 <

l

�h
< 7 ð49Þ

Moreover, an additional parameter is essential to define self-affine fractures; the exponent
H is often found close to 0.875 [17] for real fractures.

To summarize, examples of reconstructed fractures are gathered in Fig. 6. The
sinusoidal fracture was built according to (48). The Gaussian and self-affine ones were
generated from the same sequence of random numbers; thus, they differ only by the
surface texture, which is related to the exponent H.

F. Local Coefficient � for Porous Media and Fractures

In the past, electro-osmotic phenomena have been mostly studied in the limit of vanishing
thicknesses, for which calculations may be made analytically with the help of the Overbeek
equation [18]:

b


¼
�elr

��1
ð50Þ

where �1 is the electrolyte conductivity.
The thick double-layer limits can be easily deduced from Eqs (37) and (38) for

circular and plane channels:

��

�el
!��2K or

�0

0
! �K 0; �! 0 ð51Þ

This result can be generalized to any porous medium. It is more convenient to consider a
macroscopic pressure gradient rP applied to the porous medium, thus aiming to obtain
the comparable limit of the coupling coefficient �, instead of the equivalent coefficient �.
Suppose that rP induces a flow with local velocity u. The convected electric current is

I ¼ �� � rP ¼
1

�

ð
� udv ð52Þ

Using the same hypotheses and approximations as before, namely, that the equilibrium
concentrations noi are slightly distorted by the flow, that the electrolyte is symmetric, and
that the surface potential is small enough to linearize the Poisson–Boltzmann equation,
Eq. (52) can be recast into
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a � rP ¼ �el�
2 1

�

ð
 oudv ð53Þ

Moreover, for thick double layers, with ��1 larger than the characteristic pore size,  00 is
nearly uniform and approximately equal to the surface potential 0. Therefore, replacing
 o by , and using the definition of permeability, one obtains:

a � rP � �el�
2 1

�

ð
udv ¼

�el�
2

�

�

�

ð
udv ¼ �

�el�
2

�
K � rP; �L! 0 ð54Þ
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FIG. 6 Examples of sinusoidal, Gaussian, and self-affine fractures (top to bottom): 3D visualiza-
tions (left) and aperture maps (right). The mean aperture bm is equal to 20 elementary cubes in all
cases. For the 3D visualizations, the vertical z axis is graduated in �h units. For the maps, black areas

correspond to the smallest distances between upper and lower surfaces, including contact zones,
whereas white areas represent the largest apertures.



Since rP is arbitrary, one obtains:

a � �
�el�

2

�
K or a0 � �0K 0 ; �L! 0 ð55Þ

Hence, this result suggests plotting the ratios �0=0K 0 against a normalized double-
layer thickness; for this purpose, a length scale applicable to all the directions and geo-
metries has to be defined. As already pointed out above, and also shown by Eq. (53), the
criterion for convergence toward Eq. (54) corresponds to the covering of the pore space by
the electrical double layer, rather than its thickness relative to a typical grain size. Thus, an
adequate length scale should be a measure of the characteristic pore size. Such a length
scale � has been introduced [19]. It is essentially a pore volume-to-pore surface ratio, with
a measure weighted by the local value of the electric field EðrÞ in the conduction process:

� ¼ 2

Ð
�f
E2
ðrÞd�fÐ

S E
2ðrÞdS

ð56Þ

where �f is the pore volume inside the unit cell.
This length scale � is derived from the correction to � due to the interfacial con-

ductivity in thin layers. An electrokinetic method [20] was proposed to measure �, as an
alternative way to determine the permeability via

K ¼
�o

�1
�2

8
ð57Þ

This relation was shown [20, 21] to provide excellent predictions for various models or real
porous media. Note that for a plane channel, Eqs. (56) and (57) yield slightly different
results, namely � ¼ 2h and � ¼ 2h

ffiffiffiffiffiffiffiffi
2=3

p
, respectively. For a circular channel, both expres-

sions give � ¼ R. For all the media considered here, � was evaluated by solving the
Laplace equation in the pore space of the unit cell with insulating boundary conditions.

All the electro-osmotic data from our simulations are thus gathered in Fig. 7 and
compared with the theoretical results [Eqs (37) and (38)] for channels. For all anisotropic
configurations, � was evaluated along each direction. All the data cluster around a single
curve, with very little dispersion considering the variety of geometrical configurations. As
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FIG. 7 Reduced coupling Ref. coefficients �0=0K 0 as functions of �� for all the configurations
studied in (1). Data are for simple cubic regular packings (*), orthorhombic packings (*), random

packings (�), and reconstructed sandstones (+). Theoretical results [Eq. (38)] with � ¼
ffiffiffiffiffiffiffiffiffiffi
8=3h

p
(solid

line) and Eq. (37b) with � ¼ R (broken line), and with Eq. (58) (dotted line).



expected, �0=0K 0 tends to �1 for vanishing ��. For intermediate Debye thicknesses,
�0=0K 0 is very well approximated by Eq. (37c) valid for a circular channel.

It is tempting to modify Eq. (56) to obtain an even better agreement with the
numerical data. A least-square fit yields a modified expression for �:

� ¼ 1:544

Ð
�f
E2
ðrÞd�fÐ

S E
2ðrÞdS

ð58Þ

The prediction (37c) with R replaced by � in Eq. (58) is also plotted in Fig. 7. For an
easier evaluation, expression for a plane channel [Eq. (38)] could be substituted into Eq.
(37c). Alternatively, � can be deduced from the primary coefficients �o and K measured
along the same direction by

� ¼
8�elK

��02
e

2I1ð��
0
eÞ

��0
eI0ð��

0
e

� 1

� �
ð59aÞ

�0
¼ 12:5K�1Þð ð59bÞ

where I0 and I1 are modified Bessel functions of the first kind.
These results for porous media can be easily transposed to fractures by using a form

derived from (38). In other words, � was systematically computed according to (56) and
the data were compared to the following relationship for �0

�0

 0K 0
¼

3

�2
�

2

� �2

tanh �
�

2

� �

�
�

2

� 1

2
664

3
775 ð60Þ

A satisfactory representation of the electro-osmotic coupling coefficients of fractures
is given by Eq. (60) as shown in Ref. 2. Nevertheless, it is again tempting to modify Eq.
(56) in order to obtain an even better agreement with the numerical data. A least-square fit
yields the following modified expression for �00 for all the predictions:

�00
¼ 2:201

Ð
�f
E2
ðrÞd�fÐ

S E
2ðrÞdS

ð61Þ

This is displayed in Fig. 8 where the points cluster around the curve with a very small
dispersion, considering the variety of geometrical configurations.

G. Local Coefficients K, r, and a

It might be useful to summarize here the local coefficients for porous media in view of the
second change of scale performed in Section IV. The permeability of Fontainebleau sand-
stones can be correlated by a power law as a function of the local porosity � [22]. Such a
correlation was later confirmed by computations made on reconstructed samples of rocks
such as sandstones and chalk [23, 24]. Hence, a general expression for local permeability
can be given as

K ¼ kL2
c�
m

ð62Þ

where k and m are dimensionless constants; Lc is the correlation length of the phase
function (41). Typical values for sandstones are
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k ’ 0:2;m ’ 3:75 ð63Þ

The macroscopic conductivity of a real porous medium is generally well correlated
by the classical Archie law [8]:

� ¼ s�f�
n

ð64Þ

where �f is the fluid conductivity, and s and n are dimensionless coefficients with the
following typical values:

s ’ 1:3 ; n ’ 2:5 ð65Þ

It should be noticed that surface conductivity is assumed to be negligible.
Finally, the local coefficient � is given by Eq. (59a). When the permeability and the

conductivity of a porous medium are known, a length scale �0 can be expressed by (59b);
note that � is proportional to Lc according to (62).

Variations of these quantities as functions of the porosity � are displayed in Fig. 9.
When � varies from 0.01 to 0.5, K , �, and � vary by several orders of magnitude. For the
range of values which is chosen here, the product �� is usually very large and the ratio of
the two Bessel functions is equal to 1. Hence, � can be simplified as

� ¼ �0:64
�el

�

�

�o
ð66Þ

which corresponds within a factor 0.64 to the classical Overbeek relation (50).
A few parameters are going to be kept constant in this study. The characteristic

coefficients of permeability and conductivity are always given by Eqs (63) and (65).
Moreover, the fluid is water with electrical permittivity and viscosity given in SI units:

�el ¼ 7:10�10 ; � ¼ 10�3
ð67Þ
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FIG. 8 The ratio
�0

0K 0
as a function of ��00 for fractures. On this graph are gathered all the results

for sinusoidal (*) and self-affine (+) fractures. The solid line is derived from Eq. (60) where � has
been substituted by �00.



IV. MACROSCOPIC PROPERTIES AT THE FIELD SCALE

The major purpose of this section is to determine the electro-osmotic coefficient � by
solving the divergence equations (2) for various physical situations, i.e., for various het-
erogeneous porous media.

A. Description of the Media

The media which are going to be systematically investigated belong to several classes,
illustrated in Fig. 10; they can be listed as follows: deterministic media such as laminated
materials, correlated media, and two-phase media.

Deterministic media are mostly of interest for verification of the numerical code. The
simplest example of such a medium is an elementary one-dimensional medium composed
of n identical cells. Each cell consists of two slices of two different materials 1 and 2 whose
heights are h1 and h2; the physical properties are denoted by Ki; �iði ¼ 1; 2Þ.

It is often useful to use dimensionless quantities. Let Ko, �o, and �o be some char-
acteristic values of the local fields K , �, and �; dimensionless local fields denoted by a
prime can be defined by

K 0
¼

K

Ko

; �0 ¼
�

�o
; �0 ¼

�

�o
ð68Þ

It is important to note that the dimensionless quantities defined in this section are different
from the ones defined in Section III.

The second class of materials consists of correlated media. The properties of these
media are assumed to be all lognormally distributed. More precisely, the random field XðrÞ
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FIG. 9 Physical properties as functions of porosity 2: (a) permeability K; (b) conductivity �;
(c) dimensionless coupling coefficient �; (d) dimensionless coupling parameter a. 2 ranges from 0.01
to 0.5. Data are for: Lc ¼ 20 mm; �f ¼ 0:05 S/m; � ¼ 108 m�1;  ¼ �20 mV; Eqs (63), (65), and (67).



(which stands for the dimensionless fields K 0; �0; or �0) can be expressed in terms of the
field YX ðrÞ:

XðrÞ ¼ expðmX þ YX ðrÞÞ ð69Þ

where YX ðrÞ is a Gaussian field with zero mean and a variance denoted by < Y2
X >. The

statistical average is denoted by h�i. Moreover, the Gaussian field YX ðrÞ is correlated; since
it is assumed to be a stationary random field, its covariance is only a function of the vector
u ¼ r� r0. When YX ðrÞ is isotropic, CYX

only depends on the modulus u of u, i.e., CYX
ðuÞ.

Very often a Gaussian correlation is chosen:

CYX
ðr; r0Þ ¼< YX ðrÞYX ðr

0
Þ >¼ CYX

ðr� r0Þ ¼ CYX
ðuÞ ¼ CYX

ðuÞ ¼ exp �
u2

�2

 !
ð70Þ

where � is the correlation length.
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FIG. 10 Illustration of the investigated porous media: (a) deterministic medium composed of two
different materials; (b) correlated medium (the displayed property is porosity which is lognormally
distributed; this corresponds to the exponential of the field displayed in Fig. 1b), (c) two-phase

medium (phase 1 is white, and phase 2 black). Data are for: Nc ¼ 128; P1 ¼ 0:1; �z ¼ �y ¼ 32;
�s ¼ 8.



The three random fields K; �, or � can be assumed either independent or dependent,
and it will be seen in Section IV.D that this has important consequences on the average
properties.

The most important subclass of correlated media is called real correlated media and
is defined by the property that the porosity � is lognormally distributed; hence, Eq. (69)
implies

�ðrÞ ¼ expðm� þ Y�Þ ð71Þ

For simplicity, these media are restricted to be isotropic with a Gaussian correlation (70).
Finally, the local physical properties K; �; and � are related to � by Eqs (62), (64), and
(66). Hence, in realistic applications, K; �; and � are lognormally distributed and inter-
correlated. Reference 3 showed that

YK ¼ mY�;Y� ¼ nY�;Y� ¼ nY� ð72Þ

Hence,

< Y�YK > ¼ < Y�YK > ¼ nm < Y2
� > ð73aÞ

< Y�Y� > ¼ < Y2
� > ¼ n2 < Y2

� > ð73bÞ

The third class of materials is called two-phase media. Such a medium is composed
of two phases called 1 and 2 which have different physical properties K1; �1; �1 and
K2; �2; �2. These properties are assumed to be constant in each phase, but they could
also be random. The distribution of the phases in space is characterized by a phase
function ZðrÞ defined analogously to Eq. (39). Such two-phase media are very similar to
porous materials [8] and all the knowledge developed for these media can be applied here.
To summarize, random two-phase media can be generated with a given proportion P1 of
phase 1 and a given phase correlation RzðuÞ;ZðrÞ is obtained by thresholding a standard
Gaussian field YðrÞ with a correlation function RY ðuÞ. The general form of RY ðuÞ which is
used here also has a Gaussian form [cf. Eq. (70)], which is often anisotropic:

RY ðuÞ ¼ exp �
ux
�z

� �2

�
uy

�y

� �2

�
uz
�z

� �2
" #

ð74Þ

In the important case of stratified media, two correlation lengths are of the same order of
magnitude, but much larger than the third one; this can be schematized by

�x ¼ �y � �z ð75Þ

Two major cases will be considered. In the first case of stratified media, we shall
consider a medium 1 such as sandstones in which are embedded thin layers with low
permeability. Stratified media which are random should not be confused with laminated
media which have been introduced at the beginning of this subsection and which are
deterministic. In the second case of fractured media, the same thin layers have a perme-
ability much larger than that of medium 1; these layers correspond to fractures, or more
precisely to fractured zones.

B. Dimensional Analysis and Expansion

Let us for instance consider the case where a constant but otherwise arbitrary macroscopic
gradient rP is imposed and the resulting fluxes are computed, thereby a and K . Let l be a
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characteristic local length over which the local coefficients K; �, and � vary; l is assumed to
be of the order of l3 (cf. Fig. 1). The most natural definition for the dimensionless pressure
P0 is, therefore,

P ¼ lrPP0 ð76Þ

The electric potential � is primarily induced through the coupling coefficient � since there
is no overall superimposed electric field. The most natural definition for the dimensionless
potential �0 is, therefore,

� ¼
�o
�o

lrP�0 ð77Þ

Hence, the general system (2) is easily reduced to the dimensionless system:

r
0
� ðK 0

r
0P0 þ a�0r0�0Þ ¼ 0 ð78aÞ

r
0
� ð�0r0P0 þ �0r0�0Þ ¼ 0 ð78bÞ

where r ¼ lr0 and r0 ¼ lr.
The dimensionless coupling parameter a is expressed as

a ¼ �
�2
o

Ko�o
ð79Þ

This coefficient will play a central role in the following analysis. Typical orders of magni-
tude (see, e.g. Ref. 3) of the local coefficients are (in SI units)

Ko ¼ 10�12; � ¼ 10�3; �o ¼ 310�9; �o ¼ 0:01 ð80aÞ

The implies that

a ¼ 9� 10�7
ð80bÞ

Hence, because of the nature of the coupling coefficient, a is generally very small with
respect to 1:

a� 1 ð81Þ

This statement is the basis of the systematic expansion summarized below.
A direct solution of the system (78) for P0 and �0 turned out to be very difficult

because standard and robust techniques, such as the conjugate gradient, were found to be
unstable when realistic values of the coefficients K; �, and � were used.

First consider that a macroscopic pressure gradient is imposed. The resulting fields
P0 and �0 verify the system (78). These two quantities can be expanded as

P0 ¼
X1
i¼0

aiP0i ; �0 ¼
X1
i¼0

ai�0i ð82Þ

These expansions can be introduced into Eqs (78) which can be rearranged according to
the powers ai; then it is a standard procedure for such perturbation expansions to equate
the terms of order ai to zero:

i ¼ 0 : r0 � ðK 0
r
0P0oÞ ¼ 0 ; r0 � ð�0r0�0oÞ ¼ �r

0
� ð�0r0P0oÞ ð83aÞ

i ¼ 1 : r0 � ðK 0
r
0P01Þ ¼ �r

0
� ð�0r0�0oÞ ; r

0
� ð�0r0�01Þ ¼ �r

0
� ð�0r0P01Þ ð83bÞ

and for the term of order i:
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i : r0 � ðK 0
r
0P0iÞ ¼ �r

0
� ð�0r0�0i�1Þ ; r

0
� ð�0r0�0iÞ ¼ �r

0
� ð�0r0P0iÞ ð83cÞ

Clearly, these equations can be solved recursively until convergence of the expansion
is obtained. The right-hand side of Eq. (83c) is always known from the previous steps.
These equations are elliptical partial differential equations with a known second member;
their numerical resolution does not generate any difficulty and any standard conjugate
gradient technique is efficient; no instability was ever found.

Precisely the same developments can be done when an external macroscopic electric
gradient r� is imposed.

C. Theoretical Expansion for Lognormal Media

When the fluctuations of the local quantities K; �, and � are not large, a small perturba-
tion expansion in terms of these fluctuations can be applied to the coupled equations (2).
There is a vast literature (see, e.g., Refs 25–29) on the determination of the macroscopic
permeability from the Darcy equation alone (which corresponds to � ¼ 0; � ¼ 9Þ and we
do not intend to review it here.

Let us assume that the three fields K; �, and � are lognormally distributed and that
their dimensionless counterparts are expressed by Eq. (69). The three constants Ko; �o and
�o are defined by

Ko ¼ expmK ; �o ¼ expm� ; �o ¼ expm� ð84Þ

The assumptions of small perturbation is equivalent to assuming that the variances
< Y2

K >;< Y2
� >, and < Y2

� > are small with respect to 1.
In order to have a tractable system, it is further assumed that the dimensionless

coupling parameter a is much less than 1 as discussed in Section IV.B and that it is also
much smaller than the previous variances:

a�< Y2
K > ; < Y2

� > ; < Y2
� >� 1 ð85Þ

This assumption, which corresponds to most cases of practical interest, implies that the
expansions in terms of a can be limited to the zeroth order. For instance, let us consider a
prescribed macroscopic pressure gradient rP; the relevant equations are thus reduced to
Eq. (83a). All the detailed calculations can be found in Ref. 3. When the statistical fields
K; �; and � are isotropic, the resulting macroscopic permeability < K >, conductivity
< � >, and electro-osmotic coefficient < � > are given by

< K >

Ko

¼ 1þ
< Y2

K >

6
ð86aÞ

< � >

�o
¼ 1þ

< Y2
� >

6
ð86bÞ

< � >

�o
¼ 1þ

< Y2
� >

2
þ

1

3
< Y�YK � Y�Y� � YKY� > ð86cÞ

These expressions can be commented on as follows. The first two equations are a mere
repetition of the classical expression recalled by Ref. 30. The third expression is more
interesting. First, Y� and YK play the same role; this is related to Onsager’s symmetry of
the tensors [3]. Second, various expressions are obtained when the fields are correlated or
not. For instance,

Electrokinetics in Porous Media 543



1. All the fields are uncorrelated:

< � >

�o
¼ 1þ

1

2
< Y2

� > ð87aÞ

2. K and � are correlated, but they are not correlated to �:

< � >

�o
¼ 1þ

1

2
< Y2

� > þ
1

3
< Y�YK > ð87bÞ

3. � and � are correlated, but they are not correlated to K :

< � >

�o
¼ 1þ

1

2
< Y2

� > �
1

3
< Y�Y� > ð87cÞ

4. K and � are correlated, but they are not correlated to �:

< � >

�o
¼ 1þ

1

2
< Y2

� > �
1

3
< YKY� > ð87dÞ

Of course, the most interesting result is obtained for real correlated media as defined in
Section IV.A by Eq. (72). Because of the relations (73), one obtains:

< K >

Ko

¼ 1þ
m2

6
< Y2

� > ð88aÞ

< � >

�o
¼ 1þ

n2

6
< Y2

� > ð88bÞ

A similar calculation, made for a prescribed overall potential gradient, yields

< � >

�o
¼ 1þ

n2

6
< Y2

� > ð89Þ

This result which shows that
< � >

�o
is identical to

< � >

�o
is a priori puzzling, but it can be

exactly demonstrated when an overall potential gradient is imposed [3].

D. Results

The full numerical solution of Eq. (2) is based on a few steps which can be summarized as
follows. First, the porous medium is replaced by a spatially periodic pattern of unit cells
with the same content as illustrated in Fig. 1c. The unit cell consists of Ncx �Ncy �Ncz

elementary volumes of sizes �x ��y ��z. In most cases, these quantities are equal to Nc

and �. The box integration method is used to derive the difference equation.
This general methodology is applied to the couples of partial differential equations

obtained by the perturbation expansions described in Section IV.B. When a macroscopic
pressure gradient rP is prescribed over the unit cell, the couples [Eqs (83a), (83b), (83c),
. . .] are solved sequentially.

It may be useful to provide the boundary conditions in this particular case. The field
P0o can be decomposed as [8]

P0o ¼

^

P0o þ r0 � r0P0o ð90Þ
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where the small inverted hat denotes a spatially periodic function. Likewise, all the fields
P0iði � 1Þ and �0iði � 0Þ are spatially periodic.

Similar equations and boundary conditions are obtained when a macroscopic poten-
tial gradient � is applied.

1. Laminated Media

The first interesting case to consider is the one of laminated media which are displayed in
Fig. 10a. It will prove convenient to schematize the relations (1) by the matrix formula:

U i

I i

� �
¼ �M i �

rPi

r�i

� �
; i ¼ 1; 2 ð91Þ

where Mi is a 2� 2 matrix with an obvious correspondence.
It is standard to study the so-called parallel and series cases. When the macroscopic

gradients are parallel to the slices, i.e., perpendicular to the z axis in Fig. 10, the gradients
are identical in each slice and the total fluxes add one to another. Without any loss in
generality, it can be assumed that the fluxes are parallel to the x axis. Hence, the macro-
scopic properties are given by

Ux

Ix

� �
¼ �Mx �

@P
@x
@�
@x

 !
with Mx ¼

h1M1 þ h2M2

h1 þ h2
ð92Þ

The series formula applies when the gradients are parallel to the z axis. In such a
situation, the fluxes are conserved and it is preferable to use Eq. (91) in its inverse form.
Hence,

Uz

Iz

� �
¼ �Mz �

@P
@z
@�
@z

 !
with Mz ¼

h1M
�1
1 þ h2M

�1
2

h1 þ h2

 !�1

ð93Þ

The macroscopic properties of the series case are, therefore, given by a much more com-
plex expression.

These formulas were used to verify the numerical routines; the numerical data
obtained for such laminated media were found to be in perfect agreement with Eqs.
(92) and (93).

This offers us the opportunity to generalize to the present situation of the bounds
which were first given [31] for elementary diffusive processes in a random medium. The
proof closely follows the one recalled in Ref. 8. The result can be summarized by the two
inequalities:

<M�1 >�1
 M  <M > ð94Þ

In other words, the right-hand inequality means that the tensor <M > �M is positive
definite; an analogous property holds for the left-hand inequality. Note that the tensor M
is the tensor composed of the overbarred elements in Eq. (3).

2. Correlated Media

One of the major purposes of these media is to check further the numerical routine by
comparing the numerical data and the analytical predictions [Eqs (86)] systematically [3].

A first series of checks was performed when the three fields K; �, and � are lognor-
mally distributed. The average physical parameters were selected in order to be represen-
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tative of a Fontainebleau sandstone. The variances of the fields Y [cf. Eq. (69)] are given
by

< Y2
K >¼ 0:16 ; < Y2

� >¼ 0:25 ; < Y2
� >¼ 0:09 ð95Þ

In order to check the influence of the intercorrelation between the properties, a few
samples were generated in the following way. A Gaussian standard field YðrÞ is generated;
� is said to be correlated with K when these two fields are expressed by

YK ðrÞ ¼< Y2
K >

1=2 YðrÞ ; Y�ðrÞ ¼< Y2
� >

1=2 YðrÞ ð96Þ

Moreover, the field Y�ðrÞ is statistically independent of YðrÞ. Hence, the coupling coeffi-
cient is readily deduced from Eq. (87b) as

< � >

�o
¼ 1þ

1

2
< Y2

� > þ
1

3
< Y2

K >
1=2< Y2

� >
1=2

ð97Þ

The other cases are generated in the same manner.
In all cases, the results show that the routine was working satisfactorily. The theo-

retical predictions [Eq. (87)] were all verified numerically. The agreement between the
numerical calculations and the analytical predictions (Eqs. (88) and (89)] is seen to be
very good up to < Y2

� >
1=2
 0:3. The higher-order terms then become important; more-

over, the fluctuations for permeability, for instance, are quite large.

3. Stratified Media

As defined in Section IV.A, these media are composed of two media denoted by the indices
1 and 2. Medium 1 has properties which are close to sandstones, while 2 is much less
porous, but with a larger zeta potential. The standard case is summarized by

� ¼ 108 ; �f ¼ 0:05

P1 ¼ 0:9 ; �x ¼ �y ¼ 16� ; �z ¼ 4� ;Nc ¼ 64

�1 ¼ 0:3 ;Lcl ¼ 2:10�5 ; 1 ¼ �0:02

�2 ¼ 0:15 ;Lc2 ¼ 2:10�6 ; 2 ¼ �0:05

ð98Þ

to which Eqs (63), (65), and (67) should be added. Everything is expressed in SI units; the
scale � is arbitrary. The major differences between the two media are the porosities, the
local correlation lengths, and the zeta potentials. The average properties for the media are
given by

�1 ¼ 0:131 10�4 ; K1 ¼ 0:876 10�12 ; �1 ¼ 0:320 10�2

�1 ¼ 0:573 10�9 ; a1 ¼ 0:117 10�6

�2 ¼ 0:847 10�6 ; K2 ¼ 0:651 10�15 ; �2 ¼ 0:566 10�3

�2 ¼ 0:248 10�9 ; a2 ¼ 0:167 10�3

ð99Þ

The reference values used for the dimensionless fields are the ones of medium 1:

Ko ¼ K1 ; �o ¼ �1 ; �o ¼ �1 ð100Þ

Hence, the permeability K2 of medium 2 is about three orders of magnitude smaller
than the one K1 of the sandstones, and the dimensionless coupling parameters a2 and a1
are in the opposite ratio.
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Two large scale correlation lengths �x and �y are equal and different from �z. This
symmetry property implies that, for the large scale tensor A, which stands for the three
macroscopic tensors < K >;< r >; and < a >:

Axx ¼ Ayy 6¼ Azz for A ¼< K >;< r >; or < a > ð101Þ

The influence of the parameters (98) was studied. These parameters can be divided
into two groups, namely, the electrical parameters (such as the fluid conductivity, the
Debye–Hückel length ��1, the zeta potentials 1 and 2) and the geometrical parameters
[such as the large-scale correlations length ð�x; �y; �zÞ and the probability P1 of phase 1].
Note that this list is not complete and that the local correlation lengths Lc1 and Lc2 have
been studied only for fractured media. It should also be noticed that this study was by no
means systematic; one parameter at a time was varied around the standard case provided
by Eqs (98). Moreover, many numerical results suggested that analytical calculations
could be usefully performed in several limiting cases.

The first general property which must be noticed is that the dimensionless results do
not depend on the fluid conductivity �f , when it is assumed to vary independently of the
other parameters. This is because only the ratio �=�f appears in Eqs (64) and (59b). No
detailed result is provided here for this verification.

The influence of the two zeta potentials was systematically studied numerically.
Some results are illustrated in Figs 11 and 12. The variations in the dimensional coupling
coefficient < � > are seen to be linear functions of the zeta potentials 1 and 2. This is
expected since these effects are generally speaking proportional to  as shown in Ref. 1.
Here, the situation is slightly different since there are two zeta potentials 1 anad 2 which
cause the coupling phenomenon. Hence, < a > is expected to vary as

< a >¼ 1 < a1 > þ2 < a2 > ð102Þ

where the tensors < a1 > and < a2 > are functions of all the other properties listed in Eqs
(98). This also explains why the curve does not go to zero when 2 tends towards 0 in Fig 12.
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FIG. 11 Influence of the zeta potential 1. Data are for the properties listed in Eq. (98). (a)

Dimensionless components of the coupling tensor < a > as functions of 1:
< �xx >

�o
(solid line),

< �zz >

�o
(dashed line); (b) dimensional coupling coefficients: �oð�Þ, < �xx > ðrÞ; < �zz > ð�Þ. The

lines are linear regression.



The influence of � was also investigated. Starting from the standard case � ¼ 108 (cf
98), � was decreased down to 0:2� 108; this corresponds to double-layer thicknesses
ranging from 10 to 50 nm. The corresponding variations in the macroscopic properties
are small; �o which is related to medium 1 varies between 0.573 10�9 and 0.570 10�9,
< �xx >

�o
between 0.946 and 0.940, and

< �zz >

�o
between 1.01 and 0.984. Hence, the macro-

scopic coupling coefficients slightly increase with �; this sense of variation is in agreement
with the one obtained at the local scale in Ref. 1.

The geometrical parameters were then studied. The influence of anisotropy was
analyzed in the following way: the two correlation lengths �x and �y were kept fixed
and equal to 16� (in arbitrary units); �z was varied between 4� (which corresponds to
a disk-like shape of the inclusions as illustrated in Fig. 10c and to the standard case, Eq.
(98)] and 16� (which corresponds to an isotropic situation). Since the physical properties
of each medium are kept constant, the reference values Ko; �o, and �o are constant.
Generally speaking, for each property A (cf. Eq. (101)], the values Axx and Azz become
equal when the medium is isotropic as they should; one of them increases with �z while the

other one decreases. The largest relative variations are obtained for < Kzz >;
< �xx >

ao
is

almost constant, while the variations of
< �xx >

�o
are relatively more important.

Finally, the influence of the probability P1 of presence of phase 1 was systematically
studied for the standard case [Eq. (98)]. Here again, the reference values Ko; �o and �o are
constant. The physical properties correspond to Eq. (98). It is remarkable that all the
properties vary linearly with p1. The regression lines are given by

< �xx >

�0

¼ 1� 0:54ð1� P1Þ ;
< �zz >

�o
¼ 1þ 0:07ð1� P1Þ ð103aÞ

< Kxx >

Ko

¼ 1� 1:24ð1� P1Þ ;
< Kzz >

Ko

¼ 1� 2:75ð1� P1Þ ð103bÞ

< �xx >

�o
¼ 1� 0:95ð1� P1Þ ;

< �zz >

�o
¼ 1� 1:60ð1� P1Þ ð103cÞ
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FIG. 12 Influence of the zeta potential 2 on �oð�Þ; < �xx > ðrÞ, and < �zz > ð�Þ. Data are for the
properties listed in Eq. (98). The lines are linear regression lines.



These linear functions of ð1� P1Þ are of the same nature as the expansions which can
be found in the literature for properties such as conductivity (see Ref. 8 for a general
survey). The explanation of the linear dependences of all these properties of P1 would
necessitate a systematical theoretical effort as already mentioned in Ref. 3.

4. Fractured Media

These media are composed of two media denoted by the indices 1 and 2; 1 is the porous
medium which corresponds again to a typical Fontainebleau sandstone [cf. Eq. (98)], while
2 corresponds to a fractured zone. The standard case can be summarized by

� ¼ 108 ; �f ¼ 0:05

P1 ¼ 0:8 ; �x ¼ �y ¼ 16� ; �z ¼ 4� ; Nc ¼ 64

�1 ¼ 0:3 ; Lc1 ¼ 2:10�5 ; 1 ¼ �0:02

�2 ¼ 0:35 ; Lc2 ¼ 2:10�4 ; 2 ¼ �0:05

ð104Þ

to which Eqs (63), (65), and (67) should be added.
The major distinction between the two media is the correlation length Lciði ¼ 1; 2Þ

[cf. Eq. (62)], with Lc2 10 times larger than Lc1. Except for conductivity, this implies large
differences in the properties of the media:

�1 ¼ 0:131 � 10�4 ; < K1 > ¼ 0:876 � 10�12 ; < �1 > ¼ 0:320 � 10�2

�1 ¼ 0:573 � 10�9 ; a1 ¼ 0:117 � 10�6

�2 ¼ 0:144 � 10�3 ; < K2 > ¼ 0:156 � 10�9 ; < �2 > ¼ 0:471 � 10�2

�2 ¼ 0:211 � 10�8a2 ¼ 0:606 � 10�8

ð105Þ

Again the reference values Ko; �o, and �o are related to medium 1.
In this preliminary study, it was found useless to make a full analysis of all the

possible parameters and partly to duplicate what has been done for stratified media.
Instead, a few preliminary and complementary checks were done on the influence of the
local correlation lengths Lciði ¼ 1; 2Þ.

When the local correlation length Lc1 is doubled, the permeability is multiplied by a
factor of 4, the conductivity is unchanged, and the coupling coefficients are only very

slightly modified; �o varies from 0.5733 10�9 to 0.5738 10�9,
< �xx >

�o
from 1.224 to 1.289,

and
< �zz >

�o
from 1.101 to 1.124.

A similar set of computations was performed with a doubling of Lc2 from 200 to 400
mm. The probability P2 of phase 2 is changed to 0.1. All the characteristics relative to
medium 1 are of course unchanged, including �o. The permeability K2 is multiplied by a

factor of 4. Again, the coupling coefficients are only slightly modified;
< �xx >

ao
varies from

1.078 to 1.059, and
< �zz >

�o
from 1.044 to 1.040.

V. APPLICATION TO LA FOURNAISE VOLCANO

Let us present in this section a first large-scale application of the previous developments,
which is contained in Ref. 32.
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La Fournaise volcano (Réunion Island), 2630 m high, is one of the most active
basaltic volcanoes in the world with one eruption every 18 months. It is characterized
by heavy rainfalls reaching 6 m per year and large anomalies in the electric potential,
which may be of the order of 2 V [33]. A large fracture zone, about 500 m wide, cuts across
the whole volcano. As mentioned in Ref. 34, this zone is likely to play an important part in
the water circulation through the massif.

For this study, we adopt the simplified structure shown in Fig. 13 which presents a
cross-section of the volcano perpendicular to the fracture zone; the topography is simpli-
fied so that the cross-section is of a constant height L " 2 km, of the order of the height of
the volcano; the top corresponds roughly to the top of the volcano and the bottom to sea
level. This cross-section consists of three zones; the two external zones are assumed to be a
porous medium with identical properties surrounding a fractured zone of width 2h � 500
m with different properties. For simplicity, the structure is assumed to be translationally
invariant along the z axis which is perpendicular to the plane of the figure.

Meteoritic water is assumed to flow through this structure. The upper and lower
boundaries of the porous medium ðx ¼ 0 and L:jyj > hÞ are assumed to be impermeable;
hence, water flows through the central zone and drags along water contained in the porous
medium. We investigate the influence of this flow on the electric potential and the magnetic
field which can be measured at the volcano surface ðx ¼ 0Þ.

According to (1), the seepage velocity U and the current density I are given by

I i ¼ ��ir�i � �irPi ð106aÞ

U i ¼ ��ir�i �
Ki

�
rPi ð106bÞ

where the subscript i stands for the porous medium ði ¼ pÞ or for the fractured medium
ði ¼ f Þ.
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FIG. 13 Model schematic of La Fournaise volcano. V0 and J0 are defined in Eq. (110). The x and y
axes are vertical and horizontal, respectively.



Conservation of mass and current requires that U i and I i satisfy the continuity
equations, analogous to Eq. (2), in each region:

r � I i ¼ 0;r �U i ¼ 0; for i ¼ p; f ð107Þ

This system has to be supplemented by boundary conditions. At jyj ¼ h; x � 0,
pressure, potential, and normal fluxes are all continuous:

Pp ¼ Pf ;�p ¼ �f ; n � Ip ¼ n � I f ; n �Up ¼ n �U f ð108Þ

where n denotes the unit normal to the discontinuity.
At x ¼ 0 and L, for jyj � h, no flux crosses the surface. For jyj < h, the local seepage

velocity V0 and local current density J0 are assumed not to vary with y. To summarize:

jyj � h; x ¼ 0 and L : upx ¼ 0; Ipx ¼ 0 ð109Þ

jyj  h; x ¼ 0 and L : ufx ¼ V0; Ifx ¼ J0 ð110Þ

Other boundary conditions could have been chosen, such as  ¼ constant at x ¼ L;
however, measurements are performed at x " 0, and are insensitive to the conditions at
x ¼ L. With this set of boundary conditions, an analytical solution could be easily derived
[32]. Once the solution is obtained, the magnetic field BðRÞ at point M (cf. Fig. 13) is
deduced by using the Biot–Savart law:

BðRÞ ¼
�0

4�

ð ð ð
x0�0

IðR0Þ �
R� R0

jR� R0j3
dR0 ð111Þ

where �0 is the magnetic permittivity ð¼ 4�� 10�7
Þ. The integration is performed over the

whole medium (i.e., for x0 > 0Þ: BðRÞ has a single horizontal component Bz. The observa-
tion point M is usually located slightly above the ground level (here, calculations are made
for 1 m). The integration over z0 can be performed analytically because of the translational
symmetry along the z axis; the domain can also be reduced to the quarter plane x > 0;
y � 0; z ¼ 0 because of the symmetry with respect to the x axis.

The many parameters which govern this situation can be divided into several groups.
The first group is the geometry of the layers; since it is imposed by the geometry of the
volcano, it is kept fixed:

h ¼ 260 m; L ¼ 2000 m ð112Þ

The second group includes the ingoing (and thus outgoing) fluxes. Usually, J0 is
taken to the equal to zero. An order of magnitude of the seepage velocity is estimated by
assuming that when water is provided to the system, it falls under its own weight in the
fractured zone:

V0 ¼ �g
Kf

�
ð113Þ

The third group of parameters consists of the local properties Ki; �i, and �i. For a
given medium and fluid, they can be either measured or calculated given certain assump-
tions [1]. Some of their properties are not intrinsic and also depend on water salinity and
other physicochemical conditions. Hence, all these quantities can vary independently, at
least to a first approximation.

The studied parameters are summarized in Table 2. With present knowledge, it was
found preferable to make a sensitivity study around a set of central values, given as case
c1.
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The electromagnetic fields predicted for ground level are displayed in Figs 14 and 15
for all the cases listed in Table 2. First of all, for case c1, it should be emphasized that the
order of magnitude of �ð� �1 VÞ is consistent with the observations made [33]. These
fields present a remarkable angular point at jyj ¼ h which is the limit of the fractured zone;
this is consistent with the boundary conditions (108) where the normal components of the
fluxes are continuous, but not the derivatives of the fields. Note that � tends to zero far
from the fractured zone. For jyj < 1000 m, B does not depend on the size of the integra-
tion domain of Eq. (111) along the y axis; computations were performed for sizes equal to
4000 and 10,000 m without any significant influence.

The influence of the heterogeneous character of the medium is demonstrated in these
figures by the homogeneous situation c2 where the permeability of the porous medium is
equal to that of the fractured zone. First, the kinks disappear from the curves as they
should; second, � and Bz are reduced by a factor 10. Hence, as is well known, the
heterogeneous character of the underground medium is an essential feature for produdu-
cing large fields. The residual fields which remain in c2 are due to the no-flux condition
(109) at the surface of the porous medium.

The influence of the conductivities was analyzed in case c3 where they were both
divided by a factor of 10 (cf. Table 2). This parameter may vary widely; it depends on the
local structure of the media and of the chemical content of the water. It is seen in Figs 14
and 15 that � is multiplied by a factor of 10, while Bz is superposed with case c1 and thus
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FIG. 14 The potential field (volts) on the ground (x ¼ 0Þ as a function of the distance y (m) to the
symmetry axis. Data are for: c1 (solid line); c2 (�Þ; c3 ð� � �Þ; c4 (*); c5 (� � �); c5 is overprinted by c1.

TABLE 2 Range of Studied Parameters

Case �p �p Kp �f �f Kf

c1 0.01 3� 10�9 10�12 0.1 3� 10�9 10�10

c2 0.1 3� 10�9 10�10 0.1 3� 10�9 10�10

c3 0.001 3� 10�9 10�12 0.01 3� 10�9 10�10

c4 0.01 10�8 10�12 0.1 10�8 10�10

c5 0.01 3� 10�9 10�11 0.1 3� 10�9 10�9

All quantities are in SI units: � (S), � (m2 s�1V�1), K (m2). Data are for J0 ¼ 0.



does not appear clearly in Fig. 15. Local water measurements are necessary to fix this
important parameter.

The influence of larger coupling factors �i was also clearly demonstrated by case c4
where these two factors are multiplied by a factor of 3 with respect to c1; � and Bz are
both roughly multiplied by a factor of 3. These orders of magnitude are the ones which fit
the best the measured values [34]; note that the proposed variation is very small when
compared with variations measured on plugs [35]. Hence, this factor should also be
measured on samples extracted at La Fournaise.

Stronger permeabilities of the medium were studied in case c5 where both perme-
abilities were multiplied by a factor of 10 with respect to c1. U is modified accordingly and
its influence on � and Bz is negligible.

VI. CONCLUDING REMARKS

At the local scale, electrokinetic phenomena in porous media and in isolated fractures have
been analyzed in the linear limit. The numerical code that has been developed gives reliable
results for Debye–Hückel length comparable to the pore radius. Hence, the results are
applicable mostly to finely dispersed media such as clays. In the opposite limit, the classical
Overbeek formula can be used.

At the plug scale, the equations need to undergo a second change of scale. Physically,
porosity may have some strong variations which imply changes in the transport properties
of the medium. This change of scale has been done both numerically and theoretically;
major results are summarized.

Finally, a preliminary example of application to a volcano is given.
Extensions are presently performed for all these scales. At the pore scale, it is inter-

esting to derive values for multiphase flows through porous media and fractures. The same
is true at the field scale where the most important effects are likely to take place in the
nonsaturated zone. Finally, at the site scale, a complete 3D simulation is presently being
performed of the La Fournaise volcano where the two-phase nature of the flow is taken
into account and where the real geometry of the volcano is used.
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FIG. 15 Magnetic field Bz (nT) at 1 m above the ground as a function of the distance y (m) to the
symmetry axis. Data are for: c1 (solid line); c2 (�), c3 (� � �); c4 (*), c5 (� � �); c1 is overprinted by c3
and c5.
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Electrokinetic Effects on Pressure-driven
Liquid Flow in Microchannels

DONGQING LI* University of Alberta, Edmonton, Alberta, Canada

I. INTRODUCTION

Interfacial electrokinetic phenomena such as electro-osmosis, electrophoresis, and electro-
viscous effects have been well known to colloidal and interfacial sciences for many years.
However, the effects of these phenomena on transport processes (such as liquid flow and
mixing in fine capillaries) are generally less well understood. Partially this is because in
colloidal sciences electrokinetic phenomena are usually studied for closed systems, while in
studies of transport phenomena the systems are open and involve complicated boundary
conditions. Recently, the demands to understand interfacial electrokinetic phenomena in
liquid transport processes increase significantly as various microelectromechanical systems
(MEMS) and microfluidic devices involve liquid transport processes.

Just as rapid advances in microelectronics have revolutionized computers, appli-
ances, communication systems, and many other devices, MEMS and microfluidic technol-
ogies will revolutionize many aspects of applied sciences and engineering, such as heat
exchangers, pumps, combustors, gas absorbers, solvent extractors, fuel processors, and
on-chip biomedical and biochemical analysis instruments. These lightweight, compact and
high-performance microsystems will have many important applications in transportation,
buildings, military, environmental restoration, space exploration, environmental manage-
ment, and biochemical and other industrial chemical processing. Generally, the key advan-
tages of MEMS and microfluidic include increases rates of heat, mass transfer, chemical
reactions, and significantly reduced quantity of samples.

A fundamental understanding of liquid flow in microchannels is critical to the design
and process control of various MEMS (e.g., micro pump and micro flow sensors) and
modern on-chip instruments used in chemical analysis and biomedical diagnostics (e.g.,
miniaturized total chemical analysis system). However, many phenomena of liquid flow in
microchannels, such as unusually high flow resistance, cannot be explained by the con-
ventional theories of fluid mechanics. These are largely due to the significant influences of
interfacial phenomena such as electroviscous effects at the micrometer scale.

In various processes involved in MEMS and microfluidic devices, a desired amount
of a liquid is forced to flow through microchannels from one location to another.
Depending on the specific structures of the MEMS or the microfluidic devices, the
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shape of the cross-section of the microchannels varies. Two typical cases are the slit
microchannels and the trapezoidal (may be approximated as rectangular) microchannels.
This chapter tries to show how to model and to evaluate the interfacial electrokinetic
effects on liquid flow through these microchannels.

II. ELECTRICAL DOUBLE LAYERS AND ELECTROVISCOUS EFFECTS

It is well known that most solid surfaces carry electrostatic charges, i.e., an electrical
surface potential. If the liquid contains a certain amount of ions (for instance, an electro-
lyte solution or a liquid with impurities), the electrostatic charges on the solid surface will
attract the counterions in the liquid. The rearrangement of the charges on the solid surface
and the balancing charges in the liquid is called the electrical double layer (EDL) [1, 2], as
illustrated in Fig. 1. Immediately next to the solid surface, there is a layer of ions which are
strongly attracted to the solid surface and are immobile. This layer is called the compact
layer, normally about several ångstroms (Å) thick. Because of the electrostatic attraction,
the counterion concentration near the solid surface is higher than that in the bulk liquid
far away from the solid surface. The coion concentration near the surface, however, is
lower than that in the bulk liquid, due to the electrical repulsion. So there is a net charge in
the region close to the surface. From the compact layer to the uniform bulk liquid, the net
charge density gradually reduces to zero. Ions in this region are less affected by electro-
static interaction and are mobile. This region is called the diffuse layer of the EDL. The
thickness of the diffuse layer is dependent on the bulk ionic concentration and electrical
properties of the liquid, usually ranging from several nanometers for high ionic concen-
tration solutions up to several micrometers for pure water and pure organic liquids. The
boundary between the compact layer and the diffuse layer is usually referred to as the
shear plane. The electrical potential at the solid–liquid surface is difficult to measure
directly. The electrical potential at the shear plane, however, is called the zeta potential,
�, and can be measured experimentally [1, 2].

According to the theory of electrostatics, the relationship between the electrical
potential  and the local net charge density per unit volume �e at any point in the solution
is described by the Poisson equation:

r
2 ¼ �

�e

"
ð1Þ

where " is the dielectric constant of the solution.
Assuming that the equilibrium Boltzmann distribution equation is applicable, which

implies a uniform dielectric constant, the number concentration of the type-i ion in a
symmetric electrolyte solution is of the form:

ni ¼ nio exp �
zie 

kBT

� �
ð2Þ

where nio and zi are the bulk ionic concentration and the valence of type-i ions, respectively,
e is the charge of a proton, kB is the Boltzmann constant, and T is the absolute tempera-
ture. In the simple case of a symmetric electrolyte of valence z, the net volume charge
density �e is proportional to the concentration difference between cations and anions via

�e ¼ zeðnþ � n�Þ ¼ �2zen0 sinh
ze 

kBT

� �
ð3Þ

where n0 is the bulk number concentration of each ion.
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Substituting Eq. (3) into the Poisson equation leads to the well-known Poisson–
Boltzmann equation.

r
2 ¼

2zen0
"

sinh
ze 

kBT

� �
ð4Þ

By defining the Debye–Hückel parameter k2 ¼ 2z2e2n0="kBT and the nondimen-

sional electrical potential  ¼ ze =kBT , the Poisson–Boltzmann equation can be rewritten

as

r
2 ¼ k2 sinh ð5Þ
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FIG. 1 Illustration of an EDL near a flat solid–liquid interface: (a) ion distribution; (b) electrical
potential distribution.



Generally, solving this equation with appropriate boundary conditions, the electrical
potential distribution  of the EDL can be obtained, and the local charge density dis-
tribution �e can then be determined from Eq. (3).

It should be noted that the Debye–Hückel parameter is independent of the solid
surface properties and is determined by the liquid properties (such as the electrolyte’s
valence and the bulk ionic concentration) only; 1=k is normally referred to as the char-
acteristic thickness of the EDL and is a function of the electrolyte concentration. Values of
1=k range, for example, from 9.6 nm at 10�3 M to 304.0 nm at 10�6 M for a KCl solution.
The thickness of the diffuse layer usually is about three to five times 1=k, and hence may be
as large as a few micrometers for pure water and pure organic liquids. Generally, for
macrochannel flow the EDL effects can be safely neglected, as the thickness of the EDL
is very small compared with the hydraulic diameter of channels. However, for microchan-
nel flow the thickness of the EDL is often comparable with the characteristic size of flow
channels. Thus, the EDL effects originated from the electrostatic interaction between ions
in liquid and the charged solid (flow channel) surface may play an important role in
microchannel flow and heat transfer.

When a liquid is forced through a microchannel under an applied hydrostatic pres-
sure, the counterions in the diffuse layer (mobile part) of the EDL are carried towards the
downstream end, resulting in an electrical current in the pressure-driven flow direction.
This current is called the streaming current. Corresponding to this streaming current, there
is an electrokinetic potential called the streaming potential. This flow-induced streaming
potential is a potential difference that builds up along a microchannel. The streaming
potential acts to drive the counterions in the diffuse layer of the EDL to move in the
direction opposite to the streaming current, i.e., opposite to the pressure-driven flow
direction. The action of the streaming potential will generate an electrical current called
the conduction current, as illustrated in Fig. 2. It is obvious that when ions move in a
liquid, they will pull the liquid molecules to move with them. Therefore, the conduction
current will produce a liquid flow in the opposite direction to the pressure-driven flow. The
overall result is a reduced flow rate in the pressure drop direction. If the reduced flow rate
is compared with the flow rate predicted by conventional fluid mechanics theory without
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FIG. 2 Illustration of the flow-induced electrokinetic field in a microchannel (assume negatively
charged channel wall surface). Steady state: Inet ¼ 0, i.e., Is ¼ Ic.



considering the presence of the EDL, it seems that the liquid would have a higher viscosity.
This is usually referred to as the electroviscous effect [1].

III. ELECTROKINETIC FLOWS IN SLIT MICROCHANNELS

In this section, we consider the liquid flow through a microchannel with a slit-shaped
cross-section [3, 4], such as a channel formed between two parallel plates, as illustrated in
Fig. 3. We assume that the length, L, and the width, W , of the slit channel are much larger
than the height, H ¼ 2a, of the channel, so that both the EDL field and the flow field can
be considered as one-dimensional (i.e., with variation in the channel height direction only).

A. Poisson–Boltzmann Equation

Consider a liquid containing simple symmetric ions, i.e., the valences of the ions are the
same, z ¼ zþ ¼ z�. For the slit microchannel, we consider only the EDL fields near the top
and the bottom plates. The one-dimensional EDL field for a flat surface is described by the
following form of the Poisson–Boltzmann equation:

d2 

dX2
¼
2n0ze

"0"
sinh

ze 

kBT

� �
ð6Þ

The local net charge density in the liquid is given by Eq. (3). By nondimensionalizing eqs
(2) and (6) via

X ¼
X

a
;  ¼

ze 

kBT
; � ¼

�

n0ze
ð7Þ

we obtain the nondimensional form of the Poisson–Boltzmann equation as

d2 

dX
2
¼ �2 sinhð Þ ¼ �

�2

2
� ð8Þ

� ¼ �2 sinhð Þ ð9Þ

where � ¼ a � k ¼ a=1=k is the electrokinetic separation distance or the ratio of the half-
channel’s height to the EDL thickness. Therefore, the parameter � can be understood as
the relative channel’s height with respect to the EDL thickness.
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FIG. 3 A slit microchannel; the channel height is much less than the channel width and length.



B. Solution of the Poisson–Boltzmann Equation

If the electrical potential is small compared to the thermal energy of the ions, i.e., ðjze j <
jkBT jÞ so that the sinhð Þ function in Eq. (8) can be approximated by sinhð Þ ffi  ,
Equation (8) is transformed into

d2 

dX
2
¼ �2 ð10Þ

This treatment is usually called the Debye–Hückel linear approximation [1, 5, 6]. The
solution of Eq. (10) can be easily obtained. As illustrated in Fig. 3, if the separation
distance between the two plates is sufficiently large so that the EDL fields near the two
plates are not overlapped, the appropriate boundary conditions for the EDL fields are:

At the center of the slit channel: X ¼ 0;  ¼ 0
At the solid surfaces: X ¼ 
1;  ¼ � ¼ ðze�=kBTÞ:

With these boundary conditions Eq. (6) can be solved and the solution is given by

 ¼
�

sinhð�Þ
j sinhð�XÞj ð11Þ

Equation (11) allows us to plot the nondimensional EDL potential field in the slit
channel. Due to the symmetry, we plot only the nondimensional EDL potential field from
one surface to the center of the channel, as shown in Fig. 4. In this figure, the zeta potential
is assumed to be 50 mV. For a given electrolyte, a large � implies either a large separation
distance between the two plates or a small EDL thickness. If the separation distance ð2aÞ is
given, increase in the bulk ionic concentration n0 will increase the value of the Debye–
Hückel parameter k [recall that k ¼ ð2n0z

2e2=""0kBTÞ
1=2], the double-layer thickness 1=kÞ
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FIG. 4 Nondimensional electrical potential distribution near the channel wall for � ¼ 50 mV;
X ¼ 0, center of the channel and X ¼ 1, the channel wall. (From Ref. 3.)



is reduced (or the double layer is ‘‘compressed’’), and the electrokinetic separation distance
� ¼ a � k ¼ a=1=k is increased. It can be seen from Fig. 4 that as � increases, the double-
layer field (the  6¼ 0 region) exists only in the region close to the channel wall. For
example, appreciable EDL potential exists only in a region less than a few per cent of
the channel cross-sectional area for � ¼ 80. However, for dilute solutions such as pure
water (infinitely dilute solution), the value of the electrokinetic separation distance � ¼
a � k is small, and hence the EDL field (the  6¼ 0 region) may affect a significant portion
of the flow channel, as shown in Fig. 4.

It should be pointed out that Fig. 4 is the result of using the Debye–Hückel linear
approximation, Eq. (11), and that the linear approximation is valid for small surface
potential situations (i.e.,  � 2:5 mV). However, for large surface potentials, it has been
found that, in comparison with the exact solution of the Poisson–Boltzmann equation, Eq.
(8), the linearized solution predicts slightly lower values of the potential in the region near
the wall. After a short distance from the wall, the difference between the linear solution
and the exact solution diminishes. Discussions of these two solutions can be found else-
where [1, 5, 6].

C. Equation of Motion

Consider a one-dimensional, fully-developed, steady-state, laminar flow through the slit
microchannel shown in Fig. 3. The forces acting on an element of fluid include the pressure
force, the viscous force, and the electric body force generated by the flow-induced electro-
kinetic field (i.e., the streaming potential). The equation of motion is the Z-directional
momentum equation:



d2Vz

dX2
þ Pz þ Ez�ðxÞ ¼ 0 ð12Þ

Where Ez ¼ Es=L is the electrokinetic potential gradient in the Z direction, and Ez�ðxÞ is
the electrical body force; Pz ¼ ��P=L is the pressure gradient in the Z direction.
Nondimensionalizing Eq. (12) with Es ¼ Es=�0;Vz ¼ Vz=V0 ðV0 is the fluid velocity at
the center of the slit), and replacing � by Eq. (8), we obtain

d2Vz

dX
2
þ G1 �

2G2Es

�2
d2 

dX2
¼ 0 ð13Þ

where the two nondimensional numbers are given by

G1 ¼
a2Pz


V0

and G2 ¼
n0zea

2�0

V0L

ð14Þ

Integrating Eq. (13) twice and employing the appropriate boundary conditions, we obtain
the nondimensional velocity distribution in the slit microchannel as follows:

Vz ¼
G1

2
ð1� X

2
Þ �

2G2Es�

�2
1�

 

�

� �
ð15Þ

Substituting  in Eq. (15) by Eq. (11) yields:

Vz ¼
G1

2
ð1� X

2
Þ �

2G2Ez�

�2
1�

sinhð�XÞ

sinhð�Þ

����
����

� �
ð16Þ
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From the definitions of G1 and G2 [Eq. (14)], one can clearly see that the first term in Eq.
(16) represents the contribution of the applied pressure gradient, and the second term in
Eq. (16) represents the EDL’s contribution to the velocity. If there is no EDL effect on the
flow, i.e., G2 ¼ 0, Es ¼ 0, and � ¼ 0, Eq. (12) will be reduced to Vz ¼ G1=2ð1� X

2
Þ, which

is the conventional Poiseuille flow velocity profile between two parallel plates.

D. Streaming Potential

As seen from Eq. (16), the velocity distribution can be calculated only if the streaming
potential E, is known. In the absence of an applied electric field, when a liquid is forced
through a channel under hydrostatic pressure, the excess counterions in the diffuse layer of
the EDL are carried by the liquid to flow downstream, forming an electrical current. This
current resulting from the transport of charges by the liquid flow, called the streaming
current, is given by

Is ¼

ð
Ac

Vz�ðXÞdAc ð17Þ

Nondimensionalizing Vz and �, we obtain the nondimensional streaming current as

Is ¼
Is

2n0V0zea
¼

ð1
0

Vz�dX ð18Þ

Substituting � by using Eq. (8), the nondimensional streaming current becomes

Is ¼ �
2

�2

ð1
0

Vzd
d 

dX

� �
¼ �

2

�2
Vz

d 

dX

����
1

0

�

ð1
0

d 

dX
dVz

2
4

3
5 ð19Þ

Using the boundary conditions:

X ¼ 1; Vz ¼ 0

X ¼ 0;
d 

dX
¼ 0

one can easily see that the first term on the righthand side of Eq. (19) becomes zero.
Therefore, the streaming current reduces to

Is ¼
2

�2

ð1
0

d 

dX
dVz ð20Þ

By using Eqs (6), (11), and (13), we can show that the nondimensional streaming current is
given by

Is ¼ �
2G1��1
�2

þ 4G2Es�2
�

� sinhð�Þ

� �2

ð21Þ

where

�1 ¼ 1�
coshð�Þ � 1

� sinhð�Þ
and �2 ¼

sinhð�Þ coshð�Þ

2�
þ
1

2
ð21aÞ
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The flow-induced streaming potential will drive the counterions in the diffuse layer
of the EDL to move back in the opposite direction to the pressure-driven flow, and
produce an electrical conduction current. The conduction current in the microchannel
has two components, one is due to bulk electrical conductivity of the liquid, and the
other corresponds to the electrical conductivity of the solid–liquid interface, as given by

Ic ¼
�bEsAc

L
þ
�sEsPs

L
ð22Þ

where �b and �s are the bulk and surface conductivity, respectively, Es=L is the streaming
potential gradient, Ac is the cross-sectional area of the channel, and Ps is the wetting
perimeter of the channel. The conduction current Ic can be rewritten as

Ic ¼
EsAc�T

L
where �T ¼ �b þ

�sPs

Ac

ð23Þ

Nondimensionalizing Eq. (23) by using L ¼ L=a, Es ¼ Es=�0, and Ac ¼ Ac=a
2, the non-

dimensional conduction current is given by

Ic ¼
Ic

�0�Ta
¼

EsAc

L
ð24Þ

When the flow in the microchannel reaches a steady state, there will be no net electrical
current in the flow, i.e., Ic þ Is ¼ 0. Using Ic from Eq. (24) and Is from Eq. (21), we obtain
the streaming potential from the steady-state condition:

Es ¼
2G1G3��1

�2 þ 4�2G2G3ð�= sinhð�ÞÞ
2

ð25Þ

where the nondimensional factor G3 ¼ V0n0zeL=��T :
In the classical theory of electrokinetic flow, the effect of the EDL on liquid flow and

the effects of surface conductance are not considered. The streaming potential is related to
the zeta potential and liquid properties through the following equation [1, 2]:

Es

�P
¼
""0�0

�b

ð26Þ

Equation (25) can be rearranged in a form similar to Eq. (26) by translating it in
terms of dimensional parameters, i.e.,

Es

�P
¼
""0�0

�T

� ð27Þ

where the correction factor � to the classical theory, Eq. (26), is given as

� ¼
�1

1þ
�2�

2"2"20�
2
0

sinh2ð�Þa2
�T

ð28Þ

If the EDL effect on liquid flow is not considered, �1 ¼ 1 [see Eq. (21a)] and the second
term in the denominator of Eq. (28) is zero; hence, � ¼ 1. Furthermore, if surface con-
ductance is also not considered, i.e., �T þ �b, Eq. (27) becomes the classical equation, Eq.
(26).

Generally, the zeta potential, the surface conductance, the pressure gradient, and the
liquid properties (such as the bulk ionic concentration, the dielectric constant, and the
bulk conductivity) can be measured [1, 2]. By the above analyses, we can calculate the
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velocity field in the slit microchannel and the flow rate. Figure 5 shows the nondimensional
velocity distribution of pure water in a slit silicon microchannel (20 mm (length) � 10 mm
(width) � 20 mm (height)) for two sets of total pressure drops and zeta potentials. Clearly,
by comparing the case without EDL field (i.e., � ¼ 0, we see that the EDL or the electro-
viscous effect reduces the velocity of the liquid appreciably.

E. Volume Flow Rate and Apparent Viscosity

The volume flow rate through the parallel plates can be obtained by integrating the
velocity distribution over the cross-sectional area, as

Q ¼

ð
Ac

VzdAc ð29Þ

Using Eq. (16), the volume flow rate in nondimensional form is

Q ¼
2G1

3
�
4G2Es�

�2
�
4G2Es�

�3
½1� coshð�Þ�

sinhð�Þ
ð30Þ

For steady flow under an applied pressure gradient, the volume flow rate is given by
Eq. (30). The first term in this equation is the volume flow rate without the EDL effect.
The other two terms clearly reflect the EDL effect on the flow rate and contribute to
reduce the net flow in the pressure drop direction. This reduced flow rate seems to suggest
that the liquid has a higher viscosity. If we define an apparent viscosity 
a ð> 
Þ, the
classical Poiseuille volume flow rate (without considering the EDL effect) for flow between
two parallel plates separated by a distance 2a is then given by
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FIG. 5 Nondimensional velocity distribution for various � values with � ¼ 50 mV. (From Ref. 3.)



Qp ¼
2Pza

3

3
a

ð31Þ

Nondimensionalizing Eq. (31), the volume flow rate is

Qp ¼
2G1


3
a

ð32Þ

Equalizing Eq. (30) with Eq. (32), i.e., Q ¼ Qp, we obtain the ratio of the apparent
viscosity to the true bulk viscosity:


a



¼

�3G1

�3G1 � 6G2Es��� 6G2Es�
1� coshð�Þ

sinhð�Þ

� � ð33Þ

Obviously, if there is no EDL or electrokinetic effect, the second and the third terms in the
denominator of Eq. (33) will be zero, and hence 
a ¼ 
. Generally, because the second
and the third terms in the denominator of Eq. (33) make it smaller than the numerator, it
follows that 
a > 
. This is usually referred to as the electroviscous effect. From Eq. (33),
such an electroviscous effect depends, in addition to the pressure gradient or the flow rate
via the parameter G1, on the ionic properties of the liquid via the Debye–Hückel parameter
k, the channel height, a, via the electrokinetic separation distance � ¼ a � k, and the zeta
potential �.

As explained above, the flow-induced streaming potential drives the counterions to
move in the direction opposite to the pressure drop. These moving ions drag the surround-
ing liquid molecules with them. This generates a flow opposite to the pressure-driven flow
and hence a reduced flow rate in the pressure-drop direction. According to the classical
Poiseuille flow equation, Eq. (31), this reduced flow rate seems to suggest that the liquid
has a higher viscosity. As an example, the ratio of the apparent viscosity to the bulk
viscosity, 
a=
, is plotted by using Eq. (33) as a function of nondimensional electrokinetic
separation distance � in Fig. 6. It is observed that, for � ¼ 50 mV, the ratio 
a=
 is
approximately 2.75 when � ¼ 2 and then decreases as � increases, approaching a constant
value equal to unity for very large values of �. For lower values of � the trend is the same
except that the value of the ratio is lower. Generally, the higher the zeta potential �, the
higher the ratio 
a=
.

IV. ELECTROKINETIC FLOWS IN RECTANGULAR MICROCHANNELS

Generally, most studies of electrokinetic flow phenomena deal with a one-dimensional
EDL field, which holds only for simple geometric channels, such as cylinders and slit-
shaped channels. However, in practice, the cross-section of microchannels made by mod-
ern micromachining technology is close to a rectangular (trapezoidal, more exactly) shape.
As the EDL field depends on the geometry of the solid–liquid interfaces, the EDL field will
be two-dimensional in a rectangular micro channel. In such a situation, the two-dimen-
sional Poisson–Boltzmann (P–B) equation is required to describe the electrical potential
distribution in the rectangular channel, and the corner of the channel may have a parti-
cular contribution to the EDL field and subsequently to the fluid flow field [7, 8].
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A. EDL Field in a Rectangular Microchannel

In order to consider the electroviscous effects on liquid flow in rectangular microchannels,
we must evaluate distributions of the electrical potential and the net charge density, which
can be determined by the theory of the EDL. Consider a rectangular microchannel of
width 2W , height 2H, and length L as illustrated in Fig. 7. According to the theory of
electrostatics, the relationship between the electrical potential  and the net charge density
per unit volume �e at any point in the solution is described by the two-dimensional Poisson
equation [Eq. (1)]:
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FIG. 6 Variation of the ratio of apparent viscosity to the bulk viscosity with the electrokinetic
separation distance �. (From Ref. 3.)

FIG. 7 Liquid flow in a rectangular microchannel (height 2H, width 2W).



@2 

@y2
þ
@2 

@z2
¼ �

�e

"
ð34Þ

Assuming as before that the equilibrium Boltzmann distribution [Eq. (2)] is applic-
able, and that the electrolyte is z�z valent, the following form of the P–B equation is
reached:

@2 

@y2
þ
@2 

@z2
¼
2zen0
"

sinh
ze 

kBT

� �
ð35Þ

By using the Debye–Hückel parameter k, and the hydraulic diameter of the rectan-
gular microchannel Dh ¼ 4HW=ðH þ WÞ, and introducing the dimensionless groups:
Y ¼ y=Dh, Z ¼ z=Dh, K ¼ kDh, and � ¼ ze =kBT , the above equation can be nondimen-
sionalized as

@2�

@Y2
þ
@2�

@Z2
¼ K2 sinh� ð36Þ

Due to symmetry, Eq. (36) is subjected to the following boundary conditions in a
quarter of the rectangular cross-section:

Y ¼ 0
@�

@Y
¼ 0 Y ¼

H

Dh

� ¼ � ð37aÞ

Z ¼ 0
@�

@Z
¼ 0 Z ¼

W

Dh

� ¼ � ð37bÞ

where �, the nondimensional zeta potential at the channel wall, was defined in Section III.
For small values of  (Debye–Hückel approximation), the P–B equation (36) can be

linearized as

@2�

@Y2
þ
@2�

@Z2
¼ K2� ð38Þ

By using the method of separation of variables, the solution to the linearized P–B
equation (38) can be obtained. Therefore, the electrical potential distribution in the rec-
tangular microchannel is of the form:

�ðY;ZÞ ¼ 4�
X1
m¼1

ð�1Þmþ1 cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ð2m � 1Þ2�2D2
h

4K2W2

s
KY

2
4

3
5

ð2m � 1Þ� cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ð2m � 1Þ2�2D2
h

4K2W2

s
KH

Dh

2
4

3
5
cos

ð2n � 1Þ�Dh

2W
Z

� �

þ 4�
X1
n¼1

ð�1Þnþ1 cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ð2n � 1Þ2�2D2
h

4K2H2

s
KZ

2
4

3
5

ð2n � 1Þ� cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ð2n � 1Þ2�2D2
h

4K2H2

s
KW

Dh

2
4

3
5
cos

ð2n � 1Þ�Dh

2H
Y

� �

ð39Þ

For large values of  , the linear approximation is no longer valid. The EDL field has
to be determined by solving the full Eq. (36). In order to solve this nonlinear, two-dimen-
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sional differential equation, a numerical finite-difference scheme may be introduced to
divide the equation into discrete algebraic equations by integrating the governing differ-
ential equation over a control volume surrounding a typical grid point. The nonlinear
source term is linearized as

sinh�nþ1 ¼ sinh�n þ ð�nþ1 ��nÞ cosh�n ð40Þ

where the subscripts ðn þ 1Þ and n represent the ðn þ 1Þth and the nth iterative value,
respectively. The derived discrete, algebraic equations can be solved by using the
Gauss–Seidel iterative procedure. The solution of the linearized P–B equation with the
same boundary conditions may be chosen as the first guess value for the iterative calcula-
tion. The under-relaxation technique is employed to make this iterative process converge
rapidly. The details of how to obtain the numerical solutions of Eq. (36) can be found
elsewhere [8, 9].

After the electrical potential distribution inside the rectangular microchannel is
computed, the local net charge density can be obtained from Eq. (3) as

�eðY;ZÞ ¼ �2zen0 sinh�ðY;ZÞ ð41Þ

Figure 8 shows a comparison of the EDL field in a rectangular microchannel pre-
dicted by the linear solution and the complete numerical solution. In these calculations,
the liquid is a dilute aqueous 1:1 electrolyte solution (concentration is 1� 10�6 M) at
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FIG. 8 Nondimensional EDL potential distribution in one-quarter of the microchannel, with � ¼
75 mV. (a) Linear solution; (b) complete numerical solution. (From Ref. 9.)



188C. The rectangular microchannel has a cross-section 30 mm � 20 mm with a zeta
potential of 75 mV. Because of the symmetry, the EDL field is plotted only in one-quarter
of the microchannel. With such a relatively high zeta potential, the linear approximation is
obviously not good. It can be seen that there is a very steep decrease in the potential in the
case of the complete solution, while the linear solution predicts a more gradual decay of
the potential. The linear solution predicts a thicker layer from the wall of the liquid that
has an appreciable nonzero EDL field. In order to see more clearly the differences between
the linear solution and the complete solution, the EDL potential profiles (viewed from the
channel-height side) are plotted in Fig. 9 for different zeta potentials. Clearly, the linear
solution will result in large errors in the region close to the channel wall.

B. Flow Field in a Rectangular Microchannel

Consider the case of a forced, two-dimensional laminar flow through the rectangular
microchannel, illustrated in Fig. 7. The equation of motion for an incompressible liquid
is given by

�f

@V

@t
þ �f ðV � rÞV ¼ �rP þ F þ 
fr

2V ð42Þ

In this equation, �f and 
f are the density and viscosity of the liquid, respectively. For a
steady-state, fully developed flow, the components of velocity V (namely, u; v;w) satisfy
u ¼ uðy;�zÞ and v ¼ w ¼ 0 in terms of Cartesian coordinates. Thus, both the time term
@V=@t and the inertia term ðV � rÞV vanish. Also, the hydraulic pressure P is a function of
x only and the pressure gradient dP=dx is constant. If the gravity effect is negligible, the
body force F is only caused by the action of an induced electrical field Ex (see explanation
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in the electrokinetic potential section) on the net charge density �eðY;ZÞ in the EDL
region, i.e., Fx ¼ Ex�e. With these considerations, Eq. (42) is reduced to

@2u

@y2
þ
@2u

@z2
¼

1


f

dP

dx
¼

1


f

Ex�eðy; zÞ ð43Þ

Defining the reference Reynolds number Re0 ¼ �f DhU=
f and nondimensionalizing
Eq. (43) via the following dimensionless parameters:

u ¼
u

U
P ¼

P � P0

�fU
2

X ¼
x

DhRe0
ð44aÞ

dP

dX
¼

DhRe0
�fU

2

dP

dx
Ex ¼

ExDhRe0
�0

ð44bÞ

(where U is a reference velocity, P0 is a reference pressure, and �0 is a reference electric
potential), one can obtain the nondimensional equation of motion:

@2u

@Y2
þ
@2u

@Z2
¼

dP

dX
�

 c

�fU
2
Ex�eðY;ZÞ ð45Þ

Substituting �eðY;ZÞ by Eq. (41), and defining a new dimensionless number
G1 ¼ 2zen0�0=�fU

2, the equation of motion may, therefore, be written as

@2u

@Y2
þ
@2u

@Z2
¼

dP

dX
þ G1Ex sinh�ðY;ZÞ ð46Þ

The boundary conditions that apply for the velocity u are

Y ¼ 0
@u

@Y
¼ 0 Z ¼ 0

@u

@Y
¼ 0 ð47aÞ

Y ¼
H

Dh

u ¼ 0 Z ¼
W

Dh

u ¼ 0 ð47bÞ

Here, Eq. (47a) is the symmetric condition and Eq. (47b) is the nonslip condition at the
walls of the microchannel.

By using Green’s function formulation, the solution of Eq. (46) subject to the above
boundary conditions is

uðY;ZÞ ¼ � lim
t!1

ð
�¼0

d�

ðH=Dh

Y 0¼0

ðW=Dh

Z0¼0

GðY;Z; tjY 0;Z0; �Þ
dP

dX
þ G1Ex sinh�ðY 0;Z0

Þ

� �
dY 0dZ0

ð48Þ

Here, GðY;Z; tjY 0;Z0; �Þ is the Green function which may be found by using the method
of separation of variables [10]. The expression for GðY;Z; tjY 0;Z0; �Þ is

GðY;Z; tjY 0;Z 0; �Þ ¼
4D2

h

WH

X1
m¼1

X1
n¼1

exp
��2D2

h

4

ð2m � 1Þ2

H2
þ
ð2n � 1Þ2

W2

" #
ðt � �Þ

( )

� cos
ð2m � 1Þ�Dh

2H
Y

� �
cos

ð2m � 1Þ�Dh

2H
Y 0

� �

� cos
ð2n � 1Þ�Dh

2W
Z

� �
cos

ð2n � 1Þ�Dh

2W
Z0

� �
ð49Þ
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Substituting Eq. (49) into Eq. (48) and rearranging, one can obtain the non-
dimensional fluid velocity profile in the microchannel as follows:

uðY;ZÞ ¼ �
64

�4D2
h

dP

dX

X1
m¼1

X1
n¼1

ð�1Þmþn cos
ð2m � 1Þ�Dh

2H
Y

� �
cos

ð2n � 1Þ�Dh

2W
Z

� �

ð2m � 1Þð2n � 1Þ
ð2m � 1Þ2

H2
þ
ð2n � 1Þ2

W2

" #

�
16

�2HW
G1Ex

X1
m¼1

X1
n¼1

cos
ð2m � 1Þ�Dh

2H
Y

� �
cos

ð2n � 1Þ�Dh

2W
Z

� �
ð2m � 1Þ2

H2
þ
ð2n � 1Þ2

W2

�

ðH=Dh

Y 0¼0

ðW=Dh

Z0¼0

cos
ð2m � 1Þ�Dh

2H
Y 0

� �
cos

ð2n � 1Þ�Dh

2W
Z0

� �
sinh�ðY 0;Z0

ÞdY 0dZ

ð50Þ

If there is no electrostatic interaction, the second term on the right-hand side of Eq.
(50) vanishes. The fluid velocity reduces to

u0ðY;ZÞ ¼ �
64

�4D2
h

dP

dX

X1
m¼1

X1
n¼1

ð�1Þmþn cos
ð2m � 1Þ�Dh

2H
Y

� �
cos

ð2n � 1Þ�Dh

2W
Z

� �

ð2m � 1Þð2n � 1Þ
ð2m � 1Þ2

H2
þ
ð2n � 1Þ2

W2

" #

ð51Þ

which is the well-known Poiseuille flow velocity profile through a rectangular channel.
Using Eqs (50) and (51), the mean velocity with and without the consideration of the

effects of the EDL may be written, respectively, as

uave ¼ �
256HW

�6D4
h

dP

dX

X1
m¼1

X1
n¼1

1

ð2m � 1Þ2ð2n � 1Þ2
ð2m � 1Þ2

H2
þ
ð2n � 1Þ2

W2

" #

�
64

�4D2
h

G1Ex

X1
m¼1

X1
n¼1

ð�1Þmþn
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ð2m � 1Þ2
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þ
ð2n � 1Þ2

W2

" #

�

ðH=Dh

Y 0¼0

ðW=Dh

Z0¼0

cos
ð2m � 1Þ�Dh

2H
Y 0

� �
cos

ð2n � 1Þ�Dh

2W
Z0

� �
sinh�ðY 0;Z0

ÞdY 0dZ0

ð52Þ

and

u0ave ¼ �
256HW

�6D4
h

dP

dX

X1
m¼1

X1
n¼1

1

ð2m � 1Þ2ð2n � 1Þ2
ð2m � 1Þ2

H2
þ
ð2n � 1Þ2

W2

" # ð53Þ

Thus, the nondimensional volumetric flow rate through the rectangular microchan-
nel, defined by Q� ¼ Q�=4HWU, is given by
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Q� ¼ uave ð54Þ

Correspondingly, in the absence of the EDL, the nondimensional volumetric flow
rate is expressed as

Qov ¼ uoave ð55Þ

In order to calculate the fluid velocity distribution, the analytical solution [Eq. (50)]
for the velocity is used to obtain the ‘‘exact’’ solution’’ which, in practice, usually means an
error of 0.01% or less. As seen from Eq. (50), the velocity distribution is finally expressed
by two infinite series. Therefore, usually a very large number of terms in series is needed to
achieve this error criteria. To reduce the computation time, the Aitken’s procedure [10]
may be employed for accelerating series.

C. Electrokinetic Field in a Rectangular Microchannel

As seen from Eq. (50), the local and the mean velocity can be calculated only when the
nondimensional induced electrical field strength or the electrokinetic potential, Ex, is
known. Recall that the net electrical current, I , flowing in the axial direction of the
microchannel, is the algebraic summation of the electrical convection current (i.e., stream-
ing current) Is and the electrical conduction current Ic. In a steady-state situation, this net
electrical current should be zero:

I ¼ Is þ Ic ¼ 0 ð56Þ

Due to symmetry of the rectangular microchannel, the electrical streaming current is
of the form:

Is ¼ 4D2
hU

ðH=Dh

Y¼0

ðW=Dh

Z¼0

uðY;ZÞ�eðY;ZÞdYdZ ð57Þ

The electrical conduction current in the microchannel consists of two parts [7]: one is
due to the conductance of the bulk liquid; the other is due to the surface conductance of
the EDL. This electrical conduction current can be expressed as

Ic ¼ Ibc þ Isc ¼ �tExAc ¼
4�tHW�0
DhRe0

Ex ð58Þ

where Ibc and Isc are the bulk and the surface electrical conductance currents, respectively;

�t is the total electrical conductivity and can be calculated by �t ¼ �b þ
�sPs

Ac

[7]. Here, Ps

and Ac are the wetting perimeter and the cross-sectional area of the channel, respectively,
�b is the bulk conductivity of the solution, and �s is the surface conductivity, which may be
determined by experiment [4].

Substituting Eq. (41) for �eðY;ZÞ into Eq. (57) and employing Eq. (56), the non-
dimensional induced field strength can be expressed as

Ex ¼
D2

h

HW
G2Re0

ðH=Dh

Y¼0

ðH=Dh

Z¼0

uðY;ZÞ sinh�ðY;ZÞdYdZ ð59Þ

Here, the nondimensional number G2 ¼ 2zen0DhU=�t�0:
The substitution of uðY;ZÞ from Eq. (50) into Eq. (59) finally gives the dimensionless

induced field strength as
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Ex ¼

D2
h

HW
G2Re0

ðH=Dh

Y¼0

ðW=Dh

Z¼0

u0ðY;ZÞ sinh�ðY;ZÞdYdZ
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ðH=Dh
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ð60Þ

where
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4

�2D2
h

X1
m¼1

X1
n¼1

cos
ð2m � 1Þ�Dh
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2H
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ð2n � 1Þ�Dh

2W
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� �
sinh�ðY 0;Z0

ÞdY 0dZ0

Consider a fully developed, laminar flow of a diluted aqueous 1:1 electrolyte (e.g., KCl)
solution through a rectangular microchannel with a height of 20 mm, width 30 mm, and
length 1 cm. At a typical room temperature T ¼ 298 K, the physical and electrical proper-
ties of the liquid are " ¼ 80, n1 ¼ 6:023� 1019 (m�3

Þ, 
f ¼ 0:90� 10�3 (kg/ms), and � ¼
75 mV. In calculations the total electrical conductivity �t was chosen from experimental
results [4]. With these base values, it is quite straightforward to calculate the parameters
characterizing the flow, such as velocity distribution and streaming potential by the equa-
tions developed above. Figure 10 shows the nondimensional streaming potential as a
function of the nondimensional applied pressure drop over the microchannel with differ-
ent zeta potentials. As explained before, in the absence of an externally applied electrical
field, when a fluid is forced to flow through a channel under a hydrostatic pressure
difference, the mobile charges in the EDL are carried to the downstream end to form a
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FIG. 10 Variation of nondimensional streaming potential with nondimensional pressure difference
for different zeta potentials. (From Ref. 7.)



streaming current. Therefore, a larger pressure difference generates a larger volume trans-
port and hence more ions are carried to the end of the channel, which results in a larger
streaming current. Correspondingly, a stronger streaming potential may be produced as
the pressure difference (drop) increases. This is clearly demonstrated in Figure 10. Also, it
is shown that for a given pressure difference the streaming potential increases with an
increase in zeta potential. It is also shown that for a given pressure difference the induced
field strength decreases with an increase in ionic concentration of the aqueous solution.
This may be understood as follows: if the ionic concentration is higher, which implies a
larger Debye–Hückel length, i.e., a smaller EDL thickness, the effect of the EDL is less.
Therefore, fewer ions are carried downstream with the flow and hence lower charge
accumulation at the ends of the channel occurs.

It should be noted that the present model modifies the simple proportionality rela-
tionship between zeta potential and streaming potential in the classical electrokinetic
theory, by considering the EDL effects on the liquid flow.

D. Electrokinetic Effects on Velocity Field

As seen from Eq. (50), the velocity field in a rectangular microchannel depends on the
EDL field. Since the bulk ionic concentration and the shape of the channel’s cross-section
will affect the EDL field, these factors will in turn influence the velocity field. In this
section, we wish to examine these effects for the same conditions described in Section
IV.C.

The computation of nondimensional velocity distribution according to Eq. (50) is
carried out for a fixed external pressure difference. In Fig. 11a,b, the distribution of
nondimensional velocity is plotted for the channel of 20 mm� 30 mm with and without
consideration of the EDL effects. As seen in Fig. 11a, the EDL field exhibits significant
effects on the flow pattern. The maximum velocity in the center of the channel is lower
when the EDL field effects are considered. The flow velocity near the channel wall
approaches zero due to the action of the EDL field and the streaming potential.
Moreover, the flow around the channel corner greatly deviates from the classical
Poisseuille flow pattern, as shown in Fig. 11b.

It should be pointed out that the surface conduction current plays an important role
in the total electrical conduction current for a dilute solution flow in microchannels. It
makes a significant contribution to the streaming potential and therefore to the flow field.
This is clearly demonstrated in Fig. 11c, which is the nondimensional velocity distribution
with the same hydrodynamic and electrokinetic conditions, but without consideration of
the surface condition current. One may overestimate the electrokinetic effects on the
microchannel flow if the surface conduction current is not included.

Figure 12 displays the distribution of nondimensional velocity as a function of the
geometric ratio of height to width with the same hydraulic diameter as the channel of 20
mm� 30 mm. For a fixed hydraulic diameter, a small geometric ratio represents a smaller
channel height but a larger channel width. As shown in Fig. 12, it is obvious that the
channel shape has a significant influence on the flow across microchannels because of EDL
effects. The general pattern is the smaller the channel size, such as in Fig. 12a, the stronger
the EDL effects and the larger portion of the flow field is affected. The explanation for this
is that as the channel size decreases, the EDL thickness becomes relatively larger and hence
the EDL effects are stronger.

In Fig. 13, the distribution of nondimensional velocity is plotted for the channel
of 20 mm� 30 mm for two different bulk ionic concentrations. It is generally known
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(b)

FIG. 11 EDL effects on nondimensional velocity distribution in one-quarter of a rectangu-
lar microchannel (geometric ratio of height to width ¼ 2=3). (a) With EDL effects (non-
dimensional electrokinetic diameter K ¼ 24:7); (b) without EDL effects; (c) with EDL effects

(nondimensional electrokinetic diameter K ¼ 24:7), but without consideration of the surface con-
duction. (From Ref. 7.)



that the zeta potential has a dependence on the bulk ionic concentration. Recently,
Mala et al. [4] reported that the zeta potential changes from 100 to 200 mV while the
ionic concentration varies from 10�4 to 10�6 M for p-type silicon microchannels. Such
an experimentally determined correlation between zeta potential and ionic concentra-
tion is used in our calculation. As seen, the EDL exhibits significantly stronger effects
on the flow pattern for the dilute solution in Fig. 13b than that in the higher con-
centration in Fig. 13a.

In Fig. 14, the nondimensional volumetric flow rate is plotted as a function of
nondimensional pressure difference for different concentrations of the aqueous solution
and zeta potentials. As expected, the flow rate is reduced because of the electrokinetic
effects. Basically, Fig. 14 shows that the flow rate exhibits the same EDL dependence as
the streaming potential does.

E. Electroviscous Effects

It is apparent from the previous analysis that the presence of an EDL exerts electrical
forces on the ions in the liquid, and hence has a profound influence on the flow
behavior. As discussed above, the streaming potential will produce a liquid flow in
the direction opposite to the pressure-driven flow. The liquid thus appears to exhibit an
enhanced viscosity if its flow rate is compared to that in the absence of the EDL
effects (here, the viscosity is assumed to be independent of electrolyte concentration
[1]).

As we have already shown, the nondimensional flow rate through the microchannel
with and without the consideration of the EDL effects is given by Eqs (54) and (55),
respectively. Equalizing Eq. (54) with Eqs. (55), i.e., Qv ¼ Qov, and using expressions
for uave and uoave in Eqs (52) and Eq. (53), one may obtain the ratio of the apparent
viscosity to the bulk viscosity as follows:
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FIG. 12 Aspect ratio effects on nondimensional velocity distribution as a function of geometric
ratio of height to width (nondimensional electrokinetic diameter K ¼ 24:7Þ. (a) Height/width ¼ 1=8;
(b) height/width ¼ 1/4; (c) height/width ¼ 1=2; (d) height/width ¼ 1=1. (From Ref. 7.)
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FIG. 12 (continued)
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(b)

FIG. 13 Ionic concentration effects on nondimensional velocity distribution in one-quarter of a

rectangular microchannel (geometric ratio of height to width ¼ 2=3). (a) n1 ¼ 10�5 M, � ¼ 150 mV;
(b) n1 ¼ 10�6 M, � ¼ 200 mV. (From Ref. 8.)
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Since the dimensionless pressure gradient is negative, and both C1 and C2 are greater
than zero, it is easy to show that this ratio is greater than 1, which is the electroviscous
effect.

Using Eq. (61), the ratio of the apparent viscosity to the bulk viscosity, 
af =
f , is
plotted as function of the nondimensional electrokinetic diameter for different values of
the zeta potential of the solid surface in Fig. 15. It is seen from this figure that 
af =
f is
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FIG. 14 Variation of nondimensional volume flow rate with nondimensional pressure difference
for different concentrations and zeta potentials. (From Ref. 8.)



strongly dependent on the strength of the EDL effects. This indicates that the higher the
zeta potential, the larger the values of the ratio 
af =
f . In addition, of particular interest
is the prediction of a maximum in 
af =uf with respect to the nondimensional electro-
kinetic diameter. A similar pattern has been reported by Rice and Whitehead [5] and
Levine et al. [6]. Unfortunately, no explanation was given in the literature before. We
believe that there is a critical value for the nondimensional electrokinetic diameter K ,
corresponding to the strongest EDL effect, at which the largest reduction in the flow and
hence the maximum ratio of 
af =
f occur in rectangular microchannels. When K
increases from this critical value, which implies either a larger hydraulic diameter or a
thinner EDL thickness (i.e., a higher electrolyte concentration), the EDL effects become
weaker. Thus, a smaller reduction in the flow and hence a lower ratio of 
af =
f can be
observed. On the other hand, for the case that K is less than this critical value, this
means either a smaller hydraulic diameter or a larger EDL thickness (i.e., a lower
electrolyte concentration). However, as discussed in the preceding theory, the EDL
effects on the fluid flow in rectangular microchannels is considered by introducing an
additional body force in the conventional equation of motion. By definition this addi-
tional body force is proportional to both the streaming potential and the net charge
density, which in fact relate to the fluid velocity profile and the electrolyte ionic con-
centration. If K becomes very small, we may have either extremely narrow microchan-
nels (which allow very little flow) or a relatively diluted electrolyte. In both cases, the
streaming potential and the ionic net charge density decrease. Therefore, the EDL effects
again become weaker and hence the smaller ratio of 
af =
f is shown in Fig. 15. In
conclusion, there is no monotonic relationship among the EDL effects on the fluid flow
in rectangular microchannels and the channel size and electrolyte ionic concentration,
because the streaming potential, the ionic net charge density, and the fluid velocity
depend on a large number of basic parameters.
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FIG. 15 Variation of ratio of apparent viscosity to bulk viscosity with nondimensional electroki-
netic diameter for different zeta potentials. (From Ref. 7.)
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I. INTRODUCTION

Membrane separation processes have been in full expansion since the 1970s and have given
rise to a great number of investigations. Indeed, besides their technological interest, mem-
brane separation processes appear to be more economically competitive than conventional
separation technologies such as distillation, crystallization, or solvent extraction.

A simplified working definition of a membrane can be conveniently stated as a
selective barrier which, under a driving force, permits preferential passage of one selected
species of a mixture [1]. Separation membrane processes are used for solution concentra-
tion, purification, or fractionation. The development of membrane technology has allowed
us to extend the field of membrane applications (e.g., treatment of industrial effluents,
drinking water production, biotechnology, food industry, pharmaceutical industry, textile
industry).

Tangential micro-, ultra-, and nano-filtration are separation membrane processes in
the liquid phase for which a pressure gradient acts as driving force. Microfiltration (MF) is
used for selective separation of species having a size in the region of micrometers (yeast
cells, bacteria, etc.), ultrafiltration (UF) is used for separation of species from � 2 to 100
nm (peptides, proteins, viruses), and nanofiltration is used for separation of species of less
than 2 nm (sugars, dyes, salts).

There are a great variety of commercial organic (e.g., polyamide, polycarbonate,
polysulfone) or inorganic (e.g., alumina, zirconia) membranes. Ceramic membranes, intro-
duced in recent years, are currently in full expansion. They typically exhibit stability at
high temperatures and extreme pH conditions. Furthermore, their mechanical resistance
allows treatment of solutions with high viscosity, and their chemical resistance permits the
use of effective and yet corrosive cleaning procedures and chemicals.

Up to now, most commercial membranes had a tubular geometry. The first plane
ceramic membranes made their inroads to the market in recent years. The plane geometry
is likely to provide higher shear rates compared with the tubular concept and so it is of
great interest to limit membranes fouling (the fouling phenomenon, that is to say the
accumulation of species on to the membrane surface, being the chief drawback to mem-
brane separation processes).
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It is now well acknowledged that the selectivity of a membrane depends on both
steric effects and electrostatic interactions occurring between charged species (ions or
molecules) and the membrane surface which is generally charged as well. From then on,
the determination of parameters representing membrane–solution interactions, such as the
zeta potential, is of the utmost importance to understand and predict the filtration per-
formances of a membrane. The optimization of the filtration performances of a membrane
requires, therefore, a preliminary study of its electric and electrokinetic properties.

This chapter lies within the scope of the characterization of the electrokinetic proper-
ties of MF and UF membranes by means of various experimental methods.

II. GENERALITIES

The aim of this section is to present, first, filtration membranes, and second, the mem-
brane–solution interface. Electrokinetic phenomena are then developed since they allow us
to characterize the interface.

A. Membranes and Filtration

1. Filtration Process

In general, a membrane plays the role of a molecular sifter with constituents which have
to be separated. The membrane is tangentially swept by the liquid in which the constitu-
ents have to be separated (Fig. 1). The porous material separates two distinct aqueous
phases called the retentate and permeate. This latter is constituted of solvent (with or
without solute) which passes through the membrane because of a transmembrane pressure
difference.

Both UF and MF then allow extraction of solvent and ionic solute from a solution
which contains macrosolute. The filtration mechanism does not prevent physicochemical
interaction between the species and membrane, at the surface and inside pore.
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FIG. 1 Filtration principle.



2. Membrane Characteristics

Marketed membranes are generally defined by three characteristics: membrane material,
permeability, and cut-off values. The user defines the membrane process efficiency by the
permeate flux and solute retention or transmission.

(a) Membrane Material. Membranes used in UF have an asymmetric structure.
They are composed of a macroporous support, which gives mechanical resistance, and a
thinner filtering layer, which determines membrane selectivity properties. Among the
materials used for the membrane filtering layer, there are mineral oxides (ZrO2, Al2O3,
etc.) and organic materials [cellulose acetate, polyacrylonitrile, sulfonated polysulfone,
poly(ether sulfone), etc.].

(b) Membrane Permeability. The permeability, Lp, is an intrinsic characteristic. It
defines the slope of solvent flux versus transmembrane pressure.

According to Darcy’s law, all permeability variations can be performed by a mem-
brane hydraulic resistance variation:

Js ¼ Lp�P ¼ �P=�Rm ð1Þ

where Js is solvent flux density (m s�1), � is solvent dynamic viscosity (Pa s), Rm is
membrane hydraulic resistance m�1

Þ, and �P is transmembrane pressure difference (Pa).
In the case where Poiseuille’s law can be applied, the permeability depends on

membrane porosity and pore geometric characteristics:

Js ¼ np
�P�r4

8�l
ð2Þ

where np is pore number per unit area (m�2), r is membrane pore radius (m), l is effective
length of pore (m), and �P is transmembrane pressure (Pa).

When the solution contains species which can be retained by the membrane, the flux
is less than that of the solvent in the same conditions, except at low membrane pressure.
Beyond a transmembrane pressure value, we can generally observe that the flux does not
vary with pressure, it tends toward a constant value called ‘‘limit flux’’ (Fig. 2).

(c) Pore Size and Cut-off Value. A membrane plays the role of a molecular sieve
with constituents which have to be separated. A main characteristic of the membrane is,
then, the pore size. In UF, this is evaluated by a molecular mass equivalent: the cut-off
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FIG. 2 Permeate flux versus transmembrane pressure for pure solvent and solutes.



value. It corresponds to a quasitotal retention of a given reference; in most cases, it
comprises between 0.9 and 1 of a standard molecule in fixed conditions. It is expressed
in g mol�1 (daltons). The cut-off value is not an intrinsic membrane characteristic since
it depends on the standard molecules used and operating conditions.

(d) Retention. Retention R (or Transmission TrÞ describes the ability of a membrane
to prevent a compound from passing through a porous material. It defines the process
selectivity:

R ¼ ð1� Cp=CrÞ ¼ 1� Tr ð3Þ

where R is retention, Tr is transmission, Cp is solute concentration in the permeate (mol
L�1), and Cr is solute concentration in the retentate (mol L�1). A separation is called
nonselective concerning a molecule when the solute retention is 0 and totally selective
when the retention is equal to 1.

As far as a solute mixture is concerned, the separation process selectivity can be
defined as the transmission ratio:

s ¼
ðCp1=Cr1Þ

ðCp2=Cr2Þ
ð4Þ

where Cp1 is concentration of solute 1 in the permeate, Cr1 is concentration of solute 1 in
the retentate, Cp2 is concentration of solute 2 in the permeate, and Cr2 is concentration of
solute 2 in the retentate.

3. Phenomena Limiting Solvent Transfer

In the presence of a macromolecular solute, the permeation flux is less than that measured
with the pure solvent, in the same filtration conditions. Moreover, above a particular
transmembrane pressure, the curve of flux versus transmembrane pressure wanders
from linearity, and the permeate flux tends to reach a limiting value that does not depend
on applied pressure (Fig. 2). In other respects, the measured UF permeate flux of a
solution, under a constant transmembrane pressure, decreases with time.

This behavior can be expressed by the following equation:

J ¼
�P

�ðRm þ Rpol þ Rads þ RdÞ
ð5Þ

where Rpol is hydraulic resistance due to concentration polarization (m�1), Rads is hydrau-
lic resistance due to solute adsorption (m�1

Þ, Rd is hydraulic resistance due to particle
deposit (m�1), and � is permeate dynamic viscosity (Pa s). The various hydraulic resis-
tances are linked to interfacial phenomena which can occur during the solute filtration.

(a) Concentration Polarization Rpol. During macromolecular solute filtration, species
are carried away by convection from the solution toward the membrane surface where
they accumulate. The polarization layer is then the liquid layer near the surface where a
macromolecular concentration gradient is established. The concentration polarization is
a reversible phenomenon. It takes place in the first moment of filtration [2]. An increase
in the fluid tangential velocity or the use of low pressure allows us to minimize this phe-
nomenon.

(b) Adsorption Rads. The contact of a solution with a membrane leads to electro-
static and hydrophobic interactions between species. These interactions induce adsorp-
tion of molecules or ions at the membrane surface, which limits transfer through the
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membrane. Hence, solute transfer during UF depends strongly on physicochemical con-
ditions.

(c) Solute Deposit Rd . The solute accumulation close to the membrane can lead to
the formation of a particle deposit at the surface, which limits the solvent transfer.
Fouling results from all phenomena which contribute, in a reversible or irreversible
way, to modify membrane filtration properties. These modifications can be performed
as pore size distribution variations, as the presence of a surface solute deposit, or as a
mechanical pore blocking, resulting in a permeate flux decrease.

4. Prediction of Solute Transfer Through Membrane

(a) Steric Exclusion. Ferry [3] developed a theory which allowed correlation of
solute retention or transmission with its steric dimensions. Ferry’s model is based on
the fact that solute within pores induces no-flow modification and that friction strength
between the molecule and pore wall is negligible:

Tr ¼ 1� R ¼ 1� ½1� ð1� �Þ2�2 for 0 < � < 1 ð6Þ

Tr ¼ 0 if � > 1

where � is Rd=r, Rd is solute radius, supposed as spherical (m), and r pore radius (m). This
model is only based on a steric exclusion mechanism.

(b) Steric and Ionic Exclusion. When a charged molecule, assumed to be a sphere
with radius rs, is filtered through a membrane (pore radius r), charges carried by both
surfaces lead to repulsive or attractive electrostatic interactions. A possible consequence
of an attraction is the solute adsorption on to the membrane surface and then a
decrease in transmission. Several models take into account electrostatic interactions.

A first model considers the apparent size of solute rsa, which depends on the double-
layer thickness ��1 : rsa ¼ rs þ ��

�1, where � is an empirical corrective term and rs the
solute radius. On this basis, the ISCR (ionic strength controlled retention) model gives the
retention expression of a small molecule as a function of I�1=2 (with I , the ionic strength)
[4]:

R ¼ R0 þ aI�1=2
ð7Þ

where R0 ¼ �02ð2� �0Þ2, a ¼ 4A�0ð2� �0Þð1� �0Þ=r, A ¼ ��1=I�1=2, �0 ¼ rs=r, and I is ionic
strength (mol 
L�1

Þ:
A retention model based on mixed interactions (mixed interaction retention, MIR)

was developed by Millesime [4]. This one takes into account the steric exclusion, macro-
molecule – membrane interactions but also hydrophobic interactions. In a simple way, the
model can be written:

R ¼ a0 þ a1I
�1=2

þ a1BI
þ1=2

ð8Þ

where a0 and a1 are coefficients which depend only on r; rs;A and B; B represents an
interaction parameter between membrane and molecule: B is positive when the macro-
molecule develops hydrophobic interactions with the membrane, and B is weakly negative
in the case of hydrophilic membranes.

At low ionic strength, the term I�1=2 will then be predominant; it corresponds to an
ionic retention phenomenon, whereas at high ionic strength, the term with Iþ1=2, which
corresponds to hydrophobic interactions, contributes to the increase in retention.
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B. Origin of Surface Charge and Electrokinetic Phenomena

1. Origin of Surface Charge

Most membranes acquire a surface electric charge when brought into contact with an
aqueous medium. The origin of this surface charge depends on the nature of the material.
It can be due to defects in the crystal structure (e.g., aluminosilicates), surface groups (e.g.,
�COOH, – OSO3H, or �NH2), which can react with either acid or base to provide
stabilizing charges, or surface groups, which are amphoteric in nature and can become
either positively or negatively charged depending on pH (metal oxides) [5].

For instance, a mineral oxide in contact with an aqueous solution develops an
electrical surface charge due to its amphoteric behavior. Depending on the solution pH,
the implied reactions in the surface charge are:

In acidic media: M� ðOHÞsurf þHþ
aq $ M�OHþ

2 surf

In basic media: M� ðOHÞsurf þOH�
ðaqÞ $ M�O�

surf þH2O

In order to maintain the electroneutrality of the solution, ions rearrange at the solid–liquid
interface. Ions which have a charge opposite to the surface (counterions) are attracted,
whereas ions which have the same charge as the surface (coions) are repelled. The potential
varies progressively from the solid surface to the bulk solution in a zone called the ‘‘elec-
trical double layer’’, composed of a compact layer and a diffuse layer. The shear plane is
located approximately between the compact and diffuse layers. Its potential is the electro-
kinetic potential or zeta potential; it can be determined by electrokinetic measurements.

2. Electrokinetic Phenomena

Electrokinetic phenomena which occur at the mineral oxide–solution interface are due to
the electric charge distribution in the electrochemical double layer. They are observed
when static equilibrium conditions of a charged surface are modified: this can occur
when one phase (liquid or solid) tangentially moves with respect to the other phase.
The diffuse layer then slips with respect to the compact layer along a plane usually called
the ‘‘shear plane.’’

Electrokinetic methods can be distinguished by the driving force involved (mechan-
ical or electrical) and by the nature of the mobile phase (solid or liquid) (Table 1). All these
phenomena are linked to the electrokinetic potential or zeta potential.

3. Zeta-potential Determination

The zeta-potential determination can be made on the membrane itself by streaming poten-
tial or electro-osmosis measurements. Also, electrophoretic measurements realized on the
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TABLE 1 Electrokinetic Phenomena

Liquid

phase

Driving force
Solid

phaseMechanical Electrical

Mobile Streaming
potential

Electro-osmosis Stationary

Stationary Sedimentation
potential

Electrophoresis Mobile



membrane material can provide information on the surface charge density. However,
some recent works clearly show that the surface properties of a membrane can significantly
differ from those of the crushed-membrane powder [6–9].

. When a pressure gradient acts through a membrane, the streaming potential (SP)
can be defined as the electrical potential difference ð��Þ arising between both
sides of the membrane. The zeta potential (�) determination from the streaming
potential can be done using the Helmholtz–Smoluchowski relationship, provided
that there is no double-layer overlapping inside pores (i.e. �r � 1, r being the
pore radius) [10] that is in the case of a large pore radius and also at low zeta
potential.

SP ¼
��

�P
¼
"0"r�

��0
ð9Þ

where �0 is the conductivity of the electrolyte in the bulk, "0 is the vacuum
permittivity, "r is the relative dielectric constant of the solvent, and SP is the
measured streaming potential.

This relation assumes straight and independent pores.

. Electro-osmosis (EO) consists in applying a constant current through the mem-
brane and measuring an electro-osmotic flow induced by the excess of counter-
ions within the electrical double layer.

According to the theoretical analysis presented by Levine et al. [11], the electro-osmotic
flow rate may be related to the zeta potential by means of the following equation:

V ¼
I"0"r�

��0
f ð10Þ

where V is the electro-osmotic flow rate (m3

D�1

Þ, I is the applied current (A) and f is a
function of �r and �.

For large pores and high ionic strength, �r � 1 and f ¼ 1, then the previous equa-
tion reduces to the Smoluchowski equation:

V ¼
I"0"r�

��0
ð11Þ

. The determination of the zeta potential from particle electrophoretic mobility �e

has been studied in several works ½10; 12; 13�. There are two cases depending on
the �a value, where � is the reciprocal Debye length and a is the mean radius of
the particle:

ka > 100 �e ¼
"0"r�

�
(Smoluchowski’s relation) ð12Þ

�a < 1 �e ¼
2"0"r�

3�
(Huckel’s relation) ð13Þ

III. USE OF STREAMING POTENTIAL TO CHARACTERIZE UF AND MF
MEMBRANES

Streaming potential measurement is one of the most used techniques for characterizing the
electrokinetic properties of filtration membranes [14–20]. The streaming potential method
allows the nonstop characterization of a membrane during the filtration process since the
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driving force involved is a pressure gradient. Thus, streaming potential can be used to
study the influence of fouling phenomena on membrane surface properties [21, 22], to
check the efficiency of cleaning treatments [23], or to investigate the effect of aging on
membrane electrokinetic properties [24].

A. Streaming Potential Phenomenon

Let us consider a charged porous membrane brought into contact with a liquid containing
charged species (Fig. 3a). A charge excess takes place in the electrical double layer that
forms at the solid–liquid interface. When a pressure gradient is applied through the
membrane pores, the charges in the mobile diffuse layer are carried towards the low-
pressure compartment. This constitutes a streaming current (Fig. 3b). The accumulation
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FIG. 3 Origin of the streaming potential. (See text for details.)



of charge at one end sets up an electric field which causes a current flow in the opposite
direction. When this latter conduction current, Ic, is equal to the streaming current, a
steady state is achieved [25]. The resulting potential difference between the pore ends ð��Þ,
per unit pressure, is the streaming potential (Fig. 3c) [26, 27]. The streaming potential must
be measured with a high-impedance millivoltmeter so that the global current is zero and
polarization is possible.

Instead of allowing the streaming current to establish a potential difference across
pores it is also possible to measure the streaming current directly by drawing it off through
a low-impedance path which short-circuits the return path through the conducting liquid
[25]. In such a case, the measurement must be made under conditions of essentially zero
potential difference between the measuring electrodes, so that no current flows back
through the pores [5, 28].

1. Description of Potential Signal

Figure 4 shows the evolution of the transmembrane electrical potential difference (result-
ing from a pressure pulse) as a function of time. Five zones can be distinguished:

(a–b): Base line. It represents the signal which corresponds to the initial transmem-
brane pressure difference ð�P0Þ. The initial electrical potential difference may
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FIG. 4 Evolution of the transmembrane electrical potential difference, �E (resulting from a pres-
sure pulse) versus time.



differ from zero although �P0 ¼ 0 owing to electrode asymmetry and mem-
brane heterogeneity.

(b–c): Sharp increase in ��. The increase in electrical potential difference results
from the establishment of the overpressure ð�PÞ in the upstream compart-
ment; �� allows the determination of the streaming potential.

(c–d): Evolution of the electrical potential difference caused by diffusion phenomena
through the membrane. The potential difference due to these phenomena adds
to that resulting from the streaming potential process. As a result, it may be
difficult to distinguish what is due to diffusion from what is due to streaming
potential.

(d–e): The potential difference sharply falls. This drop corresponds to the membrane
depolarization which results from the restoration of the initial transmembrane
pressure difference ð�P0Þ.

(e–f): The signal falls gradually (concentration homogenization) to the base line.

B. Streaming Potential Measurements

The experimental measurement consists in recording the instantaneous electrical potential
difference �� resulting from an overpressure �P applied on one side of the membrane.
The streaming potential (SP) can then be defined as:

SP ¼
��

�P

����
I¼0

ð14Þ

The SP value can be determined either from the slope of �� ¼ f ð�PÞ [29] or from a series
of �� measurements performed at a constant overpressure [27, 30]. This latter method,
called the ‘‘pulse method,’’ has been used in several works. It entails carrying out a
preliminary study so as to check the linear variation of �� versus �P (see Fig. 5).
Remember that the SP method requires a pair of electrodes placed on both sides of the
membrane and a high-impedance millvoltmeter to measure the transmembrane electrical
potential difference.
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FIG. 5 Electrical potential difference ð�EÞ versus overpressure (�P).



C. Streaming Potential Units

The filtration unit has to be adapted according to the membrane geometry. Generally,
two types of unit are used. Figure 6 represents the apparatus used to perform SP
measurements on plane membranes whereas Fig. 7 shows a filtration unit adapted to
tubular membranes.

In both devices a pump allows circulation of the solution inside the filtration unit.
Pressure in the retentate side is measured by means of a captor. The overpressure is
applied in the retentate compartment by means of a bypass circuit. The transmembrane
electrical potential difference �E is measured with a pair of electrodes on both sides of the
membrane.

Ag/AgCl electrodes are commonly used since their asymmetry potential difference
is very low (generally less than 0.1 mV) and they exhibit good chemical stability
provided that the pH is about 8. To carry out SP measurements at higher pH,
Ag/AgCl electrodes might be replaced by platinum electrodes although the asymmetric
potential difference between platinum electrodes is much higher than between Ag/AgCl
electrodes [27].

D. Influence of Various Parameters on Streaming Potential
Measurements

1. Influence of pH

The theoretical analysis of the existence of a membrane net charge due to the ion
distribution close to the surface, which is responsible for the streaming potential value

Electrokinetic Characterization of Membranes 593

FIG. 6 Plane module. (From Ref. 41.)



[30, 31], can be confirmed by experiment (Fig. 8) on an inorganic membrane (M1,
Carbosep, Orelis, France) in a sodium chloride medium. The amphoteric character of
the mineral oxide give rise to the negative or positive values of the SP, depending on
the pH value: SP potential variations with pH allow determination of the net charge
sign of the filtering layer.

The pH for which the SP is zero corresponds to the isoelectric point (i.e.p.) of the
system [32]. The i.e.p. of the studied M1 membrane in NaCl medium is about 3:7 0:2. It
is a characteristic of the membrane – solution system [33]. At lower pH values, the
membrane net charge is positive and at higher pH values, it is negative.

The slight decrease in SP value (absolute value) at pH higher than 8, may be due to
an effect of ionic strength: actually, while at pH 7 the measured solution conductivity is
about 0.11 mS cm�1; at pH 9, it is about 0.20 mS cm�1 because of the addition of NaOH
for pH adjusting.
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The calculation of the zeta potential, using the Smoluchowski relationship allows us
to determine only an apparent zeta potential value [34]. Nevertheless, this calculation takes
into account the bulk solution conductivity. Figure 9 gives a representation of the appar-
ent zeta potential versus pH value. The minimum previously observed at pH 8 disappears
and the curve has a classical shape.

Similar experiments have been also realized on organic membranes such as polyether
sulfonated and polysulfonated membranes [31, 35, 36]: i.e.p. values have been determined.
In these cases, the negative net charge (measured with KCl electrolyte) observed in a wide
range of pH is attributed to chloride anion adsorption [35, 36].

2. Influence of Filtered Electrolyte Solution

For most UF membranes, the permeate flux measured during filtration does not depend
either on the nature of the electrolyte (KNO3, KCl, NaCl, CACl2, MgCl2) or on pH [37].

Streaming potential variations versus pH allow determination of i.e.p. values,
through which a dependence of SP on the nature of the ions can be measured.
Actually, we can distinguish two types of behavior (Table 2). In the first type, mono-
valent electrolytes such as KNO3, KCl, and NaCl lead to identical i.e.p., equal to 5.0 in
the given example. In the second type, divalent electrolytes CaCl2 and MgCl2 lead to
higher i.e.p. (5.5). This is due to the specific adsorption of calcium or magnesium, which
displace the i.e.p. toward higher pH values, due to their valence and affinity for the
surface [32, 33].

At pH 6.5 for example, the membrane surface sites are essentially ZrO�. The SP
depends on the net charge, mainly due to ZrO� . . .Kþ, ZrO� . . .Naþ or ZrO� . . .Ca2þ,
ZrO� . . .Mg2þ complexes. Subsequently, the SP depends not only on the nature of the
counterions [30, 38], but also on their mobility. This is because the SP measures a
potential difference, under a pressure difference, which displaces the species. For
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FIG. 8 Streaming potential of an M1 Carbosep (150 kD) membrane versus pH in 1 mM NaCl
medium; T ¼ 508C. (From Ref. 31.)



example, during KNO3 and KCl filtration with a negatively charged membrane, the
SP is very similar for both electrolytes (at a given pH and ionic strength) because it
depends mainly on Kþ cations (which are common for both electrolytes). However,
SP nominal values in NaCl media are higher than those in KCl media. This is
consistent with the conductivity values of the respective counterions [30]. Moreover,
the apparent zeta-potential values (Table 2), calculated in NaCl and KCl media, are
different: this can be explained by the greater affinity of Kþ cations for the surface
than Naþ cations; this can especially be due to the invalidity of the used relationship,
which does not take into account the surface conductivity [36]. Therefore, the surface
conductivity in KCl or KNO3 solutions is beyond any doubt higher than in NaCl
medium because of the respective conductivity of Kþ and Naþ counterions.
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FIG. 9 Apparent zeta potential calculated from streaming potential measurements, using the

Smoluchowski relationship, versus pH. M1 Carbosep (150 kD) membrane in 1 mM NaCl medium;
T ¼ 508C. (From Ref. 31.)

TABLE 2 Isolectric Point (i.e.p.), Solution Conductivity (�0Þ, Streaming Potential (SP) at pH

6.4, and Apparent Zeta Potential ð�appÞ Calculated at pH 6.5; M5 Carbosep Membrane; I ¼

1m M; T ¼ 508C

Electrolyte
i.e.p.
ð0:2Þ

�0
(mS cm�1)

SP
(mV bar�1)

�app
(mV)

KNO3 5.0 0.12 �6:9 �0:73
KCl 5.0 0.12 �7:0 �0:74
NaCl 5.0 0.10 �12:0 �1:06
CaCl2 5.5 0.12 �5:0 �0:53
MgCl2 5.5 0.12 �6:0 �0:64

Source: Ref. 31.



In CaCl2 solution, authors have observed a lower SP because calcium is specifically
adsorbed and partly neutralizes the surface charge [32, 39]. In this case of divalent ions, the
role of counterions’ conductivity is equally observed.

Similarly, Fig. 10 shows the influence of phosphate ions on a mineral membrane. The
SP is reported versus the pH of the solution in various media. Measurements made in
NaCl medium give an i.e.p. of about 3.7. Because of the nature of phosphate, the presence
of these ions in solution leads to a shifting of the curve towards more negative values of SP
and to a significant displacement of the i.e.p. equal to 2.4 in this case. It has also been
observed that, even after several chemical cleanings of the membrane (according to the
classical membrane conditioning protocol), the measured i.e.p. in NaCl medium does not
recover its initial value. The interface has been then irreversibly modified.

Using a hydraulic criterion as a characterization tool, that is to say the permeate
flux, does not allow us to put into the fore the membrane surface-state modification.
Actually, it is the same in the three cases. As for the SP measurement, it allows character-
ization of the membrane state from a charge point of view.

To achieve an optimum characterization of the membrane, it will be useful to have
two criteria: a hydraulic criterion determined by permeate flux and hydraulic resistance
measurements, and an electrical criterion determined by the SP measurements and zeta-
potential calculations. As well be observed below, modification in the electric charge
distribution can influence significantly the filtration performances and the membrane
selectivity.

3. Influence of Ionic Strength

In the case of indifferent electrolytes (i.e., electrolytes for which ion-surface interac-
tions are purely electrostatic), the zeta potential calculated from SP measurements
decreases as the salt concentration increases due to the phenomenon of double-layer
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FIG. 10 Streaming potential versus pH in various media at I ¼ 1 mM on a M1 membrane: (~)
NaCl; (*) H3PO4, (^) NaCl after several membrane rinsings.



compression: the double-layer thickness is reduced (the surface charge is screened at a
shorter distance) when the ionic concentration is raised. In some cases, when the
effects of the inner or compact layer are important, more counterions can be adsorbed
on it when the ionic strength is increased: as a consequence, the charge density in the
diffuse layer will be reduced, as shown schematically in Fig. 11. Thus, the zeta
potential (and thus the SP) decreases in nominal value as the ionic strength becomes
greater, whatever the pH is [29, 30, 31, 40, 41]. With an electrolyte such as KCl the
ionic strength does not modify the i.e.p. of the membrane, and the zeta potential
tends to be zero at high salt concentration (Fig. 12). This is typical for an indifferent
electrolyte.

Figure 13 [41] shows results obtained with Na2SO4 solutions under the same
experimental conditions are in Fig. 12 (i.e., at pH 3.2, a pH lower than the membrane
i.e.p.). In that case we can observe that the increase in ionic strength leads to the reversal
of the zeta potential sign. The net surface charge of the membrane is then positive at low
ionic strength and becomes negative when the salt concentration is high enough. This is
due to the specific adsorption of the divalent anions, in this example, SO2�

4 . Sulfate ions
can penetrate into the compact layer to reach the internal Helmholtz plane by losing
part of their hydration sphere. Their interactions with the surface are not only electro-
static but also of a chemical nature. It must be noted that if experiments had been
carried out at ionic strengths higher than 0.1 M, the zeta potential determined with
Na2SO4 should tend to zero as for indifferent electrolytes.

E. Zeta Potential Determination

1. Domain of Validity of Helmholtz–Smoluchowski Relation

Zeta potential can be related to SP using the Helmholtz–Smoluchowski relationship, when
there is no double-layer overlapping (�r � 1; r being the pore radius) [10].

Christoforou et al. [42] have shown that the use of this equation requires a �r larger
than 10 and low charge density. Westermann-Clark and Anderson [43] point out that for
�r � 3, the SP only allows us to indicate the sign of the surface net charge.
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FIG. 11 Charge distribution in the double layer: (a) high ionic strength; (b) low ionic strength.



In the case of a low capillary section, the contribution of the surface conductivity of
the membrane material can be taken into account by replacing �0 by �p, the conductivity
inside the pore [44]:

SP ¼
�E

�P
¼
"0"r�

��p
ð15Þ

with �p ¼ �0 þ
2�s
r
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FIG. 12 Effect of ionic strength on zeta potential (�); KCl (pH 3.2), mixed alumina–titania–silica
MF membrane. (From Ref. 41.)

FIG. 13 Effect of ionic strength on zeta potential ð�Þ; Na2SO4 (pH 3.2), mixed alumina–titania–
silica MF membrane. (From Ref. 41.)



Burgreen and Nakache [45] have shown that relation (15) can be corrected by a factor F
which takes into account all the phenomena that the relation (15) does not consider:
double-layer overlapping, zeta potential value, convection, and conduction current [25]:

SP ¼
�E

�P
¼
"0"r�

��0
Fð�r; �Þ ð16Þ

The problem of taking into account double-layer overlapping has been equally

treated by Hildreth [46] who proposed to correct it by a factor G ¼
tanhð�rÞ

�r
:

SP ¼
�E

�P
¼
"0"r�

��p
ð1� GÞ ð17Þ

By correcting the zeta potential for surface conductivity, Agerbaek and Keiding [47] have
shown that it decreases with ionic strength, in good agreement with the triple-layer model
[25], whereas Eq. (15) gives a constant zeta potential when the ionic strength increases. It
appears then that the zeta potential calculation from SP experimental measurements needs
at least to take into account the surface conductivity and the double-layer overlapping
when it exists.

The F factor has been theoretically calculated by Hildreth [46]. It has been experi-
mentally confirmed [34]: the determination of the Fð�r; �Þ factor of Eq. (16) has been
realized by dividing the zeta potential calculated from the SP by the one calculated
from the electrophoretic mobility, the latter being considered as the true zeta potential:

F ¼
�app
�true

ð18Þ

where �app is the zeta potential calculated from the streaming potential measurement and
the use of Smoluchowski’s equation, and �true is the zeta potential calculated from electro-
phoretic mobility measurements.

This implies that the zeta potential found from electrophoretic mobility and SP
measurements must be the same; that is, that the friction in a pore is the same as the
one on a particle. Moreover, the possible influence of roughness of scraped particles needs
to be taken into account.

Figure 14 [34] gives the values of F versus �r for the studied membranes. In the range
of ionic strengths and membrane pore studied, �r varies from 0.2 to 110 since ��1 decreases
when the ionic strength increases. For high values of �r (�r > 20Þ. F tends toward 0.8 and
we approach the validity domain of the Helmholtz–Smoluchowski’s equation [relation
(9)]. There is no double-layer overlapping, as F only takes into account the conductivity
difference between the solution inside the pore and in the bulk; F does not reach unity
since the location of the shear plane is different for both electrokinetic phenomena [34, 48].

For lower values of �r, the double-layer overlapping adds to the effect of conduc-
tivity; this leads to a correction coefficient F very different from 1. The experimental factor
F found is similar to the one calculated by Hildreth [46]: it varies from 0 to 1, depending
on �r and �.

2. Electrolyte Conductivity in the Pore and Space Charge Model

Measuring the streaming potential is among the most convenient techniques for the elec-
trokinetic study of porous membranes [20, 42]. However, the determination of the zeta
potential from a single SP measurement may be ambiguous [49, 50]. Figure 15 shows the
zeta potential (�) dependence of the SP determined from the space charge model for

600 Ricq et al.



Electrokinetic Characterization of Membranes 601

FIG. 14 Calculated correction factor F versus �r. T ¼ 508C; NaCl (pH ¼ 6:5); &: M5, *: M4, ~:
M1, &: M14 Membranes CarbosepTM, Orelis. (From Ref. 34.)

FIG. 15 Zeta potential (�) dependence of the streaming potential (SP) evaluated from the space

charge model for various concentrations of KCl solutions: (a) 0.003 M; (b) 0.006 M: (c) 0.01 M;
r ¼ 75 nm. (From Ref. 49.)



various KCl concentrations. The SP has a maximum with respect to the zeta potential at
fixed concentration. The downward trend of the SP for sufficiently high zeta potentials
results from the excess conductance in the region near the pore walls. During the SP
process, the pressure gradient acting through the membrane creates an electric field in
the opposite direction of the fluid flow. This electric field produces a backflow of counter-
ions by the electro-osmotic effect [25]. The surface conductance increases exponentially
with the zeta potential at fixed electrolyte concentration [50]. The higher the surface
conductance, the greater the counterion backflow is, which in turn causes the SP to
decrease as zeta potential increases in magnitude.

It can be seen from Fig. 15 that one SP value may be associated with two different
values of zeta potential. To remove this ambiguity, the SP can be studied as a function of
the pH of the KCl solutions. Indeed, the zeta potential of inorganic membranes is affected
by the pH of the solution flowing through the membrane pores. The plot SP ¼ f (pH)
might then show one particular SP value associated with two different pH. For instance,
Fig. 16 shows the variation of SP versus pH for the same KCl concentrations as in Fig. 15.
The minimum pH value for each electrolyte concentration was chosen in such a way that
the concentration of protons can be neglected with respect to that of Kþ ions. As expected,
the curves present a maximum with respect to the pH of the solutions. For pH less than
� 9:5, each SP value is associated with two distinct pH values. The i.e.p. of the membrane,
that is, the pH for which SP ¼ 0, is about 10.3. This allows us to determine the correct zeta
potential corresponding to one SP value obtained at a known pH. Indeed, the farther the
pH from the i.e.p., the higher the zeta potential is. The SP value corresponding to the pH
furthest from the i.e.p. can then be associated with the highest of the two possible zeta
potentials obtained from the plot SP ¼ f ð�Þ (see Fig. 15). This procedure has been repeated
for various electrolyte concentrations in order to determine the correct value of the zeta
potential from each SP.

Figure 17 presents the concentration dependence of the zeta potential ð�Þ estimated
from the space charge model and from the approximated Helmholtz–Smoluchowski rela-
tion [Eq. (9)]. The Helmholtz–Smoluchowski equation neglects the surface conduction
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FIG. 16 pH dependence of the experimental streaming potential for various KCl concentrations–
membrane Al2O3, r ¼ 75 nm. (*) 0.003 M; (�) 0.006 M; (&) 0.01 M. (From Ref. 49.)



phenomenon and considers that the conductivity inside the pores is the same as the bulk
solution conductivity ð�0Þ. It leads to an apparent value of the zeta potential also called the
equivalent zeta potential [51].

Numerical calculations show that the membrane is strongly charged in a wide range
of electrolyte concentrations. As expected, the zeta potential decreases as the electrolyte
concentration increases. On the other hand, the curve obtained from Eq. (9) presents a
maximum with respect to the electrolyte concentration. It appears that Eq. (9) can lead to
a substantial underestimation of the true zeta potential, particularly at low concentration
and for a strongly charged surface.

F. Determination of Filtering Layer SP in the Case of Multilayer
Membrane

Ceramic membranes are commonly used in MF and UF to separate a wide range of
products from undesirable compounds. Many of these membranes exhibit a multilayer
composite microstructure with each underlying layer having progressively larger pore size
and thickness. The predominantly thick layer, called the support layer, provides the
necessary mechanical strength to the filtering layer, which has the smallest pore size.
The support layer can be made of a different material from the filtering one. Both layers
can consist of different metal oxides (MembraloxTM, SCT US Filter, and Tami mem-
branes, for example) or the support layer can be a nonceramic material such as carbon
(CarbosepTM membranes, Orelis for example).

As an example, Table 3 gives the characteristics of a ceramic membrane consisting of
three different metal oxide layers.

In the case of composite membranes for which the support layer as well as the
intermediate support layers and the filtering one are made of metal oxides, the SP may
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FIG. 17 Concentration dependence of the zeta potential (�)–membrane Al2O3, r ¼ 75 nm.
(�) From space charge model; (þ) from Helmholtz–Smoluchowski equation [Eq. (9)]. (From
Ref. 49.)



not reflect only the surface properties of the filtering layer [52]. Indeed, the pore walls of
each layer develop an electrical charge when such a membrane is put in contact with an
aqueous medium. Because of its important thickness with respect to the separating layer,
the support can influence the SP value measured across the membrane. In the same way,
because the intermediate support layer pores are successively smaller than that of the bulk
support, their contribution to the SP value may be not negligible. In other words, each
oxide layer can play a significant role in the global SP measured across the whole mem-
brane. Users have to access to the electrokinetic properties relative to each layer and
especially to the filtering one.

Figure 18 illustrates the different structures (a), their respective permeation fluxes
(b), and electrical potential differences (c) versus the transmembrane pressure. Curves
giving the permeation flux variation as a function of the working pressure allow knowl-
edge of, at a given flux Jx, the pressure drop across the support ð�Psup, the intermediate
layer ð�Pi:l:Þ, and the filtering layer ð�Pf :l:Þ. Indeed, the pressure difference between both
sides of the two-layered membrane ð�Psupþi:l:Þ is equal to the sum of the pressure drop
across the support and the intermediate layer:

�Psupþi:l: ¼ �Psup þ�Pi:l: ð19aÞ

For the three-layered membrane, we have

�Psupþi:lþf :l: ¼ �Psup þ�Pi:l: þ�Pf :l: ð19bÞ

In the same way, from curves showing the electrical potential difference versus the trans-
membrane pressure we can determine the potential drop across each layer ð�Esup;�Ei:l:,
and �Ef :l:Þ. Indeed, the electrical potential drop across the two-layered (�Esupþi:l:Þ and
three-layered ð�Esupþi:l:þf :l:Þ membranes can be also written as

�Esupþi:l: ¼ �Esup þ�Ei:l: ð20aÞ

and

�Esupþi:l:þf :l: ¼ �Esup þ�Ei:l: þ�Ef :l: ð20bÞ

If both the permeation flux and electrical potential difference measured experimentally are
linear functions of the transmembrane pressure for the three structures, SP for both
intermediate and filtering layers can be expressed as
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TABLE 3 Multilayer TamiTM Membrane Characteristics

Support
Intermediate

layer
Filtering
layer

Nature Al2O3-TiO2 TiO2 ZrO2

Thickness 2 mm 10 mm 5�6 mm
Mean pore radius 0.5 mm 0.2 mm 40 nm

Porosity 35% 40% –

Source: Ref. 52.



SPi:l: ¼

SPsupþi:l: � SPsup 

Lpsupþi:l:

Lpsup

1�
Lpsupþi:l:

Lpsup

ð21aÞ

and

SPf :l: ¼

SPsupþi:l:þf :l: � SPsupþi:l: 

Lpsupþi:l:þf :l:

Lpsupþi:l:

1�
Lpsupþi:l:þf:l:

Lpsupþi:l:

ð21bÞ

where Lpsup
, Lpsupþi:l:

, and Lpsupþi:l:þf :l:
are the hydraulic permeabilities (i.e., the permeation

fluxes per pressure unit) determined from flux measurements performed with the three
structures.

Figure 19 shows SP variations versus pH for each membrane given in Table 3 in mM
NaCl solutions. Isoelectric points found are very close for the three membranes (i.e.p. ¼
6:5 for the alumina support and the three-layered membrane; i.e.p. ¼ 6:7 for the two-
layered membrane consisting of the support and the intermediate titania layer). Jin and
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FIG. 18 Schematic representation of the procedure used to determine the streaming potential of

the intermediate and filtering layer: (a) structures studied; (b) permeation flux Jp versus transmem-
brane pressure �P; (c) electrical potential difference �E versus pressure drop �P. (From Ref. 52.)



Sharma [53] showed that in the case of two tubes connected in series and having different
radii and lengths, the resulting SP depends on the fraction of tube length and the ratio
between the tubes’ radii. In the present case, the support layer represents more than 99%
of the total thickness. Moreover, pores of the intermediate and filtering layers are only
about 2 and 12 times smaller than the support ones. Thus, it would be hazardous to
conclude that measurements performed with the multilayered membranes allow charac-
terization of the electrokinetic behavior of the separating layer.

Results shown in Fig. 19 and the membrane permeabilities allow calculation of SPs
appropriate to titania and zirconia layers by using Eqs (21a) and (21b). The calculated SPs
of the titania and zirconia layers are presented in Fig. 20 (continuous lines: curves a and d,
respectively). It clearly appears that the properties of these layers differ significantly from
results obtained with the two-layered membrane (dotted lines: curve b) and the three-
layered one (dotted lines: curve c).

Each layer exerts an influence on the global SP measured across a multilayer
membrane. The SP of such a membrane is a combination of the SP values of each
layer composing the membrane. Isoelectric points determined for the different layers
differ significantly from one another, whereas it does not clearly appear by considering
the pH-dependent SP curves relative to the different structures studied (support, two-
layered membrane, and three-layered membrane). The support layer seems to play a
non-negligible role in the global SP due to its large thickness as compared to that of
other layers.

G. Consequences of Surface Charge Density on Membrane Selectivity

The separation of molecules involves not only the steric effect exclusion, but ionic inter-
actions between solute or ions and the membrane are also capable of modifying selectivity
[27, 54, 55].
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FIG. 19 pH dependence of streaming potential (SP) in 1 mM NaCl solution. (^) Support; (&)
two-layered membrane; (~) three-layered membrane. (From Ref. 52.)



Actually, the filtration of ionic solutions (NaCl, for example) at various pH and ionic
strengths gives rise to a nontotal ion transmission even when the pore radius (2 nm) is
larger than the ionic radius. The importance of such ionic effects has been quantified by SP
measurements [56]. Thus, electric effects are observed on membrane selectivity. When the
net charge is zero, that is, close to the i.e.p. (close to 5 in the example shown in Fig. 21),
Cl�, Naþ, and Ca2þ transmission are maximum, close to 1 (Fig. 22). This corresponds to
the steric transmission forecast by Ferry [3] (Table 4).

At a pH far from the i.e.p., electrostatic repulsions between the membrane surface
and ions in solution decrease the ion transmission. Notice that, even when the pore radius
is widely larger than the ion size, transmission decreases by up to 40% at pH 4 in the case
of CaCl2 filtration and at pH 8 in the case of NaCl filtration. Actually, experiments were
performed at 1 mM; at this ionic strength, the Debye length is about 10 nm whereas the
pore radius is about 2 nm. There is, then, double-layer overlapping which leads to ionic
exclusion.

At a pH lower than the i.e.p., the coions (Naþ or Ca2þ) are rejected by the mem-
brane. To maintain the fluid neutrality, Cl� counterions are also rejected. That is why at a
pH lower than 5, Cl� transmission is lower than 1. The reverse phenomenon is observed at
a pH higher than 5; that is, Naþ and Ca2þ transmission are lower than 1. Hydrogen ions
and OH� also participate in the electrostatic equilibrium as has been mentioned in several
studies [57, 58].

In summary, the higher the SP nominal value, the lower the ion transmission. This
demonstrates the contribution of electric effects to membrane selectivity.

The study of electrolyte UF has been confirmed: Jeantet andMaubois [58] have inves-
tigated the nanofiltration selectivity mechanisms of ionic solutions. These are mainly deter-
mined by the Donnan effect. This has been more recently observed by Combe et al. [59].
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FIG. 20 pH dependence of streaming potential (SP) in 1 mM NaCl solution. Continuous lines: (a)
SP determined for the titania layer; (d) SP determined for the filtering zirconia layer. Dotted lines: (b)

experimental SP measured on the two-layered membrane; (c) experimental SP measured on the
three-layered membrane. (From Ref. 52.)
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FIG. 21 Streaming potential (SP) versus pH of solution containing 10�3 M: (~) NaCl; (&) CaCl2.
(From Ref. 56.)

FIG. 22 Ion transmission Tr versus pH of solution containing 10�3 M of NaCl or CaCl2: (~) Naþ

NaCl); (&) Ca2þ(CaCl2); (~) Cl� (NaCl); (&) Cl� (CaCl2). (From Ref. 56.)

TABLE 4 Ionic Radius ri and Steric Transmission Forecast

by Ferry (Trsteric )
a

Ions Ionic radius (nm) (riÞ Tr steric

Naþ 0.095 0.991
Ca2þ 0.099 0.990

Cl� 0.184 0.969

a Calculations were made with a membrane pore radius equal to 2 nm.

Source: Ref. 60.



For the same reasons, the efficient UF of macromolecules depends on electric and
steric effects: experiments have been performed on single proteins of different sizes and
charges as a function of pH, ionic strength, and nature of the salt. This has allowed
evaluation of the filtration performance [60].

The presence of fouling species in solution induces an immediate membrane fouling
and a decrease in the permeate flux down to a stable value. This value depends on the
protein properties, especially on its solubility, but also on the sign of the membrane and of
the fouling species’ net charge. The permeate flux is lower when the pH is close to the
protein i.e.p. At a given pH, if the protein and the membrane have the same net charge
sign, the permeate flux is higher if the ionic strength variation resulting from the salt
addition is high. On the other hand, it is lower when the protein and the membrane
have opposite net charge.

Streaming potential measurements under various conditions of pH and ionic
strength agree with the results of several authors [21, 51] according to which the proteins
contribute to the net charge of the system. The adsorption of proteins onto the membrane
surface then contributes to the filtration by its own selectivity [61].

Protein transfer through a mineral membrane is governed by ionic and steric exclu-
sion phenomena. Single proteins have a higher transmission at a pH close to their i.e.p.
and at high ionic strength, where the SP tends to zero.

The presence of ionic repulsion decreases the transmission. This depends on the SP
which depends itself on the solution composition. However, no simple relation between
solution and membrane characteristics and the SP exists.

A correlation (Fig. 23) which allows a correct estimation of transmission variation
has been established. It can be exploited in order to choose the membrane, or operating
conditions, when it is necessary to implement membrane separation operations. However,
the correlation does not take into account interactions between proteins nor membrane
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FIG. 23 Lysozyme transmission (inorganic M1 Carbosep membrane from Orelis) versus streaming

potential nominal values (which vary with ionic strength added in salt). NaCl: (~) pH ¼ 7; (*)
pH ¼ 3:5. (From Ref. 46.)



fouling when proteins are in a mixture. The correlation makes clear the relationship
between protein transmission and the measured SP.

All the results concerning the filtration of solutions, the composition of which has
been adjusted (pH, ionic strength, solute nature), have allowed us to decompose the
various phenomena which take place during filtration: steric effect and electric exclusion.
This better understanding of filtration can be attributed to the use of SP as an electrical
characterization tool.

IV. USE OF ELECTRO-OSMOSIS TO CHARACTERIZE UF AND MF
MEMBRANES

Electro-osmosis is based on the movement of the liquid phase adjacent to a charged
surface under the influence of an electric field applied parallel to the interface. It can be
used to characterize the charge state of both organic [62–66] or inorganic membranes [67–
70] as well as the electrokinetic properties of colloidal particles (after electrophoretic
deposition of these particles on to membrane pores) in a concentration range inaccessible
to microelectrophoresis [71].

A. Principle and Phenomenon of Electro-osmosis

The application of an electric field parallel to a charged pore filled with an electrolytic
solution results in migration of ions situated beyond the shear plane (i.e., ions present in
the diffuse layer as well as in the bulk solution) [72]. Ions move towards electrodes of
opposite charge sign (Fig. 24), carrying solvent with them.

If both cations and anions have very similar mobilities, then the global flux in the
bulk solution is zero and the solvent flow results only from the motion of ions present in
the diffuse layer. This solvent flow is called the electro-osmotic flow rate.

The electro-osmosis experiment consists in performing the electrolysis of an electro-
lyte solution, the anode and the cathode being positioned on both sides of the membrane.
Electrolysis can be carried out with a constant applied voltage or current. However, the
latter option appears to be better than the former. Indeed, during constant-voltage elec-
trolysis, electric current dramatically falls over the last minutes and it is not possible to
maintain it at a constant value during the experiment [73].

The volume ðvÞ of liquid electro-osmotically transported increases linearly with time
ðtÞ. The electro-osmotic flow rate V is determined from the slope of the plot of v versus t,
as shown in Fig. 25.

B. Electro-osmosis Measurements

Figure 26 depicts an experimental unit used for electro-osmosis experiments. The mem-
brane is held at one end of a deep tube immersed in a thermostated electrolyte solution.
Two platinum electrodes are used. The first one is a mesh electrode positioned behind the
membrane, i.e., in the tube; the second one is a cylindrical electrode positioned outside the
tube. A constant current is applied between the electrodes by means of a power supply,
and a small capillary transfers the overflowed electrolyte to a precision balance.
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FIG. 24 Origin of the electro-osmosis phenomenon: (Jþ) flux of cations; (J�) flux of anions. (From
Ref. 74.)

FIG. 25 Variation of electro-osmotically transported liquid volume as a function of time ðtÞ. (From
Ref. 70.)



1. Operating Procedure

The membrane is first equilibrated with the measuring solution. Electro-osmotic experi-
ments are carried out with a large volume of solution to prevent any change in pH (due to
electrolysis of the electrolyte solution). At the beginning of the experiment, both liquid
levels inside and outside the tube are made equal. A constant current (generally in the
range 1–30 mA) applied between the two platinum electrodes induces an electro-osmotic
flow of electrolyte in the tube.

The polarity of the electrodes is chosen so that the liquid electro-osmotically trans-
ported flows toward the capillary. The electro-osmotic flow rate is determined by weight-
ing the fluid amount flowing through the membrane as a function of time. The measuring
time is limited to prevent any change in pH (the pH has to be checked before and after
each experiment to ensure that no change has occurred) [8, 70].

V. COMPARISON OF VARIOUS METHODS TO DETERMINE MEMBRANE
ELECTROKINETIC CHARACTERISTICS

There are several procedures, including microelectrophoresis, SP measurements, and elec-
tro-osmosis, that allow determination of the zeta potential. Themost widely used procedure,
microelectrophoresis, is effective for studying powder dispersions, whereas SP and electro-
osmosis can be applied to the membrane itself as we saw previously. So, electrophoresis
measurements can be used to determine the zeta potential of a membrane sample after
grinding, but the newly formed surface can differ considerably from the membrane surface.

The variation in zeta potential determined from SP and electro-osmosis in 0.001 and
0.01 M NaCl solutions in the case of a ceramic membrane (64%Al2O3, 27% TiO2, 9%
SiO2, 0.9 mm pore size) is shown on Fig. 27.
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FIG. 26 Experimental unit for electro-osmosis experiments. (From Ref. 70.)



The i.e.p. values obtained by both methods for NaCl solutions are very close: 4:7
0:2 and 4:5 0:2 from electro-osmosis and SP, respectively. The i.e.p. is independent of
the ionic strength since NaCl is known to be an indifferent electrolyte.

For both techniques the profiles of the pH-dependent zeta-potential curves are simi-
lar. However, the numerical values of zeta potential differ from one method to another for
pH values different from the i.e.p. Electro-osmosis gives higher absolute values and the
gap increases as the pH moves to the i.e.p.

It is important to keep in mind that the zeta potential is the potential determined at
the shearing plane between the liquid and the solid surface. Vernhet et al. [48] have
suggested that the location of the shear plane depends on the electrokinetic method, as
represented in Fig. 28. So, during electro-osmosis, the shear plane might be nearer the
surface, leading to zeta potentials larger than obtained by SP measurements.

Figure 29 shows the ionic strength effect on the ratio of the zeta potentials calculated
from the electro-osmotic flow rate and SP measurements for NaCl solutions at pH 7.2,
corresponding to the plateau region on Fig. 27. It appears that the ratio �EO=�SP becomes
higher as the ionic strength increases. The increase in ionic strength leads to a compression
of the diffuse layer (the Debye length ��1 decreases, see Fig. 30). These observed results
agree with the assumption that the location of the shearing plane differs according to the
electrokinetic methods used.

VI. CONCLUSION

The characterization of the membrane–solution interface by means of electrical and elec-
trokinetic measurements is doubtless of the greatest interest for understanding and con-
trolling the selectivity of a membrane. Indeed, as a rule, the filtration peformances of a
membrane are governed not only by steric effects but also by the electrostatic interactions
occurring between the species in solution and the membrane surface.

Several techniques providing information about the charge state of porous mem-
branes can be used. Two electrokinetic methods, electro-osmosis and SP, can be applied to
the study of UF and MF membranes.
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FIG. 27 pH dependence of zeta potential determined from streaming potential (SP) and electro-
osmosis (EO) for NaCl solutions: (*) SP, 0.01M; (*) EO, 0.01M; (&) SP, 0.01M; (&) EO, 0.001M.

(From Ref. 75.)
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FIG. 28 Theoretical potential  evolution as a function of the distance with respect to the solid
surface (x) within the electrical double layer: influence of the shear plane location on zeta potential
values determined with different electrokinetic methods. ��i ¼ variations between zeta potential

values obtained with different electrokinetic methods at pHi (pH1 < pH2 < pH3 < p.i.e.). (From
Ref. 75.)

FIG. 29 Ionic strength effect on the ratio of zeta potentials calculated from the electroosmotic flow
rate ð��0Þ and streaming potential ð�SPÞ measurements. (From Ref. 75.)
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Electrokinetics and Surface Charges of
Spherical Polystyrene Particles

HANS NIKOLAUS STEIN Eindhoven University of Technology, Eindhoven, The
Netherlands

I. INTRODUCTION

Electrokinetic measurements are an important tool for learning something about the
interfacial properties of dispersed particles, at least as long as the interface of such par-
ticles with the surrounding medium carries an electric charge which arises, e.g., by adsorp-
tion of ions from the surrounding solution, or desorption of ions from it into the solution.
In the case of polystyrene latex particles, the surface frequently contains —O—SO3H
groups dissociating into —O—SO�

3 and Hþ. Since the system as a whole must be
uncharged, the surface charge (usually indicated as �0) must be compensated for by an
excess of ions of opposite charge in the surroundings, arranged in the ‘‘electrical double
layer.’’ Charges and counterions will determine the behavior of the dispersions concerned
(coagulation, sedimentation, rheology, etc).

However, when electrokinetic methods are applied to polystyrene latex particles, the
data obtained show two unusual features:

1. At increasing electrolyte concentrations starting from very low values (0.1 mM
or lower), the absolute value of the � potential first rises, then passes through a
maximum, and at still higher concentration decreases again. A typical graph,
based on data by Meijer et al. [1], is shown in Fig. 1, but similar findings have
been reported by quite a few other authors, e.g., Elimelech and O’Melia [2], van
der Put and Bijsterbosch [3], Goff and Luner [4], Brouwer and Zsom [5], Voegtli
and Zukoski [6], and Verdegan and Anderson [7].

2. In the high electrolyte concentration region, the � potential retains nonzero
values up to quite high concentrations. Thus, for polystyrene � ’ �0:018V in
0.5 M NaNO3 or KCl solutions.

On the other hand, polystyrene particles have been known for a long time to consist
of equally sized, spherical particles that are perfectly smooth – at least on the scale of
electron micrograph images. Thus, such particles closely approximate the systems which
are at the background of most theoretical considerations on dispersions. Understanding
the unusual features of electrokinetic behavior will then be a challenge for research work-
ers interested in electrokinetics.
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A first question to be asked is, whether the surface of the polystyrene latex particles
is smooth not only on the scale of electron microscopy, but also on the molecular level. An
answer to that question has been reported by Folkersma and Stein [8, 9], who found, on
investigating polystyrene latex particles by atomic force microscopy, that the latex parti-
cles when dried were definitely rough, with maximum heights of protrusions being found
of the order of up to 28 nm.

In the present contribution it is intended to review some of the data obtained by
electrokinetics, to describe the picture of the interface polystyrene latex particle/aqueous
solution that emerges from these data, and to mention an example of how this picture
helps us to understand some data on coagulation of such latexes.

II. SOME BASIC NOTIONS OF ELECTROKINETICS

In interpreting electrokinetic observations, it should be borne in mind that the first layer of
liquid near the solid/liquid interface is held fixed toward the solid (the ‘‘no slip’’ condition
in hydrodynamics), and the liquid will be able to move towards the particle only at some
(small) distance from the solid/liquid boundary itself. The place at which this transition
occurs is idealized as a ‘‘slipping plane.’’ Thus, the potential which plays a role in electro-
kinetics is not the potential at the solid/liquid boundary itself (usually indicated as  0), but
the potential at the slipping plane (indicated as �).

Thus, in the electrical double layer two boundaries should be conceptually discerned:

1. The real solid/liquid interface, separating the liquid medium with its double layer
from the solid phase, and

2. The electrokinetic slipping plane – separating a layer of immobilized solution
close to the interface from the solution at larger distance from the surface.

620 Stein

FIG. 1 Electrokinetic potentials of two types of polystyrene latex particles: (þ) particle
radius ¼ 280 nm, �0 ¼ �0:0063Cm�2; (�) particle radius ¼ 196 nm, �0 ¼ �0:027Cm�2. (From
Ref. 1.)



The charge compensating the surface charge will be partially present between the
solid/liquid interface and the slipping plane, and in the space between the slipping plane
and the bulk solution. These charges will be indicated here as �� and ��, respectively, and
the requirement that the boundary as a whole must be electrically neutral can be expressed
by

�0 þ �� þ �� ¼ 0 ð1Þ

III. CALCULATING ZETA POTENTIALS FROM ELECTROKINETIC DATA
WHEN CONDUCTION BY IONS BEHIND THE SLIPPING PLANE IS
NEGLIGIBLE

A complicating factor is that the calculation of � potentials from electrokinetic data proves
frequently to be quite difficult. The difficulties are of two kind: (1) the dependence of the
relation between electrophoretic mobility and � potential, on the value of �a and (2) the
influence of surface conductance.

The relation for calculating � potentials from electrokinetic data depends in a rather
complicated way on the ratio between the length scales of the particle and of the double
layer, �a (a ¼ particle radius, and � ¼ the parameter of the Debye–Hückel theory, i.e., the
reciprocal value of the extension of the double layer in a direction perpendicular to the
interface).

This aspect is not really an insurmountable problem any more since the treatment of
the problem by Wiersema et al. [10]. This covers the range of �a and � potential values of
interest for electrokinetic work; in particular, the results they obtained by numerically
solving the relevant equations are frequently referred to. These results are available as
tabulated values of the dimensionless mobility E as a function of �a and the dimensionless
� potential. The dimensionless potential is defined as y0 ¼ ze0�=ðkBolTÞ, and the dimen-
sionless mobility is defined by:

E ¼
3

2

�e0
�0�rkBolT

U

X
ð2Þ

where U is the velocity of the motion of a particle (m s�1) in an electric field X (Vm�1), � is
the viscosity of the liquid dispersion medium (Pa s), �0 is the permittivity of the vacuum
(8:854� 10�12 CV�1 m�1), �r is the relative dielectric constant of the liquid medium, kBol is
the Boltzmann constant (1:3806� 10�23 JK�1), T is the temperature (K), and e0 is the
proton electric charge (1:6022� 10�19 C).

While the polarization of the double layer around the particles caused by the electric
field (the so-called ‘‘relaxation’’ effect), and the retardation effect caused by the flow of
(predominantly) counterions in the vicinity of a particle, are accounted for in the calcula-
tions by Wiersema et al. [10], one assumption remains: viz, that ions behind the slipping
plane do not contribute to the electrical conductivity of the dispersion.

Figure 2 compares the results of Wiersema et al. with some of the equations pre-
sented in later years, for the case of y0 (the dimensionless potential at the slipping
planeÞ ¼ 2 (i.e., � ’ 0:05V). The equations concerned have been published by
Semenikhin and Dukhin [11], O’Brien and White [12], O’Brien [13], and Ohshima et al.
[14]. The equations are much easier to use, e.g., when calculating � potentials from elec-
trokinetic data by a computer, than the tables of Wiersema et al. [10], which require some
interpolation. It is seen that the agreement between the analytical equations and numerical
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models of Wiersema et al. and those of O’Brien and White [12] is very good when
�a > 100, but that the situation is much less satisfactory for values of this parameter
less than about 20. This is due to the neglect of terms of higher order in the parameter
�a; most of the equations mentioned consist essentially of a power series in 1=�a. Thus,
equations based on neglecting higher powers of (1=�a) than the first involve approxima-
tions which are not really serious at large values of this parameter, but become increas-
ingly important for lower �a values.

For particles with a radius very large compared to the dimension of the double layer,
i.e., if �a � 1, the relationship between E and y0 becomes

E ¼
3

2
y0 ð3Þ

(‘‘von Smoluchowski’’ equation), while for �a 	 1:

E ¼ y0 ð4Þ

(‘‘Hückel’’ equation).
Although both the von Smoluchowski and the Hückel equations predict a linear

dependence of electrophoretic mobility on the � potential, albeit with a different propor-
tionality constant which depends on the �a value in the situation considered, in some cases
of intermediate �a values the relationship between mobility and � potential becomes non-
linear to the extent that a maximum can be found. Such cases occur, especially at high �
potentials, and with �a values around 1.

It will be noted that if the ratio:

E

y0
¼
Dimensionless electrophoretic velocity

Dimensionless � potential
ð5Þ
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FIG. 2 Comparison of various electrokinetic mobility theories for ze0�=ðkBolTÞ ¼ 2. (þþ)
Wiersema et al. [10]; (~) Semenikhin and Dukhin [11]; (*) Ohshima et al. [14]; (Y) O’Brien and

White [12]; (~) O’Brien [13].



is underestimated (e.g., by employing the Semenikhin and Dukhin equation when �a ¼ 5),
the � potential calculated from the electrokinetic velocity will be too high; while the reverse
is true if Eq. (5) is overestimated, e.g., by applying the von Smoluchowski equation (3) in a
�a region in which the corrections to it are not really negligible.

IV. SPECIAL CASE OF POLYSTYRENE LATEX PARTICLES

As already indicated, in the case of polystyrene latex particles the � potential versus
electrolyte concentration graphs show some unusual features: on increasing the concen-
tration starting from low values, the � potential first starts to rise, passes through a
maximum, and finally decreases again.

The unusual aspect of this behavior is especially the rise in the absolute value of the �
potential with increasing concentration in the low concentration region, since a decrease in
the absolute value with increasing concentration is what is usually observed, e.g., in the
case of aqueous dispersions of TiO2, and what is expected from theory (‘‘compressing’’
action on the double layer, by excess electrolyte).

The following models have been proposed to account for the dependence of the �
potential on concentration, in the low concentration region:

A. Passing Through a ja Region in which the � Potential Shows a
Maximum with Increasing Electrophoretic Mobility [15]

This could occur only in the region where such a behavior is predicted by the results of
Wiersema et al. [10]. However, the phenomenon has been reported to occur outside this
region as well, so this cannot be an explanation which is valid in all cases. Thus, the data
shown in Fig. 1 were obtained by calculating � potentials from electrophoretic mobilities
by means of the values tabulated by Wiersema et al., and therefore the course of this graph
cannot be due to the occurrence of a maximum in the � potential versus mobility curve at
the �a value concerned.

B. Participation in Conductance by Ions Behind the Slipping Plane

This explanation through ‘‘anomalous conductance’’ by ions in the stagnant liquid behind
the slipping plane has been advocated, among others, by van der Put and Bijsterbosch [3,
16].

Let us, before passing into the details of their argument, see how this effect might
explain the � potential versus concentration graph found with polystyrene latex particles.

In many cases, the electric field strength in the experiments (X) is calculated from the
quotient of the electric current (I) divided by the electrical conductivity of the solution
studied (
):

X ¼
I



ð6Þ

This is applied generally if the geometry of the apparatus is too complicated for
direct calculation of the field strength in the dispersion from the dimensions of the appa-
ratus (as is usually the case). However, it entails the assumption that no stray currents
occur. In the field of dispersions, the neglect of the so-called ‘‘surface conductivity’’ is
particularly important.
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By this is meant the following: the double layer around the particles contains an
excess of counterions and a shortage of coions; however, the excess of counterions is larger
than the shortage of coions. This can be easily seen from the expressions for a flat inter-
face; in this case:

�þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�0�rn1kBolT

p
exp �

y0
2

� �
� 1

� �
�� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�0�rn1kBolT

p
exp

y0
2

� �
� 1

� � ð7Þ

where n1 is the number concentration of each of the two ions in solution, �þ is the
excess charge due to positive ions in the double layer further away from the solid/liquid
interface than the slipping plane, and �� is that due to negative ions; y0 is again the
dimensionless value of the � potential. One of the � values is a deficit rather than an
excess; this is determined by the sign of y0. Thus, if y0 < 0, �þ will be an excess, while ��
is a deficit; but in this case, the absolute value of ½expð�y0=2Þ � 1� is larger than that of
½expðy0=2� 1Þ�, and hence there will be a larger quantity of ions in the double layer than
in an equal volume in the bulk liquid. Around a particle, then, there will be a larger
conductivity than in the bulk (if the individual ions have similar mobilities), and part of
the total current measured will not contribute to the building up of the overall field
strength.

It is possible to take into account ��, the conductivity by the ions involved in �þ and
��, i.e., by ions further away from the solid/liquid interface than the slipping plane, by
means of an equation due to Bikerman [17]:

�� ¼ 1=F � �þ
þ � ��
� þ �þ
2�r�0RT

�zþ
� ��

2�r�0RT

�z�

� �
ð8Þ

where 
þ and 
� are the ionic conductivities of the cation and anion, respectively, and R is
the gas constant.

If we introduce into this equation the formulas for �þ and �� mentioned in Eq. (7),
we obtain:

�� ¼
ð2�r�0RTcÞ

1
2

F
� exp �

y0
2

� �
� 1

h i
� 
þ þ

2�r�0RT

�

	 
	

þ exp
y0
2

� �
� 1

h i
� 
� þ

2�r�0RT

�

	 

 ð9Þ

Use of this equation implies a knowledge of y0, i.e., of the � potential. Van der Put
and Bijsterbosch [16] compared this surface conductance with that calculated by means of
a theoretical equation on the conductance of a dispersion of nonconducting particles
derived in a way similar to that used in the derivation of the Bruggeman equation [18, 19]:

�� ¼

K0d ð1� pÞ � K
K0

� �1
3

�K=K0

� �

4� ð1� pÞ � K
K0

� �1
3

�4

ð10Þ

where p is the solid volume fraction in the plug, K is the conductivity of the dispersion, and
K0 is the conductivity of the liquid medium.

This formula appears to lead to values of the surface conductance of the particles
which are larger than those calculated by the Bikerman equation. Thus, the existence of
‘‘anomalous Stern layer conductance’’ by ions in the space between the solid/liquid inter-
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face and the slipping plane was assumed. Neglect of this contribution leads to � potentials
which are too low (in the absolute sense), since the real electrical field is smaller than that
calculated from formula (6) using for I the total electrical current measured, instead of
only that part which is not due to surface conductance.

Similarly, Zukoski and Saville [20] report that, on comparing � potentials calculated
from mobility measurements with those calculated from measured values of the surface
conductivity, the latter values were found to be inherently larger (in the absolute sense)
than those calculated from mobilities. This is in line with the considerable role of surface
conductivity, since if this is not take into account, the � potentials calculated from
mobility values will be underestimated.

The existence of anomalous conductance may lead to an (apparent) rise in the �
potential with increasing electrolyte concentration in the low concentration region, since
at high electrolyte concentration the surface conductance will become negligible com-
pared with the conduction through the bulk solution. Thus, the absolute value of the �
potential will be underestimated, especially at very low concentrations. At larger con-
centrations, the underestimation will be less, and the � potential will rise to realistic
values, while at still larger concentrations the compression of the double layer will lead
to a further lowering of j�j.

This is, according to van der Linde and Bijsterbosch [21], the reason for the finding
of a j�j potential maximum: this was considered to be ‘‘either due to artifacts in measuring
streaming currents and electrical conductance of plugs, or to anomalous surface conduc-
tance inherent to these systems not being accounted for in the theories relating electro-
phoretic mobilities to � potentials.’’ Their main argument for this conclusion was that a
polystyrene latex with negative �0, showing a maximum absolute value of the electro-
phoretic mobility in 0.01 M KBr solutions (in which the electrophoretic mobility is nega-
tive), could be converted into a latex showing a maximum value of the electrophoretic
mobility of opposite sign at about the same concentration, by covering the latex with a
poly-(l-lysine) layer. However, by hiding the original latex through adsorption of a poly-
electrolyte, not only the sign of the surface charges will be changed, but also the hydro-
philic/hydrophobic character of the polymer/aqueous solution interface. This may change
the tendency of the Kþ and Br� ions to be adsorbed.

Against the hypothesis of an important role of anomalous Stern layer conductance,
the following arguments should be considered:

1. The assumption of the ions behind the slipping plane not participating in con-
ductance appears to be fundamentally a consequence of the ‘‘nonslip’’ condition
taken over from the basic science of hydrodynamics, for which there is wide
experimental verification; one cannot easily imagine an ion moving through a
stagnant liquid layer without disturbing the latter;

2. Midmore and Hunter confirmed doubts on the existence of anomalous Stern
layer conductance by means of measurements of high-frequency dielectric
response [15] on polystyrene dispersions: the number of ions responding to
that method did not surpass more than a small fraction (3%) of the titratable
surface charge, whereas if anomalous Stern layer conductance were to be really
important, nearly all of the titratable surface charge would be compensated for
by ions that are easily displaceable by an electric field. This was taken as an
indication that anomalous surface conductance is not important (‘‘Stern layer
ions are those that are not displaced by a tangential electric field’’).
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Thus, this technique appears to measure only the diffuse layer charge outside the
slipping plane. It is remarkable that this result was found exactly on the same type of
solids for which an important role of anomalous conductance had been anticipated. The
only possibility for combining the measurements reported by Midmore and Hunter [15]
with an important role of anomalous Stern layer conductance appears to the present
author to be the following assumption: while ions embedded in a liquid layer, which is
held fixed towards a solid/liquid interface, cannot respond to a high-frequency electric field
as used by Midmore and Hunter, such ions might be able to respond to a low-frequency
electric field or a direct-current field such as used in electrokinetic work.

C. The Surface of Polystyrene Particles is Covered by a ‘‘Hairy Layer’’

In practice, polystyrene latex particles are prepared in most cases by emulsion polymer-
ization [22] which may lead to the presence of various charged groups:

1. Initiator fragments, e.g., SO2�
4 from K2S2O8, which react with part of the mono-

mer and therefore are present as —O—SO�
3 groups, frequently at polymer

chain ends.
2. If surfactants with ionic head groups are present either during the polymeriza-

tion reaction or in later usage, they may be adsorbed during the polymerization
on to the micelles in which the polymerization reaction occurs, or on the final
interface of the polystyrene particles, imparting ionic charges to that interface.

3. If a buffer solution is employed for proper pH control either during the poly-
merization reaction, or in later use, ions from this solution may be adsorbed as
well.

In order to obtain polystyrene particles with a surface with easily surveyable surface
properties, e.g., with only one type of ionic groups which are anchored by a chemical bond
to the interface and thus may not easily be removed on subjecting the sample to a washing
operation, surfactants and buffer solutions are frequently avoided during the polymeriza-
tion (a ‘‘surfactant-free emulsion polymerization’’). However, the ionic groups introduced
by an initiator cannot easily be avoided. Initiators may either introduce negative surface
groups into the polystyrene, or positive groups; both have been applied. As an example of
the former, K2S2O8 has already been mentioned; an example of the latter is 2,2

0-azobis (2-
amidinopropane) dihydrochloride [7].

The ‘‘hairy layer’’ model starts from the consideration that these ionic groups have a
much higher affinity for an aqueous medium than for an apolar one, such as the inner part
of a polystyrene particle. Therefore, they will tend to accumulate near the particle surface.
In the model this is assumed to lead to the polystyrene particles being covered by poly-
styrene chains with ionic groups at their end. The polystyrene chains are kept extending
into the aqueous solution by the hydrophilic character of their ionic end groups, and by
the repulsion between these groups. The distance over which the liquid layer adhering to
the solid particle extends is then thought to be determined by the length of extension of the
polymer chains. In other words: the slipping plane is assumed to coincide approximately
with the locus of the end groups of the polymer chains; the polymer chains extending into
the solution are surrounded by an aqueous solution, but this solution is between these
chains immobilized by them. Therefore, in this model the � potential is envisaged to be the
potential at the end of the chains.

The repulsion between the ionic head groups is most pronounced at low electrolyte
concentration, since at large concentrations the effect will prevail of the counterions pre-
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ferentially accumulating around the ionic head groups, thus reducing the latter’s mutual
repulsion. Therefore, at very low ionic concentrations the polymer chains will extend for a
relatively large distance into the solution. At that distance there will be only a small
fraction of the original surface charge on the solid polystyrene which is still not compen-
sated for by counterions, and therefore the � potential will be low.

According to the hairy layer model, two opposed effects on the � potential appear
when the electrolyte concentration increases:

1. Reduction of the repulsion between the ionic head groups causing the polymer
chains, which are extending into the solution, to collapse gradually; this would,
if the potential versus distance decrease remains unchanged, lead to an increase
in the � potential in the absolute sense.

2. Increasing neutralization of the surface charges on the polystyrene surface itself
(by the ‘‘compressing’’ action on the double layer by the dissolved electrolyte),
which would lead to a decrease in the � potential with increasing dissolved
electrolyte concentration, if the distance of the slipping plane were to remain
unchanged.

It will be noted that in both the cases mentioned, fundamentally the same effect is
responsible for the compression of the surface layer, viz., the screening of electrostatic
interaction by the crowding of oppositely charged ions around ionic groups; this refers in
case 1 to the repulsion between equally charged ionic head groups of the polymer chain,
and in case 2 to the electrical influence of the charged surface groups. Thus, it might be
supposed that both contractions would occur with increasing electrolyte concentration to
the same extent, which would lead to the expectation that the electric charge between
solid/liquid interface and the slipping plane would be independent of the electrolyte con-
centration. However, this is too simple, since the ionic head groups, though more mobile
than ionic groups on the interface itself, are less so than dissolved ions: the ionic head
groups are restricted in their motions by the mobility of the polymer chain to which they
are attached.

The model can explain the experimental � potential versus electrolyte concentration
graphs such as Fig. 1, if effect 1 predominates at low electrolyte concentration, while effect
2 predominates at larger electrolyte concentrations. The predominance of effect 1 in the
low concentration region is understandable on the basis of the restriction of motion of the
ionic head groups by being bound to polystyrene chains, because the latter attract each
other in an aqueous environment; this may lead to a pronounced collapse of the hairy
layer especially in the low concentration region. In the high concentration region, where
there is hardly any hairy layer left, the general compression of the double layer will become
noticeable.

Against the hairy layer model, the argument has been raised [15] that such a layer is
very unlikely on energetic grounds since the free energy required for the translation of one
ethylbenzene residue from a hydrocarbon to an aqueous environment has been estimated
by Tanford [23] to be 4� 10�20 J (about 10 kT). Nevertheless, it has been reported by
Masliyah et al. [24] that the presence of only a few such chains suffices to immobilize a
volume of liquid around a spherical particle. It could be that the positive free energy
change necessary for transferring these few chains into an aqueous environment is out-
weighed by the negative free energy effect through greater mobility of the ionic head
groups, especially when the hydrophobicity effect of the chains is made less important
by the adsorption of coions (see Section IV.D).
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D. Coion Adsorption Model

This model has already been mentioned as one of the possible explanations of the electro-
kinetic data by Meijer et al. [1]. It ascribes the remarkable features of the electrokinetics of
polymer latex particles not so much to the presence of hairy layers, but to the adsorption
of coions. Thus, with latex particles with a negative surface charge, arising, e.g., from their
preparation with K2S2O8 as initiator, in a NaNO3 solution, NO

�
3 ions are supposed to be

chemisorbed on the polystyrene surface, in spite of the latter having a negative charge.
This may lead, on increasing the NaNO3 concentration from low values on, to a strong
increase in the negative charge behind the slipping plane, and this is, according to the
model, the reason for the increase in absolute values of the � potential with increasing
concentrations at low concentration values.

In fact, electrostatically speaking, coions should be repelled from the surface rather
than attracted. At higher concentrations, the ‘‘compressing’’ action of dissolved electrolyte
ions then introduces again a decrease in the absolute value of the � potential with increas-
ing concentration.

In the first instance this model does not seem to be very easy to accept, since the ions
concerned (as an alternative to Cl�, NO�

3 ions are frequently used) are not generally
known as ions with a strong tendency to be chemisorbed. On the contrary, NO�

3 is
often used as an ‘‘inert’’ ion, in studies involving AgI or oxides as solid substances in
an aqueous medium.

Nevertheless, this model should not be too easily rejected. It is a question of whether or
not our predominant experience with dispersions of inorganic solids in aqueous solution is
really applicable in the case of polystyrene as a solid. The latter is a solid with a pronounced
hydrophobic character, which is nevertheless kept dispersed by ionic groups. In this case, the
chemisorption of such ions as are present may be a way to prevent direct contact (on an
atomic scale) between hydrophobic material and surrounding aqueous solution.

This effect may be especially pronounced if a solid such as polystyrene latex is
involved. If there really exists a hairy layer on its surface, there are quite large interfaces
present, viz., the (atomically speaking) long polymer chains having a tendency to be kept in
the aqueous environment by the behavior of the charged sulfate groups, but which will also
have the tendency to collapse because of their hydrophobic character. Although ions such
as Cl� or NO�

3 themselves might be, with regard to their own thermodynamic free energy,
better off in an aqueous solution than near an apolar material, the joint action of a pre-
ference for the aqueous solution by the sulfate groups and the reduction of the interface in
contact with an aqueous medium, by adsorption of such ions, might be a deciding factor.

Important in this respect is the claim involved that the interaction of, say, Cl� ions
with a negatively charged apolar solid is strong enough to lead to pronounced adsorption
at concentrations lower than, e.g., 1 mM (as implied by the rising branch of the � potential
at low concentrations in Fig. 1), in spite of the electrostatic repulsion involved with the
anionic —OSO�

3 groups. For polystyrene latex particle with cationic surface groups,
Verdegan and Anderson [7] describe the charge �� in the Stern layer due to adsorption
of the coions i (viz., Naþ) by means of a Langmuir equation:

��;i ¼
�iKini
1þ Kini

ð11Þ

where ��;i is the contribution of i-type ions to the Stern-layer charge density, �i is the
amount of charge at a full surface occupation, Ki is an adsorption constant, and ni is the
bulk concentration of ions of type i.
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The phenomenon can be described by assuming the adsorption constant Ki of an ion
of type i to be given by the sum of an electrical term ðzie0 0Þ=ðkBolTÞ and a hydrophobicity
related term �i=ðkBolTÞ:

Ki ¼ exp
zie0 0 þ�i

kBolT

	 

ð12Þ

Verdegan and Anderson [7] suggest some values for the constants in this equation,
which are compatible with their observations. The main point of these constants is that the
value of �i must be such as to lead to nearly complete coverage of the polystyrene surface
at very low concentrations. However, independent confirmation of such values appears yet
to be lacking.

The coion adsorption hypothesis has been cast into doubt by Midmore and Hunter
[15] because these authors did not find a significant different between different types of
anions. However, Elimelech and O’Melia [2] certainly did find such differences, while
Verdegan and Anderson report differences between anionic latexes and cationic latexes,
polymerized with an anionic or a cationic type of initiator, respectively. In the former case,
anions are the coions while in the latter case, cations are coions which are generally
hydrated to a more pronounced degree than anions. Thus, the argument of Midmore
and Hunter appears to be not decisive against the coion hypothesis.

V. ADDITIONAL DATA ON ELECTROKINETICS OF POLYSTYRENE
LATEX PARTICLES

In view of the uncertainties expressed in the preceding paragraph, it might be welcome to
focus attention on experiments with polystyrene latex particles of such a size that there is a
reasonably broad concentration region available in which �a is >� 100, thus avoiding the
pitfalls of uncertainties in the calculation of � potentials from electrokinetic data due to
retardation and relaxation effects. The uncertainties arising from the contribution of an
anomalous Stern-layer conductance to the electric current involved can be avoided by
extending the concentration range up to large concentrations, where the influence of the
surface conductance is negligible compared to the conduction through the bulk liquid.
Thus, for particles with a radius of 1� m in a 1 mM solution of a 1 : 1 electrolyte,
�a ¼ 103, while in a 0.1 M solution (which is still a lower concentration than the critical
coagulation concentration of a nonchemisorbing 1 : 1 electrolyte), �a ¼ 1030.

It was found possible to synthesize polystyrene latex particles with a radius of up to
more than 1m, in a one-step surfactant-free emulsion polymerization reaction, using K2

S2O8 as initiator [25]. As indicated above, the absence of surfactants during the polymer-
ization reaction is important with a view to obtaining a surface with only one type of ionic
group; the restriction to a one-step process is important for avoiding new nucleation to
occur during the second polymerization step, causing deviations from the monodispersity
of the latex particles. The surface charges and (number averaged) particle radii of these
latexes are reported in Table 1, together with the �a range valid during electrophoresis
experiments, which on these latexes were performed (in NaNO3 solutions with concentra-
tions ranging from 0.0014 to 0.036 M). The surface charges are negative, in accordance
with the initiator used during polymerization.

Electrophoretic mobilities were measured at pH 5.5 and converted into � potentials
through the Ohshima equations, which closely follows the numerical results of Wiersema
et al. [10] (Fig. 2) in the �a ranges concerned. From the � potentials and the value of �0, in
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all cases the charges were calculated between the slipping plane and the bulk solution (��Þ,
using standard equations from the Gouy–Chapman theory. In addition, the charges
between the solid/liquid interface and the slipping plane (��) were calculated by using
Eq. (1). It should be noted that such calculations imply only the following assumptions:

1. The surface charge at pH 5.5 is identical with the charge found by titration of the
surface —OSO3H groups; this comes down to the assumption that these groups
are completely dissociated at pH 5.5.

2. The calculation of �� from the electrophoretic mobility is based solely on the
validity of the Poisson equation in the region outside the slipping plane. The field
strength is calculated neglecting anomalous Stern layer conduction. This may
lead to too low � potential values, thus to too low �� values (both in the absolute
sense), at electrolyte concentrations lower than about 5 mM.

Thus, the validity of the Gouy–Chapman equation is not claimed for the region
between the solid/liquid interface and the slipping plane, and the reliability of the results
is not influenced by the absence or presence of chemisorbed ions in that space.

Of special interest, in the context of the present contribution, is the dependence of
the �� values thus calculated in �0. This is shown in Fig. 3; while the course of �� and �� as
a function of electrolyte concentration are shown for two of the latexes concerned in Figs.
4 and 5.

The aspects of these data, which are of most concern to the present subject, are the
following:

1. �� is, at constant NaNO3 concentration, within experimental error a decreasing
linear function of �0 (see Fig. 3), leading even to negative �� values at large
NaNO3 concentrations, and low j�0j.

2. The absolute value of d��=d�0 increases from a value of 0.89, found for latex
with a low �0-value, to a value near 1 found for surfaces with a larger �0 value
(see Fig. 6).

3. �� is, at constant �0, a decreasing function of the NaNO3 concentration, but not
a linear one; it is rather a linear function of log½NaNO3� (see Fig. 7).

4. d��=dðlog½NaNO3�Þ does not significantly depend on �0 (see Fig. 7).

These data are compatible with the following picture of the polystyrene/aqueous
solution interface: in the absence of NaNO3 in the solution, the whole charge between
the phase boundary and the slipping plane consists of the counterions introduced during
neutralization of the surface- O-SO�

3 groups (in the present case, these were also Naþ
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TABLE 1 Data on Polystyrene Latexes
Used in Electrophoresis

a ðm) �0 (Cm�2) �a range

0.191 �0:0252 23–118
0.368 �0:0863 45–228
0.655 �0:0718 80–406

1.083 �0:0823 132–671
1.562 �0:00956 191–968

Source: Ref. 39.



ions). These counterions are present in the space between the phase boundary and the
slipping plane such as nearly to compensate completely the charge of the surface groups
ðd��=d�0 approaches �1 for ½NaNO3� ! 0). Thus, at low NaNO3 concentrations, �� is
positive, and � j�0j. Additional electrolyte in the solution introduces more ions into the
space between the phase boundary and the slipping plane, but not only counterions. On
the other hand, NO�

3 ions are noticeably adsorbed on the polystyrene surface, in spite of
the net negative charge present in these cases; thus, we are dealing with chemisorption of
anions. This is the only way to account for �� becoming negative at large electrolyte
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FIG. 4 Charge densities as function of ½NaNO3�; polystyrene sample L-78 (a ¼ 368 nm,
�0 ¼ 0:0863Cm�2) at pH 5.5. Dashed line: �0; *: ��; ~: ��. (From Ref. 39.)

FIG. 3 ��, the charge in the space between the solid/liquid interface and the slipping layer, as a
function of the surface charge �0, for polystyrene latex particles at pH 5.5. The latexes differ with
regard to particle radius and surface charge (see Table 1). (*) 1:4� 10�3 M NaNo3; (~) 3:2�
10�3 M NaNO3; (&) 6:0� 10�3 M NaNO3; (*) 1:3� 10�2 M NaNO3; ðþÞ 3:6� 10�2 M NaNO3.



concentration, without any change in the slope d��=d�0. This is conclusive evidence for
chemisorption of NO�

3 , the coions in the present case.
It will have been remarked that, in the calculation of the � potential from the

electrophoretic mobility, a possible role for anomalous Stern-layer conductance has
been neglected. Any influence of anomalous Stern-layer conductance should be noticeable
especially at the lowest NaNO3 concentration, i.e., for the experiments presented by the
uppermost two lines in Fig. 3. It is seen, however, that the slopes of these lines fit with
those of the other lines (see also Fig. 6). This does not support the statement that surface
conductance is an important factor at electrolyte concentrations of 1 mM and higher.

The chemisorption of NO�
3 ions is confirmed by the following arguments:

1. Negative values of ��0 are found especially at high NaNO3 concentration; in
this concentration region, the influence of surface conductivity becomes
negligible.
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FIG. 5 As Fig. 4, for polystyrene sample L-80 (a ¼ 190 nm, �0 ¼ 0:0252Cm�2). (From Ref. 39.)

FIG. 6 d��=d�0 versus NaNO3, polystyrene at pH 5.5, calculated from Fig. 3. (From Ref. 39.)



2. Any role of surface conductivity would lead to the � potential values being
underestimated (in the absolute sense); thus, the real � potentials should be
even higher than those which have been used as the basis for our calculations.
When the � potential is negative, this would lead to negative �� values, which are
even larger in the absolute sense than those on which Figs 3–7 are based.

The NO�
3 ions are presumably adsorbed preferably at some distance from the

charged-OSO�
3 groups, as shown by the slight effect of �0 on d��=d�0, and the absence

of a distinct effect of �0 on d��=dðlog ½NaNO3]). It is to be expected that the Naþ ions in
the space between the slipping layer and the solid/liquid interface will be assembled pre-
ferably near the surface -O-SO�

3 groups, since the Naþ ions, which are hydrated to a
greater extent than the NO�

3 ions, will be attracted both by the locally hydrophilic envir-
onment near the sulfate groups, and by their negative charges. Also, since the Naþ ions
screen the electrical influence of the negative charges of the sulfate groups, at least par-
tially, the charge of the surface sulfate groups does not completely prevent the chemisorp-
tion of NO�

3 groups. This is similar to what has been found, both in the case of the
adsorption of inorganic ions on CaSiO3 surfaces [26, 27] and in that of the adsorption
of short-chain tetra-alkylammonium ions on silica [28].

Figures 4 and 5 show the course of �� an �� as a function of electrolyte concen-
tration; Fig. 4 the case of a low-surface charge sample of polystyrene, and the other for
a high-surface charge sample. The surface charge �0 itself, i.e., the titratable charge of
the -OSO3H groups on the surface, is of course independent of the electrolyte concen-
tration.

It is seen from these graphs that �� is positive at low concentrations of electrolyte,
and turns negative at higher concentrations only. The adsorption of coions therefore
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FIG. 7 Charge in the � layer at pH 5.5 for various polystyrene latexes: (þ) a ¼ 368 nm,
�0 ¼ �0:0863Cm�2; (~) a ¼ 190 nm, �0 ¼ �0:0252Cm�2, diam. 0:381m; *: a ¼ 612 nm,

�0 ¼ �0:0718Cm�2, diam. 1:224m; Y: a ¼ 1009 nm, �0 ¼ �0:0823Cm�2, diam. 2:018m; ~:
a ¼ 1583 nm, �0 ¼ �0:0956Cm�2, diam. 3:166m.



appears to occur, at least in the case of NaNO3 as electrolyte, to a significant degree
only at concentrations greater than 1 mM, and therefore cannot be held responsible for
the rise in the j�j potential at low electrolyte concentration, calculated from electrophor-
esis data neglecting anomalous surface conductance, as shown in Fig. 1. This agrees with
the statement in the preceding paragraph, that the coions are adsorbed at places remote
from the -SO�

3 groups, after the electrostatic effect of the latter is partially screened by
Naþ ions.

VI. SUMMARY OF PICTURE OF THE POLYSTYRENE/AQUEOUS
SOLUTION INTERFACE

The electrokinetic data, together with data on the anomalous Stern-layer conductance,
lead to the following picture of the interface of polystyrene latex particles.

The interface is not really the smooth surface of nearly ideal sphericity, which would
correspond with the requirements of theory. In addition to having a surface roughness
involving asperities of up to 28 nm, it is covered by a hairy layer, protruding into the
surrounding solution, consisting of polystyrene chains with, at their end, charged ionic
groups.

Water molecules between the hairy-layer polymer chains are kept at their places with
regard to larger scale viscous motion, but the layer may accommodate small displacement
of them, if the total volume of the hairy layer is not greatly disturbed. This is because the
space between the particle interface and the ends of the polymer chains is filled only with a
few chains per unit area: this suffices for immobilizing most of the liquid enclosed between
the interface and the chain ends, but still allows some motion of dissolved ions, by inter-
change of places of a few water molecules within the layer. Thus, anomalous Stern-layer
conductance becomes conceptually acceptable.

In addition, there is evidence for adsorption of coions; the clearest case of the latter
appears to be that reported by Tuin et al. [25]. These data do not add new aspects to the
question studied by van der Linde and Bijsterbosch [21], viz., whether or not the maximum
in the � potential versus electrolyte concentration really exists, since the data reported by
Tuin et al. refer to electrolyte solutions at high concentrations. However, the data
obtained by Tuin et al. do not support an important role for anomalous surface conduc-
tance at electrolyte concentrations of 1 mM or higher.

Neither do these data support pronounced chemisorption of coions in the low con-
centration region, as implied by Verdegan and Anderson [7] through the values of the
parameters in the adsorption constant [Eq. (12)] chosen by these authors.

Adsorption of coions at higher electrolyte concentrations may be an interesting
background of the still appreciable � potential of polystyrene latex particles in electrolyte
solutions of relatively high concentrations (�0:018V in 0.5 M NaCl solution, see Ref. 7).

VII. APPLICATION OF INSIGHTS OBTAINED ON THE INTERFACE
POLYSTYRENE/AQUEOUS SOLUTION: UNDERSTANDING THE
INFLUENCE OF GRAVITY ON PERIKINETIC COAGULATION [29]

Experiments have been reported indicating that perikinetic coagulation is slowed down by
the presence of a gravity field: under microgravity conditions, perikinetic coagulation is
faster than under terrestrial gravity conditions [8, 30–32]. Results of a typical experiment
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are shown in Fig. 8. The coagulation experiments concerned were performed using dis-
persions with low solid volume fractions (of the order of 0.0001), in 0.5 M NaCl solution.
The retarding action by the gravity field was found for all suspensions investigated (dis-
persions of polystyrene latex, ground quartz, and amorphous silica particles), but the most
pronounced effect was found in the case of polystyrene latex particles. The particle radius
was about 1m in all cases; thus, the particles were relatively large compared with other
colloidal dispersions.

That we are dealing here with a retardation by gravity rather than with an accelera-
tion by the absence of gravity follows from the fact that the coagulation rate observed in
the absence of gravity agrees with the value predicted by theory [33, 34], while that
observed at terrestrial g values is slower than the theoretical value.

This retardation by gravity is not expected: theories on coagulation as treated in
textbooks on colloid chemistry do not usually enter upon the influence of gravity; and, if
anything, an accelerating effect by gravity rather than a retarding one would be expected,
since in the presence of gravity there are, in addition to diffusion, a number of effects
which may lead to ‘‘gravity induced’’ coagulation:

1. If the densities of the dispersed and continuous phases are not exactly matched,
sedimentation or creaming will occur; two particles of not exactly the same size
may meet because the larger will overtake the smaller particle;

2. If there are temperature gradients in the system, convection flows will occur,
which may lead to some shear-induced coagulation.

These effects will be particularly pronounced in dispersions of large particles (such as
discussed here), because in such dispersions diffusion of the particles will be relatively slow.

Both effects may, however, act in the opposite direction as well: sedimentation or
creaming of the particles may disrupt pairs which are on the point of being formed, when
the difference in sedimentation velocity is large compared to the velocity of approach due
to mutual attraction; also, a shear driven by convection may disrupt a pair being formed
when the viscous drag of the shear surpasses the attractive force. In general, both effects
mentioned will lead to pair formation at high concentrations, and to pair separation at low
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FIG. 8 Intensity of transmitted light during coagulation of polystyrene latex particles in 0.5 M
NaCl, at 1 g and g levels. (From Ref. 32.)



ones; since in the latter case, the oncoming flow does not have sufficient particles to
predominate over the pair-disrupting action. The transitional concentration between the
two regimes will depend on the quotient of the forces in each particular case.

In order to estimate what this ratio is in the special case of polystyrene latex particles,
the following observations and calculations were performed:

1. Coagulation under terrestrial gravity conditions, but with different density dif-
ferences between the dispersed and continuous phases, around �� ¼ 0. The results are
shown in Fig. 9; indeed there is a maximum coagulation rate in the vicinity of �� ¼ 0.

2. Visual inspection, by projecting a microscope image of the dispersion on a
screen. In this case, convection flows could be observed and the approach of two particles
or the disruption of some of the pairs during their formation could be followed.

The first impression, on following visually the approach or disruption of two
particles, was that at the concentration concerned sedimentation and convection driven
flows indeed tend to lead to fewer potential particle pairs becoming real pairs, rather
than lead to addition pair formation. A typical experiment is shown in Fig. 10. In this
figure, the number of projected distances of a certain length between two close particles
are plotted as a function of time. First (stage A); in general, the particles approach
each other independent of the presence or absence of a distinct density difference
between particles and medium (indicated by open and closed circles, respectively). In
stage B, the particle pairs indicated by closed circles remain in each other’s vicinity,
while the pairs indicated by open circles are disrupted, as shown by the large mutual
distance with increasing time. Yet some 40 s later, the mutual distance between the
pairs again decreases: at this stage the sedimenting particles frequently approach a new
partner. In the absence of a distinct density difference between particles and medium,
the interaction time between two particles is much longer; thus, there will be a greater
number of potential pairs becoming real pairs in the absence than in the presence of a
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FIG. 9 Coagulation rate (measured as d ln E=dt, with E ¼ intensity of transmitted light) at 1 g,
corrected for viscosity changes by addition of substances for density matching, as a function of

density difference between dispersed and continuous phases. Density of continuous phase adjusted
with: (&) methanol; (~) sucrose; (*) D2O. (From Ref. 32.)



density difference. Gravity-induced coagulation indeed occurs also, but at the density
differences between particles and medium investigated, only at higher gravity values
(2–7 g).

3. Calculation of the forces involved due to the viscous drag exerted by convection
flows. Such flows may occur at 1 g, but not at g levels: under the latter conditions, the
temperature gradients may induce local density changes, but in the absence of gravity
these do not trigger convection flows. For this, a simple arrangement was considered in
which one particle is caused to rotate by the convection flow around another particle (see
Fig. 11). The shear rate due to convection could be estimated from the temperature
gradients in the cell used for the perikinetic coagulation experiment, and from this the
time necessary for one rotation could be estimated and compared with the time of
approach of the two particles due to the mutual interaction.

For calculating the probability of separating a particle pair, we need the interac-
tion force between the particles of a potential pair. This was calculated by the DLVO
theory, adjusted for including the so-called ‘‘retardation’’ of the attractive forces as
calculated by Clayfield et al. [35]. For the Hamaker constant, we took 9� 10�21 J as
reported by Gingell and Parsegian for polystyrene from spectroscopic data [36]. The
repulsive forces were calculated on the assumption that the � potential of the particles in
0.5 M NaCl solution (�0:018V) was equal to  �. It was assumed that the particles were
in a secondary minimum, and the probability was calculated so that during a rotation
the viscous drag by convection-driven shear could disrupt such pairs. The shear rate of
such flows could be estimated from the temperature fluctuations during a coagulation
experiment, affecting the outside of the coagulation cell to a greater extent than the
latter’s center.

On these premises, a pair in the secondary minimum had a reasonable probability of
being disrupted by convection-driven flow, when the maximum net force between two
particles outside of the secondary minimum was of the order of 10�14N.
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FIG. 10 Projected distance between two close particles as a function of time at 1 g. (A) particles
approach each other; (B) particles interact during a certain period; (C) some particles move away

from each other; (D) some particles approach new partners. (*) �� ¼ �31 kgm�3; (*)
�� ¼ 1 kgm�3. (From Ref. 32.)



However, the assumptions on the interaction forces mentioned led to a maximum
attractive force (outside the secondary minimum) of the order of 10�12 to 10�11 N, at least
if we started from perfectly smooth spherical particles.

The answer to the question how then to account for the observations, lies not in
accepting a still lower value for the Hamaker constant, but in the realization that the
polymer latex particles indeed approximate a sphere very closely, but not on a molecular
scale. The existence of surface asperities has already been mentioned; these greatly dimin-
ish the attractive forces [37, 38]. In addition, there is a hairy layer, which keeps the
particles still more at a distance with regard to their solid/liquid phase boundaries
(where the Hamaker constant changes), while the � potential is measured at the end of
the hairy layer. This together is the reason that the mutual attractive force between 1m
radius latex particles is sufficiently weak, and the viscous drag sufficiently strong, to lead
to the slowing down of the coagulation by convection flows which can occur at 1g, but not
at 0g.

Neither the surface irregularities nor the hairy layer alone can be the reason for the
retardation of the coagulation at 1g: a similar retardation is experienced by dispersions of
quartz or amorphous silica, which are not covered by a hairy layer. However, in the case of
polymer latexes the coagulation is slowed down to a greater extent, and this difference can
be ascribed to the hairy layer.
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I. INTRODUCTION

Polymer colloids (latex) are usually considered as ‘‘model’’ particles, as they can possess a
high monodispersity, smooth and homogeneous surfaces, and well-defined surface func-
tional groups. In addition, these colloidal systems show a large surface/volume ratio, which
makes them extremely suitable in adsorption studies. Due to these reasons, latex particles
have often been used as ideal carriers for studying the adsorption of proteins and other
macromolecules [1–16]. The interest in studying such systems lies in the fact that there exist
numerous natural, technical, and industrial phenomena where protein adsorption processes
take place on different surfaces. In most cases these adsorption processes contribute to the
creation of new materials and systems. Consequently, a thorough characterization of the
adsorbed protein layer becomes necessary, albeit it may become a difficult task due to the
microscopic dimensions of this kind of structured interfaces. Fortunately, some important
information can be obtained by using electrophoretic mobility, a simple technique based on
a nonequilibrium process.

In particular, the immunolatex (antibody-coated latex particles) may be considered
of biological interest. The reason lies in the fact that one of the most important applica-
tions of immunolatex is directed towards the development of particle-enhanced immu-
noassays used in clinical analysis laboratories. Presently, there are over 200 diseases that
can be detected by commercially available latex agglutination immunoassays. In these
immunoassays the colloidal aggregation of immunolatex particles must be only caused
by the presence of the corresponding antigen. This makes it necessary to obtain immuno-
latex with a high colloidal stability, in order to avoid the unspecific aggregation of the
system due to the physico-chemical conditions of the medium (pH, temperature, ionic
strength, etc.). Information about such stability can be extracted from the electrokinetic
behavior [17]. This statement is based on the strong relationship existing between the
electrophoroetic mobility, �e and their � potentials, which can be considered responsible
for the electrostatic repulsion between the particles.

Some of the topics that will be treated in this chapter are summarized below. First,
we show that the isoelectric point of the protein-coated latex particles can be obtained
from �e data, which allows setting of the pH ranges where latex–protein systems present
positive and negative net charges. Electrophoretic studies can also be useful for obtaining
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information on the electrostatic interactions between the protein molecules and the latex
surface, making it possible to estimate the participation of low molecular weight ions in
the protein adsorption processes. This can be done by comparing the electrokinetic pat-
terns of the latex particles before and after adsorption of the pure protein. On the other
hand, there exist several factors affecting the electrokinetics of protein-coated latex par-
ticles, the effect caused by each of them being difficult to isolate. Actually, the electro-
kinetic behavior of these systems depends, at least, on (1) the amount of adsorbed protein,
(2) the nature of the protein and adsorbent surfaces (3) the pH, and (4) the ionic strength
of the medium. Due to this complexity there is almost no theoretical approach dealing
with the electrophoretic mobility of protein-coated latex particles. In spite of that,
Ohshima and Kondo have recently proposed a theory that could be applied to large
colloidal particles with a surface-charge layer (as can be a protein layer). Details and
references related to this theory are given in Sec. IV. Using this theory it is possible to
obtain information on the adsorbed protein layer from �e data. Such information is
related to the thickness, the charge density, and the frictional coefficient of the polypeptide
layer.

II. ELECTROKINETIC BEHAVIOR OF PROTEIN-COATED LATEX
PARTICLES

Upon adsorption, the electrical double layers (EDL) of the protein molecule and the
adsorbent surface overlap each other, involving redistribution of charge in both of
them. The latex-protein EDL so formed is a consequence of the interfacial behavior of
protein under certain adsorption conditions. Therefore, it seems quite reasonable to com-
pare electrokinetic properties (such as electrophoretic mobility and its conversion into
electrokinetic charge or � potential) before and after adsorption, to understand better
the various factors playing a role in protein adsorption. For this reason, during the past
few decades most works dealing with adsorption of proteins on polymer colloids contin-
ued the study by using electrophoresis experiments. Under well-controlled conditions, and
with well-defined systems, the effect of coverage degree, incubation, and dispersion con-
ditions (pH and ionic strength and ion composition) on the electrophoretic mobility have
been studied. These results and conclusions obtained will be presented in the next sections.

A. Degree of Coverage

Several authors [14, 16, 18–25] have studied the electrophoretic mobility of protein-coated
latex particles as a function of the amount of adsorbed protein once the pH and the ionic
strength are fixed.

The results obtained by adsorption of BSA (bovine serum albumin) [18–20], HSA
[21], IgG [14, 21–24], and F(ab 0

Þ2 (amoiety of an IgG molecule) [16, 25] showed that upon
increasing the amount of protein adsorbed (�) the absolute value of the mobility decreases
to reach a plateau value. The decrease in the electrophoretic mobility is dependent on the
pH, i.e., on the charge of the protein molecules, as shown in Fig. 1 [22].

The same �e–� dependence was found independently of the superficial groups,
sulfonate, carboxyl, HEMA (2-hydroxyethyl methacrylate) sulfate, or amidine (cationic)
latexes as can be seen in Fig. 2 [16]. The most striking result is that the �e decrease was
obtained even when the protein molecules had a negative net charge. This can be justified
by two nonexclusive phenomena [16]:
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FIG. 1 Electrophoretic mobility versus adsorbed amount of rabbit IgG at three different adsorp-
tion (¼ dispersed) pH values; (&) pH ¼ 5:0; (^) pH ¼ 7:0; (~) pH ¼ 9:0; ionic strength 2 mM.
(From Ref. 22.)

FIG. 2 Electrophoretic mobility of latex particles as a function of Fðab 0
Þ2 coverage. Surface polar

groups: (&, &) sulfonate; (*, *) carboxyl; (~) amidine; (^) hydroxyl and sulfate. Experimental

conditions: pH ¼ 7; ionic strength 2 mM. (From Ref. 16.)



1. A change in the electrophoretic mobility as a result of adsorption can be
explained by a redistribution of the charged groups of the protein molecules.
In this way, it is assumed that coadsorption of low molecular ions takes place in
protein adsorption processes [18, 20, 24, 26]. This effect will be discussed in more
detail in Section II.E.

2. One must keep in mind that �e reflects the � potential of the colloidal particles,
but not the surface potential  0 (directly related to �0). As a smooth polymer
surface is being covered by macromolecules, it becomes more rigid and irregular.
This shifts the slipping plane outward causing a decrease in � potential and thus
decreasing the �e value.

B. Influence of Adsorption Conditions

Galisteo-González et al. [14] have studied the influence of the adsorption conditions on the
electrokinetic behavior of the IgG-coated polystyrene (PS) particles. Two samples were
selected with a similar degree of coverage (3:3mg=m2), but obtained at different adsorp-
tion pH (7 and 5). The samples were dispersed at different pH (varying between 4 and 10)
and at a constant ionic strength of 2 mM. They found that both immunolatexes displayed
similar electrophoretic mobility. Similar conclusions were obtained for monomeric BSA,
oligomeric BSA, and Fðab 0

Þ2 [19, 25].
Also, the effect of the ionic strength during adsorption experiments on the electro-

kinetic behavior of protein-coated latex particles has been studied. It was found that the
ionic strength during such experiments does not affect the electrophoretic mobility of
protein-coated latex [19].

The studies mentioned above have shown that the adsorption pH and ionic strength
determine the amount of adsorbed protein on the latex surface, but the electrophoretic
behavior of the sensitized polystyrene particles is controlled by the redispersion conditions.

C. Effect of Redispersion Conditions. Isoelectric Point of Protein-coated
Latex Particles

Several works of electrophoresis experiments have been carried out (Table 1) with the aim
of obtaining information about the electrical state of protein-coated latex particles. In
these experiments, the particles, with different degrees of coverage, were selected and then
the solid substrates were suspended under different pH and ionic strength conditions.

Some common features can be obtained from the studies shown in Table 1:

1. Desorption experiments gave negative results even when the redispersion con-
ditions were more extreme (as to pH and ionic strength) than those used for the
electrokinetic characterization of the complexes.

2. Even though the electrophoretic mobility of the bare latex was independent of
pH (in the range 4–10) the protein-coated latex always presents an isoelectric
point (i.e.p.).

3. The i.e.p. values of protein-coated anionic latex are lower than those of the
dissolved protein. In contrast, the i.e.p. values of protein-coated cationic latex
are greater than those of the dissolved protein. These results imply that the latex
surface charge play an important role in the final EDL structure of the sensitized
particle.

As an example, Fig. 3 [29] shows the electrophoretic mobility of bare and covered latex
particles for cationic and anionic latex. The i.e.p. values of the immunolatex were 5 and 6
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for the anionic and cationic polystyrene particles. On the other hand, the i.e.p. values of
the protein (monoclonal IgG) determined by isoelectric focusing were in the range 5.2–5.5.

4. The i.e.p. values of immunolatexes are closer to those of the protein molecules
the larger the adsorbed amounts of protein.

Figure 4 shows this phenomenon in the case of IgG adsorption on polystyrene latex
particles [28].
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TABLE 1 Electrophoretic Studies Related to Dispersed Conditions of Different Latex–Protein
Complexes

Latex Protein
Amount adsorbed

(mg/m2)
Dispersed
conditions Reference

P(St/NaSS) BSA 1.07, 3.26, 3.55 I ¼ 2 mM
pH 4–8

19

PS BSA Complete coverage I ¼ 2 mM 20
PS (þ) pH 4–9
P(St/HEMA)

P(St/acryl. ac.)
PS IgG Complete coverage I ¼ 2 mM, 22

Monocl. IgG I ¼ 50 mM
pH ¼ 4–10

PS Fðab 0
Þ2 25% coverage I ¼ 2 mM 25

Complete coverage pH ¼ 3–9
P(St/NaSS) Fðab 0

Þ2 50% coverage I ¼ 2 mM 16

PS (þ) Complete coverage pH ¼ 3–9
P(St/HEMA)
P(St/carboxyl)

PS HPA Complete coverage I ¼ 10 mM 26
RNA I ¼ 50 mM

pH 4–11

PMMA BSA Complete coverage 0, 2, 5 M Urea 27
pH 4–10

PS IgG 0.1–8 I ¼ 2 mM 28
pH 4–10

PS Monocl. IgG Complete coverage I ¼ 2 mM 29
PS (þ) pH 4–10
PS IgG Complete coverage I ¼ 2 mM 14

PS (þ) pH 4–10
P(St/carboxyl) IgG (anti-HSA) 1, 1.8 I ¼ 2 mM 17

Monocl. IgG 1.3, 1.5 pH 4–8

PS Monocl. IgG From 0 to complete I ¼ 5, 30, 100 mM 30
PS (þ) Fðab 0

Þ2 coverage pH 4–8
PS–OH

Key: P(St/NaSS)=polystyrene sulfonate latex; PS=polystyrene; PS(+)=cationic polystyrene; P(St/HEMA)=

polystyrene–HEMA latex; P(St/acryl.\ ac.)=polystyrene–acrylic acid latex; PMMA=poly(methyl methacrylate)

latex; P(St./carboxyl)=latex with carboxyl terminal groups on the particle; PS-OH=latex with hydroxyl terminal

groups on the particle; BSA=bovine serum albumin; IgG=immunoglobulin G; F(ab\pri)_2=Fab fragment of

IgG; HPA=human plasma albumin; RNA=bovine pancreas ribonuclease; IgG (anti-HSA)=immunoglobulin G

anti-human serum albumin.



646 Martı́n-Rodrı́guez et al.

FIG. 3 Mobility of cationic (^) and anionic (~) bare latex and covered latex particles (&: catio-
nic; *: anionic) (left Y axis) together with the relative electrophoretic displacement (RED: right Y

axis) of IgG Mab1 as obtained by two-dimensional isoelectric focusing (straight line as a function of
pH). (From Ref. 29.)

FIG. 4 Electrophoretic mobility versus dispersion pH for polystyrene bare latex (*), and latex

coated with IgG molecules at different degrees of coverage: (~) 0.1; (&) 2.2; (^) 8.0 mg/ IgG/m2

PS. (From Ref. 28.)



5. Combining the results of mobility and adsorption, it possible to conclude that
the maximum in adsorption appears closer to the i.e.p. of immunolatexes than to
the average i.e.p. of the IgG in solution.

In Fig. 5 [24] this coincidence is illustrated for all monoclonal IgG and all latexes studied,
as well as for BSA.

6. The i.e.p. of protein-coated latex particles shifts to a more acidic pH with
increasing ionic strength. This result shows the pH shift of the maximum adsorp-
tion to an acidic side with an increase in ionic strength.

Finally, in relation to the i.e.p. of protein-coated latex particles, Shirahama et al. [31]
have studied the adsorption and the electrokinetic properties of BSA adsorbed on to
amphoteric latexes. These latexes have different i.e.p. values (3.6, 4.5, and 6.2) but
much the same particle size were prepared by employing the Hoffmann reaction of styr-
ene/acrylamide copolymer latexes treated with sodium hypochlorite and sodium hydro-
xide solutions. They also found that the i.e.p. values of BSA–latex complexes agree with
those of pH values at maximum adsorption, and observed the shift of i.e.p. to a more
alkaline (acid) pH, compared with i.e.p. of protein, for cationic (anionic) charged poly-
styrene latexes. They suggested that BSA molecules adsorbed on to positively charge
surfaces undergo interfacial denaturing upon adsorption, as more basic amino acid resi-
dues are exposed to the aqueous phase.

D. Electrokinetic Characterization of Immunolatex of Interest for Particle-
Enhanced Immunoassays

Latex particles have been used as a carrier for antigen and antibody reactions in agglu-
tination tests where, for example, the presence of macroscopic agglomerates reveals that of
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FIG. 5 Relationship between i.e.p of protein–PS latex complex, � (¼ �=�PIÞ ¼ 1, and the pH where

�PI reaches a maximum value. BSA 2 B, 7 B, 4 F, and 6 A are monoclonal antibodies with different
i.e.p. values. (From Ref. 24.)



the cross-linking antigen. In this way, Stoll et al. [32] used electrophoretic mobility to
detect the agglutination of IgG-coated polystyrene latex in the presence of the antigen IgM
in the solution. They found that the electrophoretic mobility decreases as a function of the
IgM concentration towards a plateau value and they assumed that the ionic strength
increases in the surface zone as the antibody–antigen reaction is nearing completion.

A substantial improvement in the use of synthetic polymer colloids for particle-
enhanced immunoassays can be obtained by covalent coupling of antigens or antibodies
with the surface of functional latex [33, 34]. A procedure for such coupling is the covalent
coupling of IgG with carboxyl latexes by the carbodi-imide [1-ethyl-3-(3-dimethylamio-
propyl)carbodi-imide chloride] method [35]. In this paper Ortega-Vinuesa et al. studied the
electrokinetic behavior of physically adsorbed, and chemically bound, IgG to carboxyl
latexes. The effect of carbodi-imide on the surface charge of latex, and therefore in the
electrophoretic mobility, explains the electrokinetic properties of the latex compared to
those of bare beads. Thus, the electrokinetic properties and the colloidal stability of the
IgG–latex complex depend on the coupling mechanism of IgG with carboxyl latex.

Another important point in the latex agglutination immunoassay is to suppress
nonspecific interactions of the complementary antigen with nonoccupied parts of the
latex particles. A way to avoid this problem is to cover the latex surface with a second
protein, for example, BSA. For this reason, sequential IgG and BSA adsorption has
recently been of considerable interest in the development of diagnostic test systems.
Electrophoretic mobility of IgG–BSA/PS complexes, obtained by sequential adsorption
at pH 7, has been studied by Puig et al. [36]. The most striking features of this work are:
first, the mobility shifts to more positive values with increasing preadsorbed amount of
positively charged IgG; second, the i.e.p. of the protein–IgG complex shifts towards higher
pH values with increasing amounts of preadsorbed BSA; and third, the PS surface charge
must compensate, at least partially, for the charge on the protein since the i.e.p. of the
protein–latex complexes is lower than the average i.e.p. of the dissolved protein. These
features may be relevant for the development of particle-enhanced immunoassays.

Also in relation to the sequential adsorption, Ortega-Vinuesa et al. [15] have used the
electrophoretic mobility to confirm the presence of monomeric BSA (m-BSA) on the
surface of the F(ab 0

Þ2–cationic latex complex. The electrophoretic mobility of bare catio-
nic latex was compared to that of particles sensitized with low and high degrees of cover-
age of Fðab 0

Þ2 and BSA on their surface. As we can see in Fig. 6 [15] the mobility of the
bare cationic latex is practically independent of the pH in the range 4–9. The i.e.p. of
Fðab 0

Þ2–cationic latex depends on the adsorbed protein, and it is around pH 8 for the
Fðab 0

Þ2–full coated cationic latex particles. The most striking feature is the dramatic
decrease in the mobility of the Fðab 0

Þ2–cationic latex when the amount of m-BSA
adsorbed on the latex increases. The adsorption of m-BSA causes a displacement of the
i.e.p. of the immunolatex toward lower pH values (’ 6). This displacement gives rise to
negative mobility at pH 8 of the Fðab 0

Þ2–BSA/cationic latex and now it is possible to
stabilize the reagent even at physiological ionic strength (170 mM). In fact, the mobility of
this immunolatex is quite similar to that of the BSA–cationic latex, which reinforces the
idea that the greater colloidal stability of the Fðab 0

Þ2–BSA/cationic latex is mainly due to
the adsorbed BSA.

E. Adsorption of Low Molecular Weight Ions and Protein Layer

Another important aspect that can be inferred from electrokinetic characterization of
protein-coated latex particles is the participation of ions in the protein adsorption process.
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In general, proteins present high binding affinity for ions. For this reason, ions play
an important role (in addition to hydrophobic dehydration of parts of the adsorbent and/
or protein, structural stability and size of the protein molecule, and electrostatic interac-
tion between protein and surface) in the protein adsorption processes.

In an aqueous environment, charged surfaces and protein molecules are surrounded
by counterions, which together with the surface charge, form an EDL. When the protein
molecule and the surface approach each other, their EDLs overlap, which gives rise to a
redistribution of the counterions.

An explanation for the coadsorption of low molecular weight ions can be found in
Ref. 37. If the protein and the adsorbent surface have opposite charge signs, they attract
each other, at least if the charge on the protein and the surface more or less compensate
each other. If either of the two components has a large excess of charge, this would
result in a consideration net amount of charge in the contact region between the protein
layer and the adsorbent surface. This region has a low dielectric permittivity relative to
that of water and, therefore, accumulation of charge in such an environment would
cause the development of an extremely high electrostatic potential, which is energetically
very unfavorable. A similar situation would result upon adsorption of a charged protein
on a surface that has the same charge sign. Nevertheless, in many cases it is observed
that, in spite of such adverse electrostatic conditions, proteins adsorb spontaneously.
Based on a model [38] for the adsorbed protein layer it has been predicted that low
molecular weight ions are transferred between the solution and the adsorbed layer to
prevent accumulation of the net charge in the contact region between the protein and the
adsorbent surface.

In this way, for example, the affinity of electrolyte anions on the adsorption of BSA
on latex was studied by Shirahama and coworkers [27, 39]. The electrophoretic mobility of
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FIG. 6 Electrophoretic mobility versus dispersion pH of different complexes on the cationic latex.
Bare cationic latex (*); low Fðab 0

Þ2 coverage (~, 1.9 mg IgG/m2); high Fðab 0
Þ2 coverage (þ, 6.0 mg

IgG/m2); high Fðab 0
Þ2 coverage and BSA (&, 3.3 mg IgG/m2 and 2.0 mg of BSA/m2); low Fðab 0

Þ2
coverage and BSA (X, 1.3 mg IgG/m2 and 2.2 mg of BSA/m2); cationic latex totally covered by BSA
(^). (From Ref. 15.)



BSA-coated PS particles as a function of pH, in three electrolyte anions (CH3COO
�, Cl�_,

and SCN� used as Na salt) was determined. The results shown that in all anionic media,
the i.e.p. of BSA–latex shifts to a more acidic pH in the order CH3COO

�, Cl�, and SCN�.
This indicates that the binding affinity of small ions to BSA molecules increases in the
order CH3COO

� < Cl� < SCN�. The results agree with the adsorption of BSA in the
three media, since it was found that pH at maximum adsorption shifts to a more acidic pH
in the order SCN�, Cl�, CH3COO

�.
The number of ions transferred may be deduced from electrokinetic measurements.

Because of the requirement of overall electroneutrality, the change in electrokinetic charge
per unit surface area (�ads�Ek) upon transferring a protein molecule from solution to the
latex surface can be expressed as

�ads�Ek ¼ �PS=ProtEk � �
PS

EK
� �ProtEk �adsA ð1Þ

where �Ek is the charge density per unit surface area at the slipping layer of the covered
protein (PS/Prot), bare latex (PS), and dissolved protein molecules (Prot); A is the surface
area of protein per unit mass.

To calculate �Ek the electrophoretic mobilities can be converted into � potential
values and, by using diffuse double-layer theory, into electrokinetic charge:

�Ek ¼
4n0ze

	
sinh

ze�

2kT

� �
ð2Þ

where n0 is the bulk concentration of ions, z is the ion valence, e is the elementary charge,
	�1 is the double-layer thickness, k is the Boltzmann constant, and T is the absolute
temperature.

The conversion of electrophoretic mobility into � potential is still under discussion.
Norde and coworkers [18, 26] converted �e into � potential values using the procedure of
O’Brien and White [40]. A different approach has been used by Galisteo-González et al.
[41] to the conversion of �e into � potential. In this paper they have used the Dukhin–
Semenikhin theory [42]. Calculation of � potential values according to the theoretical
treatment of Dukhin and Semenikhin requires knowledge of surface charge density, and
it changes substantially with the pH of the medium in the case of a protein-covered latex
surface. To obtain these data they performed a potentiometric titration, and compared the
results with those obtained in the titration of a similar solution without latex or complex
particles. For any pH value, the electric charge in the bare latex or complex surface can be
estimated from the difference in titrant reactive volume, with respect to the solution with-
out particles.

On the other hand, by using a moving-boundary technique, and knowing the dimen-
sion of the protein [26], the electrokinetic charge of dissolved protein molecules can be
obtained.

By way of example, Fig. 7 [37] shows the change in electrokinetic charge per unit
area of adsorbent surface, due an adsorbed layer of lysozyme and 
-lactalbumin on a
negatively charged PS surface. The data indicate that a pH < 8, positively charged ions are
required Accordingly, coadsorption of positively charged ions accompanies the adsorption
of 
-lactalbumin (i.e.p. 4.3) on the negatively charged PS surface over the entire pH region
considered.
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Some come features can be obtained from these electrokinetic studies [16, 18–20, 26]:

1. The ion coadsorption increases as the charge on the latex decreases.
2. The uptake of ions seems to increase as the amount of adsorbed protein increases.
3. At the i.e.p. of the protein, the ion coadsorption does not depend on the amount

of protein adsorbed.
4. The maximum ion adsorption occurs at pH values where particle and protein

have the same sign charge.

III. RELATION BETWEEN COLLOIDAL STABILITY AND
ELECTROPHORETIC MOBILITY OF PROTEIN-COATED LATEX

According to the theory elaborated by Derjaguin and Landau [43] and, independently by
Verwey and Overbeek [44, 45], or DLVO theory, the stability of colloidal systems is related
to EDL repulsion. Therefore, the � potential [46] plays a very important role in the
colloidal stability of any mesoscopic system. In this way, the electrophoretic mobility of
protein-coated surfaces can be suitable for predicting their electrostatic stability. In
general, the electrokinetically mobilized charge, as well as the amount and type of
adsorbed protein, will be the factor controlling the colloidal stability of protein-coated
latex particles.

Tamai et al. [47] determined the � potential of bare and BSA-coated latex particles as
a function of NaCl concentration. They found that the � potential decreases with the
increasing amount adsorbed, and hence that the repulsive interaction between BSA–
latex coated particles is lower than that between bare particles.

Peula and de las Nieves [13] used the electrophoretic mobility of monomeric (m) and
oligomeric (o) albumin–sulfonate latex complexes to detect the existence or nonexistence
of electrostatic repulsion between the coated particles. They found that the colloidal
stability of the m-BSA latex complexes is mainly controlled by the electrostatic state of
the adsorbed protein. The use of sulfonate latex results in a higher adsorption of protein
and a very high colloidal stability at intermediate degrees of coverage in comparison with
conventional sulfate latex. On the other hand, the colloidal stability of o-BSA–latex com-
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FIG. 7 Ion coadsorption, as reflected by the overall change in the electrokinetic charge density,
accompanying the adsorption of lysozyme (*) and 
-lactalbumin (*) on negatively charged poly-

styrene latex; 0.05 M KCl; 25�C. (From Ref. 37.)



plexes is also controlled by the electrostatic state of the protein, but at the i.e.p. of the
protein the complexes are stable owing to an additional steric stability by the adsorbed
protein molecules.

Tamai et al. [48] studied the colloidal stability of polystyrene (PS) and styrene/
acrylamide copolymer (PS/Aam) latexes coated with human serum albumin (HSA) at
high surface coverage. The results of stability obtained by light scattering were compared
with those obtained by electrophoresis. The � potential values indicated that the high
colloidal stability of HSA-coated PS latex in NaCl solution is a result of the adsorbed
HSA. In addition, the � potential of coated latex is lower than that of bare latex in MgCl2
and CaCl2 solutions, and therefore it seems reasonable to suggest that HSA-coated PS
latex flocculates due to HSA–HSA linkage by divalent cations.

On the other hand, the � potential of HSA-coated PS/Aam latex was almost the same
as that of bare PS/Aam latex in MgCl2 and CaCl2 solutions. A possible explanation is that
HSA molecules adsorbed on this latex might be incorporated to some extent into the inner
part of the water-soluble polymer layer, and HSA–HSA linkages by divalent cations do
not occur.

An explanation of the extremely low colloidal stability of the polyclonal IgG-coated
surfaces was provided by Galisteo-González [41]. The results are related to the structure of
the EDL of protein-coated polystyrene, and the main conclusions of this study are:

1. That ions in the EDL surrounding the IgG polymer surface (especially those
under the hydrodynamic slipping plane) have a greater ionic mobility when the
electric charge in the protein molecules has the same sign as the electric groups in
the particle surface.

2. That the anomalous surface conduction mechanism is more pronounced in this
case in the surface charge region.

Recently, Molina-Bolı́var and coworkers [49, 50] have analyzed a new stabilization
mechanism in hydrophilic colloidal particles. Actually, they worked with polystyrene
beads covered by globular proteins, the surface of which is mostly hydrophilic. The
proposed stabilization mechanism is explained by considering the adsorption of hydrated
ions on to the adhered protein layer. An overlap of the ordered hydrated counterion layers
near two mutually approaching surfaces creates a repulsive force. Its origin lies in the
partial dehydration of the adsorbed ions and/or the surface charged groups, which will
lead to an increase in the system energy. As a matter of fact, cations such as Naþ and Ca2þ

can stabilize negatively charged hydrophilic surfaces by means of these ‘‘hydration
forces,’’ stabilization becoming higher for increasing electrolyte concentration.
Electrophoretic mobility measurements can be very useful for detecting the specific
adsorption of counterions on latex–protein complexes. Specifically, the mobility of a
polystyrene latex totally covered by antibody fragments [namely, Fðab 0

Þ2 fragments]
was measured as a function of both the pH and the electrolyte concentration. The results
obtained with CaCl2 and NaCl are show in Figs 8 and 9, respectively. The solutions were
not buffered in order to avoid the presence of foreign ions coming from the buffers. Hence,
the pH was only controlled by adding NaOH or HCl. As can be seen in Fig. 8, for low
Ca2þ concentrations (i.e., 2	 10�3 M) there is an i.e.p. which disappears when the Ca2þ

concentration increases to 38	 10�3 M. It should be noted that the i.e.p. of such an
antibody fragment is around 4.7, so the protein layer must be negatively charged in the
pH range 5–8. However, the mobility is positive in that range. This interesting result
indicates that Ca2þ ions adsorb on the negatively charged protein layer, provoking a
change in the expected �e sign. As can be seen, these �e measurements give important
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FIG. 8 Electrophoretic mobility of Fðab 0
Þ2-latex complex as a function of pH, for different CaCl2

concentrations: 2:0	 10�3 M (&) and 3:8	 10�2 M (*). (Courtesy of Dr. J. A. Molina Bolivar.)

FIG. 9 Electrophoretic mobility of a Fðab 0
Þ2–latex complex as a function of pH, for different NaCl

concentrations: 2:0	 10�3 M (&) and 1:0	 10�2 M (*). (Courtesy of Dr. J. A. Molina Bolivar.)



information on the adsorption of counterions on the adsorbed protein layer. These data
firmly support the stability mechanism proposed by Molina-Bolivar and coworkers [49–
50], which was based on hydration forces. However, taking Fig. 9 into account, the Naþ

ions do not attain inversion of the �e sign in the pH 5–8 range. It should be noted than this
result does not mean a complete absence of Naþ adsorption on to the protein layer. This
monovalent cation could be adsorbed on the surface, although its surface concentration
would not be high enough to change the � potential sign. Measurements of �e at higher
NaCl concentration would be advised in order to make this clear. However, obtaining �e

data at higher ionic strengths is a difficult task, due some experimental problems arising
from the devices used for measuring electrophoretic mobility.

IV. THEORETICAL BACKGROUND

There exist few theoretical studies on the electrophoresis of colloidal particles with struc-
tured surfaces, which can be formed by adsorbing polyelectrolyte or protein molecules
[50–56]. These studies revealed that the � potential loses its meaning for such particles,
since the electrophoretic mobility becomes insensitive to the precise position of the slipping
plane. This means that the electrokinetic behavior of latex–protein complexes does not
only depend on the � potential, but also on other parameters, which are listed below: the
hydrodynamic resistance of the protein layer to the flow of electrolyte solution through it,
the charge density and the thickness of such a layer, and the electric potential distribution
across it. In particular, Ohshima and Kondo have studied in detail the electrophoretic
mobility of colloidal particles coated by surface-charged layers [50–60]. Their theory will
just be summarized below, and subsequently, some fits of theoretical data and experimen-
tal results will be presented.

A. Theoretical Aspects

Consider a colloidal particle having a surface charge density �0 with a polyelectrolyte layer
adsorbed on its surface. The charged groups of this surface layer of thickness d are
distributed at a uniform density N. These charged groups have a valence z. The particle
surface is assumed to be planar with the applied electric field parallel to it. The x axis is
perpendicular to the surface and its origin is fixed at the boundary between the surface
layer and solution. The charged colloidal particles are moving in a liquid containing a
symmetrical electrolyte of valence � and bulk concentration n. In these cases, and using
two Poisson–Boltzmann equations and hydrodynamic considerations, Ohshima and
Kondo found an analytical expression of the electrophoretic mobility of such a system,
which is given in Ref. 57. Nevertheless, it is quite difficult to calculate �e theoretically
through such equation, as there is an integral that seldom has an analytical solution.
Despite this problem, Ohshima and Kondo managed to obtain simpler expressions for
the mobility of structured interfaces. Two general case can be considered:

1. N 6¼ 0 and �0 ¼ 0

It should be noted that there is no charge density on the bare latex surface, but there is a
net charge density due to the polyelectrolyte layer. For cases like that, these authors
derived a mobility formula applicable whatever the potential value. They considered
that as d tends to1,  ð�dÞ would tend to the Donnan potential  DON, which corresponds
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to the potential distribution across a charged layer with a large thickness. A schematic
representation of the potential distribution across a negatively charged surface layer of
thickness d is shown in Fig. 10. Considering a negatively charged polyelectrolyte layer
ðz ¼ �1Þ, the electrophoretic mobility of a structured interface can be written as [57]

�e ¼ �
�r�0kT

� e 
ln

j�j

2� e n d
þ

�

2� e n d

� �2
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where �r is the dielectric constant of the electrolyte solution (it is assumed that the surface-
charged layer possesses the same �r value), �0 is the permittivity of vacuum, k is the
Boltzmann constant, T is the absolute temperature, � is the amount of fixed charges
contained in the surface charged layer per unit area ð� ¼ zeNd), and � is a hydrodynamic
parameter whose reciprocal has the dimension of length and gives information on the
depth of the flow penetration in the surface region: � is defined by the following relation:
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FIG. 10 Schematic representation of the potential distribution across a negatively charged layer of
thickness d adsorbed on an uncharged surface. (From Ref. 57.)



� ¼
�



� �1
2

ð4Þ

with  and � being the viscosity of the fluid and the frictional coefficient of the adsorbed
polyelectrolyte layer, and 	 is the reciprocal of double-layer thickness:

	 ¼
2n�2e2

�r�0kT

 !1=2

ð5Þ

Although Eq. (3) is valid for a thick polymer layer (d ! 1), Ohshima and Kondo
have demonstrated [57] that it remains an excellent approximation for d  10 Å. This limit
is lower than the mean size of any protein molecule, so it could be applied to latex–protein
systems. Nevertheless, the same authors obtained a much simpler analytic formula for
mobility if d  1=	 or d  1=� [58]:

� ¼
�r�0


�ð0Þ=	m þ�DON=�

1=	m þ 1=�
þ
z eN NAv

 �2
ð6Þ

where �ð0Þ is the potential at the boundary between the polymer layer and the surround-
ing electrolyte solution, NAv is the Avogadro number, and 	m is the effective Debye–
Hückel parameter of the polymer layer, which is related to 	 through

	m ¼ 	 1þ
zN

2 � n

� �2
" #1

4

ð7Þ

Expressions of �DON and �ð0Þ are given by [60]
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�e�DON

2kT
ð9Þ

Equation (6) consists of two terms: the first one is a weighted average of the Donnan
potential and the polyelectrolyte layer/solution boundary potential, and thus it depends on
the potential distribution across such a layer. The second one is directly related to the
polymer fixed charges and is not subjected to shielding effects of electrolyte ions.

The dependence of the theoretical �e on the surface layer thickness d, on the total
fixed charges contained in such a layer � ¼ f ðNÞ, and on the electrolyte concentration n is
shown in Figures 11, 12, and 13, respectively.

2. N 6¼ 0 and �0 6¼ 0

The main problem of the above theoretical approach is that it would be only applicable to
uncharged colloid particles covered by negatively charged proteins. However, most of the
colloidal particles used to adsorb proteins present a surface charge density different from
zero. The ‘‘N 6¼ 0 and �0 6¼ 0’’ case represents a more general and realistic situation where
a charged bare particle is coated with a charged polymer layer. For such systems an
approximate expression for the theoretical electrophoretic mobility [60] can be obtained:

� ¼
�r�0


�ð0Þ=	m þ�DON=�

1=	m þ 1=�
þ
z eN NAv

 �2
þ
8�r�0kT

�� e

� 	m
1=�2 � 1=	2m

tanh
� e�

4kT
ð10Þ
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Now the potential distribution inside the polymer layer is different from the case
�0 ¼ 0. A scheme of such distribution is shown in Fig. 14. In this case, �ð0Þ is different
from that shown in Eq. (9), and is equal to

�ð0Þ ¼ �DON �
kT

� e
tanh

� e�DON

2 kT
þ
4 kT

� e
e�	md tanh

� e �

4 kT
ð11Þ

It should be noted that the third term of Eqs. (10) and (11) includes the � potential of
the bare particle, and hence, these terms take into account the influence of the surface
charge density of the adsorbent particles.

As can be seen, one can calculate the theoretical electrophoretic mobility of a col-
loidal ample if the potential distribution [�ðxÞ� across the adsorbed layer is known. For
unchanged particles the problem would be solved knowing three different characteristics
of the surface charged layer, namely, N, d, and �. However, if the carrier particles are
charged a fourth parameter is needed: the � potential of the bare surface.

B. Comparing Theoretical Predictions with Experimental Data

Ohshima and coworkers were the first researchers who tried to validate their own theory
measuring the electrophoretic mobility of colloidal particles covered by protein layers: the
electrophoretic mobility of particles coated with human serum albumin (HSA) and immu-
noglobulin G (IgG) was measured at different pH and electrolyte concentrations [61]. In
order to avoid the use of Eq. (10), where there are four fitting parameters (N, d, �, and �),
the above authors fixed the proteins on the surface of carboxyl-latex particles through
chemical bonding. The -COO� groups from the polymer surface reacted with -NHþ

3
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FIG. 11 Electrophoretic mobility as a function of the surface-layer thickness for several values of
�. Curve 1, � ¼ 1	 109 m�1; curve 2, � ¼ 2	 109 m�1; curve 3, � ¼ 1	 1010 m�1; curve 4, � ¼ 1.

Calculated with T ¼ 298K, �r ¼ 78:5, n ¼ 0:1M,  ¼ 0:891	 10�3 N sm�2, and � ¼ �0:19Cm�2.
Dashed lines: approximation given by Eq. (3); solid lines: exact results. (From Ref. 57.)



groups of the protein molecules by means of the carbodi-imine (CDI) method, which is
described in detail in Refs. 35 and 62. So, the original surface charge density of the
particles was reduced to zero after the chemical coupling. Therefore, their HSA– and
IgG–latex complexes fulfilled the N 6¼ 0, �0 ¼ 0 condition, and Eq. (6), which contains
three undetermined quantities (N, d, and �), could be used. In order to check the validity
of such a formula, �e data were obtained at different pH and ionic strengths. The results
for the HSA–latex (2.4mg/m2) and the IgG–latex (2.4 mg/m2) complexes are shown in
Figs 15 and 16, respectively, where the experimental data are depicted by symbols and the
theoretical predictions by lines. The best fitting values are show in Table 2. A discussion of
the results can be summarized as follows.

The mobility decreased in absolute value as the ionic strength of the medium
increased, due to the screening effect of the electrolyte. The molecular sizes of HSA and
IgG determined by other methods, including viscometry and dynamic light scattering, are
reported to range from 40 to 150 Å [63] and from 44 to 243 Å [1], respectively, depending
on the pH. Hence, the values of d obtained by �e data fall in the above ranges. In view of
this, mobility measurements on protein-coated latex particles may be used to estimate the
molecular size of proteins. The N values obtained seem to agree with the charge nature of
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FIG. 12 Electrophoretic mobility as a function of the amount of total fixed charges contained in
the surface layer (�) for several values of �. Curve 1, � ¼ 1	 109 m�1; curve 2, � ¼ 2	 109 m�1;
curve 3, � ¼ 1	 1010 m�1; curve 4, � ¼ 1. Calculated with T ¼ 298K, �r ¼ 78:5, n ¼ 0:1M,

 ¼ 0:891	 10�3 N sm�2, and d ¼ 10 Å. Dashed lines: approximation given by Eq. (3); solid lines:
exact results. (From Ref. 57.)



both proteins. Albumin is a highly charged protein, provided that the pH does not coin-
cide with its i.e.p. (4.7), and its N is higher than that of IgG. In addition, the N values for
the IgG molecules are different at pH 6.5 and pH 8.5, because its i.e.p. is more basic than
that of HSA. Finally, the above authors were not able to explain adequately these results
obtained at pH 2.5. The problem arose from the impossibility of fitting the experimental
�e data with constant values of N, d, and �, a controversial point for which no satisfactory
explanation appears to have been given. On the other hand, the main drawback of obtain-
ing information on the protein layer from �e data via the Ohshima and Kondo theory lies
in the fact that one has three simultaneous fitting parameters. So, the value attained for
one of them will depend on the values given to the others. Although it would not be an
accurate method for obtaining detailed information on the adsorbed protein layer, it
allows one to obtain approximate values on the charge density, thickness, and friction
coefficient. Moreover, the accuracy would significantly improve, if, at least, one of the
fitting parameters could be previously obtained by means of other techniques, thus redu-
cing the number of parameters to be fitted.

Other authors who checked the validity of this theory were Ortega-Vinuesa and
Hidalgo-Álvarez [64]. In their work, the chemical and physical adsorption of Fðab 0

Þ2
fragments were carried out on three carboxyl-latexes (JL3, JL4, and JL7), which differed
in surface charge density. The main characteristics of these latexes are shown in Table 3. It
should be noted that the chemical immobilization was also performed by the CDI method.
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FIG. 13 Electrophoretic mobility as a function of the electrolyte concentration for several values of

�. Curve 1, � ¼ 1	 109 m�1; curve 2, � ¼ 2	 109 m�1; curve 3, � ¼ 1	 1010 m�1; curve 4, � ¼ 1.
Calculated with T ¼ 298K, �r ¼ 78:5,  ¼ 0:891	 10�3 N sm�2, � ¼ �0:19Cm�2, and d ¼ 10 Å.
Dashed lines: approximation given by Eq. (3); solid lines: exact results. (From Ref. 57.)



Both the bare latex and the adsorbed Fðab 0
Þ2 layer were characterized by electrophoretic

mobility measurements. These authors demonstrated that the most important parameters
affecting the �e data were not only those related to the protein layer (N, d, and �), but also
the charge density of the polymer particle.
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FIG. 14 Schematic representation of the potential distribution across a negatively charged layer of
thickness d adsorbed on a negatively charged surface.

FIG. 15 Electrophoretic mobility of HSA–latex complexes as a function of ionic strength at dif-
ferent pH: 2.5 (*); 6.5 (~); 8.5 (&). The lines correspond to the best fitting of the data to the

Ohshima and Kondo equation (6). (From Ref. 61.)



The main problem of applying the �e theory to those latex complexes formed by
physical adsorption is that four fitting parameters would be needed, as it is a N 6¼ 0, �0 ¼ 0
case. In order to reduce the number of adjustable parameters, one of them (the � potential
of the bare latex particles) was previously calculated from electrophoretic mobility data.
The �e data were converted into � potentials according to three different electrokinetic
theoretical treatments [65]: (1) Smoluchowski (classical equation), (2) O’Brien and White
(which takes into account the polarization of the mobile part of the EDL only, and (3)
Dukhin and Semenikhin (which also takes into account polarization in the stagnant part
of the double layer).

The three latexes showed similar electrokinetic behavior, and the calculated � poten-
tials were also very similar. This is why only the values obtained for one of them are shown
(see Fig. 17). Only the Dukhin–Semenikhin theory provides a continuous decrease in �
potential for increasing salt concentration, that is, there is no � potential maximum.
Therefore, Ortega-Vinuesa and Hidalgo-Álvarez [64] chose this theory to obtain the �
potential values to be included in the Ohshima and Kondo theory [see Eqs. (10) and
(11)]. On the other hand, the � potential of the bare latexes also depended on pH. This
dependence is shown in Fig. 18, which was also obtained from �e measurements and then
applying the Dukhin–Semenikhin conversion.

Subsequently, the �e measurements as a function of ionic strength at two pH values
(4 and 8) were carried out for the following Fðab 0

Þ2 complexes:

. Fðab 0
Þ2–JL3 complex (2.6 mg/m2, physical adsorption)

. Fðab 0
Þ2–JL3 complex (2.4 mg/m2, covalently bounded)

. Fðab 0
Þ2–JL4 complex (2.3 mg/m2, physical adsorption)
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FIG. 16 Same as Fig. 15, but for IgG–latex complexes. (From Ref. 61.)

TABLE 2 Best Fitting Parameters of Eq. (6) to IgG–Latex and HSA–Latex Mobilities at

Different pH (see Fig. 15)

pH

IgG–Latex HSA–Latex

N (M) ��1 (nm) d (Å) N (M) ��1 (nm) d (Å)

6.5 0.010 2.0 100 0.025 2.0 60

8.5 0.018 2.0 100 0.025 2.0 60

N ¼ charge density; ��1 ¼ flow penetration depth; d ¼ protein layer thickness.



. Fðab 0
Þ2–JL4 complex (2.5 mg/m2, covalently bounded)

. Fðab 0
Þ2–JL7 complex (2.0 mg/m2, physical adsorption)

. Fðab 0
Þ2–JL7 complex (2.2 mg/m2, covalently bounded)

Results are shown in Figs 19–21, and the most relevant aspects can be summarized as
follows:

1. Results are very similar for all three latex carriers. Therefore, the experimental
�e response of Fðab

0
Þ2–latex complexes seems to be rather (although not totally)

insensitive to the bare latex �0. Only JL7 latex with physically adsorbed Fðab 0
Þ2

shows a slightly higher �e (in absolute value) at pH 8 and lower at pH 4 than the
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FIG. 17 Zeta potential (open symbols) and surface potential (~) (obtained from the surface
charge density [64] as a function of the electrokinetic radius for the JL4 latex; �e data were con-

verted into � potential values using the Smoluchowski (&), O’Brien–White (*), and Dukhin-
Semenikhin (^) theories. (From Ref. 64.)

TABLE 3 Particle Diameters Obtained by Photon Correlation
Spectroscopy (PCS) and Transmission Electron Microscopy (TEM)

and Surface Charge Density of the Latexes

Latex

Diameter,

PCS (nm)

Diameter,

TEM (nm)

Surface charge

density (�C=cm2)

JL 3 273� 5 264� 8 16:2� 0:3
JL 4 342� 7 331� 9 12:1� 0:2
JL 7 342� 5 333� 8 19:0� 0:4

Source: Ref. 64.
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FIG. 18 Zeta potential dependence on pH for the JL3 (&), JL4 (*), and JL7 (^) latexes. (From
Ref. 64.)

FIG. 19 Electrophoretic mobility of the following complexes: Fðab 0
Þ2–JL3 (2.6 mg/m2, physical

adsorption) at pH 4 (*) and pH 8 (^); Fðab 0
Þ2–JL3 (2.4 mg/m

2, covalent coupling) at pH 4 (*) and
pH 8 (^). Dashed lines represent the theoretical �e obtained from Eq. (1) (the fitting parameters are
shown in Table 4). Dotted line is the same theoretical mobility for N ¼ 0:003M, � ¼ 0:3 nm�1, and

d ¼ 80 Å. (From Ref. 64.)



other two latexes. This could be explained by taking into account that JL7 is the
most highly charged latex. However, one should also keep in mind that the
protein coverage of the former latex is lower than that on JL3 and JL4 samples.
These features could explain these differences.

2. At pH 8, there are clear differences between the samples with physically
adsorbed and covalently bound Fðab 0

Þ2.
3. At pH4 there is a KBr concentration where the mobility changes sign. This is

caused by a flux of counterions through the adsorbed protein layer. In fact, at
low electrolyte concentration �e is quite positive, as can be seen in last figures.
So these experiments make clear the difference between zero charge point and
i.e.p.

The discussion is summarized below.

1. First, the authors carried out a preliminary study of the equations to use, that is,
Eqs. (3), (6), and (10), in order to test which of them works best. Ohshima and Kondo
claimed that Eqs (3) and (6) were quite similar. However, the second is totally insensitive
to the polyelectrolyte thickness d, which renders it useless for determination of this para-
meter via �e measurements. In addition the influence of d on the electrophoretic mobility
[Eq. (3)] is important enough, and it cannot be considered. For this reason, Ortega-
Vinuesa and Hidalgo-Álvarez [64] advised not to employ Eq. (6). On the other hand,
these theoretical equations are not in a strict sense applicable to fit the �e data of the
Fðab 0

Þ2–latex systems, since these complexes do not obey the condition �0
¼ 0. Even those
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FIG. 20 Electrophoretic mobility of the following complexes: Fðab 0
Þ2–JL4 (2.3 mg/m2, physical

adsorption) at pH 4 (*) and pH 8 (^); Fðab 0
Þ2–JL4 (2.5 mg/m

2, covalent coupling) at pH 4 (*) and
pH 8 (^). Dashed lines represent the theoretical �e obtained form Eq. (3) (the fitting parameters are
shown in Table 4). Dotted line is the same theoretical mobility for N ¼ 0:003M, � ¼ 0:3 nm�1, and

d ¼ 80 Å. (From Ref. 64.)



samples with chemically bound protein comply with �0 6¼ 0, as the carboxyl groups acti-
vated by CDI that did not react with Fðab 0

Þ2 amine groups were again transformed into
carboxyl groups by adding glycine. This is why Eq. (10) should be used to analyze the
mobility results. This equation does take into account the adsorbed layer thickness, not
only in the third term but also through the �ð0Þ expression [Eq. (11)]. Now, the most
influential parameter is the � potential (or the surface potential �0) of bare latex particles.

2. Second, the authors made an exhaustive study of d, N, and � parameters that
best fit the theoretical mobility curves, given by Eq. (10) to their experimental �e data.
They reached the following conclusions:

. It is impossible to fit the experimental mobility data using the � potential or �0

values calculated previously for their bare latexes (Fig.8).
. In addition, it is very difficult to know the real surface potential at x ¼ �d after

protein adsorption, since during this process there is also coadsorption of low
weight (LW) ions that remain enclosed within the polystyrene/Fðab 0

Þ2 interface
[66, 67].

. Moreover, there are different possibilities leading to different results: �0 or �
potential obtained by the Smoluchowski, O’Brien–White, or Dukhin–
Semenikhin theories. As the effect of the � potential in Eq. (10) is quite impor-
tant, one could also obtain different behaviors for the theoretical �e. Due to this
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FIG. 21 Electrophoretic mobility of the following complexes: Fðab 0
Þ2–JL7 (2.0 mg/m2, physical

adsorption) at pH 4 (*) and pH 8 (^); Fðab 0
Þ2–JL7 (2.2 mg/m

2, covalent coupling) at pH 4 (*) and
pH 8 (^). Dashed lines represent the theoretical �e obtained from Eq. (3) (the fitting parameters are

shown in Table 4). Dotted line is the same theoretical mobility for N ¼ 0:003M, � ¼ 0:3 nm�1, and
d ¼ 80 Å.



problem of ambiguous solution, they decide to make the � potential (or �0) a
fitting parameter as well. So, one would have again four fitting parameters for �e:
N, d, �, and �.

Because of the above stated reasons the authors advised to reject Eq. (10).
3. The best results are obtained using Eq. (3). In this case the protein-covered

particles must comply with �0 ¼ 0, although their systems do not obey this condition.
Even so, one could apply Eq. (3) if the following reasoning is taken into account. As latex
particles do not have a completely smooth surface and the carboxyl groups are probably
heterogenously distributed, one can suppose that colloidal particles do not have surface
charge but that all the charge of the protein–latex complexes is located in a layer of
thickness d containing:

1. charges due to the carboxyl groups of the polymer surface;
2. charges due to the LW ions enclosed as the polymer/Fðab 0

Þ2 interface;
3. charges that come from the protein molecules.

Figure 22 shows a description of this model. Consequently, one could use Eq. (3)
without error, considering that N is not the charge density of the protein layer, but is the
total average charge density given by merging the above three contributions.
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FIG. 22 Scheme of a new model, where Eq. (3) is applicable although the solid polymer particles
that act as protein carriers were charged (�0 6¼ 0). (From Ref. 64.)



The d, N, and � parameters that best fit the experimental data for pH 8 (Figs 19–21)
are given in Table 4. These results can be independently analyzed as follows.

The net charge density of the external layer (N) is lower for covalently bound Fðab 0
Þ2

than for physically adsorbed Fðab 0
Þ2. This is a surprising result. Theoretically both should

have the same N, since in the first case some —COO� groups of the polymer surface react
with some —NHþ

3 groups of the protein molecule to give a peptide link (—CO—NH—)
and in the second case these groups are electrically neutralized. The explanation of this
odd result might be found in the activation process of the carboxyl particles with CDI. It is
worth commenting that this carbodi-imide is a positively charge molecule. Therefore,
when a —COO� group reacts with a CDI molecule there is an exchange of negatively
charged groups for positive ones. Ortega-Vinuesa et al. [17, 35] demonstrated that not all
of the carboxyl groups react with CDI, and that even later a great part of the activated
groups do not react with —NHþ

3 groups of either protein or glycine molecules, some CDI
groups remaining on the latex surface. Therefore, these particles have positive and nega-
tive chemical groups linked to the polystyrene surface. This is why the mobility of such
samples of pH 8 is lower (in absolute value) than that of the complexes with physically
adsorbed Fðab 0

Þ2. For the same reason, �e data at pH 4 are higher for the former than for
the latter. This difference is more pronounced at low ionic strength.

At pH 4, Fðab 0
Þ2 molecules are positively charged. However, this charge must be

small since this pH is rather close to the i.e.p. (5:3� 0:6). Therefore, the N parameter
should be small (N � 5 mM). However, it remains difficult (if not impossible) to fit these
mobility data properly since there is a change of sign for ½Kbr� � 100mM due to a
counterion flux. This flux is not taken into account by the Ohshima and Kondo theory
leading to Eq. (3). It should be noted that these authors only used this fitting method for
pH values far from the i.e.p. of the adsorbed protein, and thus for a high surface charge
density of the immobilized layer [61].

In addition, one can obtain information about another parameter related to the
protein layer: its thickness. The best d value for fitting the experimental �e data is
8 nm. This is in good agreement with the Fðab 0

Þ2 dimensions (14	 4	 4 nm3) obtained
from the structures of crystallized IgG molecules by Sarma et al. [68]. This value also
agrees with the results obtained by Nakamura et al. discussed above [61]: d ¼ 100 Å for
IgG (Mw ¼ 150 kDÞ and d ¼ 60 Å for BSA (MW ¼ 66 kD). These last authors state that
they used Eq. (6) to obtain information about d. They also could estimate that ��1 (depth
of the flow penetration) was 3.3 nm.

Finally, in another work, Ortega-Vinuesa eta l. [17] use the Ohshima and Kondo
theory to calculate the surface charge density (N) of different IgG–latex complexes in
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TABLE 4 Parameters that Best Fit the Theoretical Electrophoretic

Mobility [Eq. (3)] to the Experimental �e Data Obtained at pH 8

Sample N (M) ��1 (nm) d (Å)

JL3 (covalently bound) 0.009 0.3 70
JL3 (physical adsorption) 0.013 0.3 70

JL4 (covalently bound) 0.009 0.3 80
JL4 (physical adsorption) 0.012 0.3 80
JL7 (covalently bound) 0.010 0.3 75
JL7 (physical adsorption 0.015 0.3 80



order to explain further colloidal stability data, as these are related somehow with the
surface charge o the complexes. There were two different IgG samples: one of them was a
polyclonal antibody (from goat), and in this work it will be referred to as ‘‘Pab.’’ The
second one was a monoclonal sample (from mouse), referred to as ‘‘Mab.’’ They differed
in their i.e.p. values. The i.e.p. of the Mab was lower (5:4� 0:1) than that of the Pab
(6:9� 0:9). Both proteins were attached to the JL3 latex surface. Once more, physical and
chemical (mediated by the CDI method) adsorption was carried out, and �e was mea-
sured. The results are shown in Fig. 23, where the protein loads are also given. The
experimental data were again fitted by using Eq. (4). The choice of this expression has
been justified previously. In this work, only N was chosen as the fitting parameter, as d
and � remained at constant values (obtained from previous work by the same authors [64,
35]). They used a value of 3.3 nm of the ��1 parameter, and d was set at 100 Å, as reported
by Nakamura et al. [61]. As can be seen from Fig. 23, the N values that best fit the
experimental �e data are 25 mM (for the Pab physically adsorbed), 15 mM (Pab chemi-
cally bound, 0.5 mg/m2), 12 mM (Pab chemically bound, 1.1 mg/m2), 10 mM (Pab che-
mically bound, 1.8 mg/m2), and 14 mM (Mab chemically bond, 1.5 mg/m2). The great
difference between the ‘‘physically adsorbed’’ and the ‘‘chemically bound’’ complexes is
caused by the presence of attached CDI molecules, which drastically reduce the change
density of the external layer of the latter particle complexes. It is worth noting that the N
values decrease with increasing protein loading, a result that has also been found elsewhere
[35]. These data are consistent with the idea of polyclonal IgG molecules having a low
charge at pH 8. In addition, comparing the N values for the Mab samples and the Pab
samples (mainly with those having 1.8 mg/m2, as this coverage is similar to that of the
Mab), one can conclude that the Mab-conjugated particles are more highly charged than
the Pab species at pH 8. It should be noticed that this information, supplied by a electro-
kinetic technique, perfectly agrees with the i.e.p. values of both antibody samples
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FIG. 23 Electrophoretic mobility versus ionic strength for the bare latex (	); Pab (physical adsorp-
tion) (1.0 mg/m2) (*); Pab (covalent coupling) (0.5 mg/m2) (~); Pab (covalent coupling) (1.1 mg/
m2) (^); Pab (covalent coupling) (1.8 mg/m2) (&); and Mab (covalent coupling) (1.5 mg/m2) (&).

Solid lines represent the theoretical �e obtained from Eq. (3) using the following fitting values: d ¼

100 Å, ��1 ¼ 3:3 nm, and N ¼ 25, 15, 12, 10, and 14 mM, respectively. (From Ref. 17.)



(obtained by isoelectric focusing), since the i.e.p. of the Mab IgG is more acidic than that
of the Pab sample.
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Electrophoresis of Biological Cells: Models

ERIC LEE, FONG-YUH YEN, and JYH-PING HSU National Taiwan University,
Taipei, Taiwan

I. INTRODUCTION

Electrophoresis, the movement of a charged entity as a response to an applied electric
field, is characterized by the electrophoretic mobility [1], �E, defined as �E ¼ U=E, U
being the magnitude of the terminal velocity of the entity and E the strength of the applied
electric field. Smoluchowski [2] was able to derive the expression:

�E ¼
�r�0�

�
ð1Þ

where � is the zeta potential, �r and � are, respectively, the relative permittivity and the
viscosity of the liquid phase, and �0 is the permittivity of a vacuum. Due to its simplicity,
this expression has been used widely in various fields. It should be pointed out, however,
that the derivation of Eq. (1) is based on several assumptions, which include: (1) the entity
is rigid and nonconducting, (2) its linear size is larger than the Debye length, (3) the
surrounding fluid is unbounded, and (4) the surface properties are uniform over the entity
surface. The analysis of Smoluchowski was extended to a more general case to take into
account effects such as thick double layer, double-layer polarization and relaxation, and
the presence of a boundary by several workers [3–16[. A review of the boundary effects
and particle interactions in electrophoresis was provided by Chen and Keh [17]. A pseu-
dospectral method was applied recently by Lee et al. [14–16] to the case of a sphere in a
spherical cavity and to a concentrated spherical dispersion. In these studies, the effects of
double-layer polarization, the presence of a rigid boundary, and the interaction of adja-
cent double layers were considered for the case of an arbitrary electrical potential and
double-layer thickness.

Electrophoresis is one of the powerful analytical tools in biochemistry and biome-
dical engineering. It is often used to characterize the surface properties of biological cells.
For example, the peripheral zone of human erythrocyte contains a glycoprotein layer
about 15 nm thick that possesses some ionogenic groups and forms the outer boundary
of the lipid layer. Since the dissociation of these groups leads to a charged layer, the
surface structure of the erythrocyte can be estimate by electrophoresis, which has the
merit that the destruction of cell structure can be avoided [18, 19]. Hashimoto et al. [20]
compared the electrophoretic mobility of erythrocytes of healthy donors and those of
patients. It was found that the mean mobility of the erythrocyte of a patient suffering
systemic lupus erythematosus is smaller than that of a normal person. Makino et al. [21]
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analyzed the electrophoretic behavior of malignant lymphosarcoma cells, Raw 117-P and
Raw 117-H10 (variant of Raw 117-P). The results obtained justified the fact that different
cells have different frictional resistance to surrounding fluid, and therefore, different elec-
trophoretic velocities. These reveal the significance of electrophoresis and its potential
applications in cell biology and biomedical engineering. For this reason, relevant phenom-
ena have drawn the attention of researchers in various areas.

Although reported results for cell electrophoresis are ample in the literature, most of
them, however, applied the classical theory of Smoluchowski [2]. As pointed out above, its
derivation is based upon rigid entities, and can be unrealistic for biocolloids. For example,
the cell surface often contains protein molecules’ appendage and dissociable functional
groups. The charge density on the cell surface is found to be a function of the degree of
dissociation of the latter [22–27]. In addition, the cell surface is nonrigid, and can be
penetrable to ions. Therefore, the classical theory of electrophoresis needs to be modified
accordingly to reflect more closely the nature of the cell surface. Several attempts have
been made to take the nonrigid property of a biocolloid into account [28–31]. Here, it is
simulated by an entity comprising a rigid, uncharged core and a charged surface layer,
which is ion penetrable and carries dissociable functional groups. It was concluded that
the surface layer plays an important role in the determination of the electrophoretic
behavior of an entity. In a study of the electrical interaction between two ion-penetrable
charged membranes, Ohshima and coworkers [32–35] pointed out that the dissociation of
the functional groups in the membrane leads to a fixed charge distribution. In this case, the
classical Poisson–Boltzmann equation describing the electrical field needs to be modified
to take this factor into account. In their studies the flow field in the membrane was
assumed to be governed by the Debye–Bueche theory [36]. It should be pointed out
that this theory becomes inapplicable if the Debye length is comparable or larger than
the linear size of a particle. It is also inappropriate if the ionic strength is high [28]. Hsu
and coworkers [37–41] and Ohshima and coworkers [42–46] have conducted a series of
studies on the electrophoretic behavior of biocolloids. Similar to the treatment of
Smoluchowski [2], the Debye length is assumed to be much smaller than the local curva-
ture of the surface of a particle, i.e., the particle surface can be assumed planar. In their
treatment, a particle comprises an inner rigid, uncharged region and an ion-penetrable
surface layer, which can be a membrane or polymer chain. The governing equations for
the liquid phase are the same as those for the case of rigid particles, and a modified set of
governing equations are adopted for the surface layer. The results obtained provide the
necessary information for the elaboration of the experiment data. In a recent study, Chen
and Ye [47] derived Faxen’s law for the case of a rigid sphere covered by a permeable layer
of arbitrary thickness. Saville [48] considered the case of a rigid sphere covered by a
polymer layer in which the hydrodynamic resistance of the latter is a function of position.
Rasmusson et al. [49] discussed the electrophoresis of porous particles.

A thorough review of the literature reveals that a general theory for cell electrophor-
esis has not been established. Most of the available results are limited to low electrical
potential, simple geometry, and thin Debye length. This is mainly because the governing
equation for the electrical field and that for the flow field are both nonlinear and coupled,
and solving these equations analytically is nontrivial, if not impossible. In this case,
choosing a reliable numerical approach seems to be inevitable in order to obtain an
overview of the problem under consideration. Also, the effects of the presence of a rigid
boundary, the concentration of particles, and double-layer polarization and relaxation on
the electrophoretic behavior of a particle are of practical significance, and should be
considered in figure studies.
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II. ISOLATED ENTITY

We begin by considering the simplest case of the electrophoresis of an isolated entity in an
infinite fluid. In this case, since the presence of other objects such as a rigid boundary and
nearby entities needs not to be considered, the problem under consideration can be sim-
plified drastically. The behavior of a dilute dispersion, which neglects boundary effects, for
instance, can be simulated by that of an isolated entity. Intuitively, the electrophoretic
behavior of the entity is a function of its surface condition, the physical properties of the
surrounding fluid, and the applied electrical field.

A. Electrokinetic Equations

The description of the electrokinetic phenomena in a colloidal dispersion, including elec-
trophoresis, conductivity, electro-osmosis, and sedimentation, involves solving simulta-
neously a set of partial differential equations, called electrokinetic equations. These
include the Poisson equation describing the electric field, the Navier–Stokes equation
describing the flow field, and the ion conservation equation describing the concentration
field. The equations are coupled and nonlinear, and in practice, analytical results are
derived under drastic assumptions such as simple geometry, very thin or very thick double
layers, and low surface potentials [2–5, 10–13]. In general, a numerical scheme is necessary
[7, 14–16].

1. Poisson Equation

Under some restrictions, the spatial variation in electrical potential is governed by the
Poisson equation, which can be derived by employing Gauss’s law. We have

r
2� ¼ �

�e

�
ð2Þ

where �, �e, and � are, respectively, the electrical potential, the space charge density, and
the permeability. For an electrolyte solution containing N charged species:

�e ¼
XN
j¼1

zjenj ð3Þ

where zj and nj are, respectively, the valence and the number concentration of the jth ionic
species, and e is the elementary charge. For the case of an ion-penetrable surface layer, the
space charge comprises the ionic species in the liquid phase and the fixed charge in the
surface layer, �fix, i.e.,

�e ¼
XN
j¼1

zjenj þ �fix ð4Þ

2. Navier–Stokes Equation

The flow field of the problem under consideration can be described by the continuity
equation:

r � v ¼ 0 ð5Þ

and the Navier–Stokes equation:
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�f

@v

@t
¼ �r2

v� rp� �er� ð6Þ

In these expressions, t is time, and v, �f , and � are, respectively, the velocity, the density,
and the viscosity of the liquid phase, and p is the pressure. Here, we assume that v is in the
creeping flow regime, that is, the Reynolds number is much less than unity, and the inertial
term can be neglected. The last term on the right-hand side of Eq. (6) denotes the body
force exerted on the liquid phase due to the presence of the electrical force. The flow field
in the surface layer can be expressed on the basis of Debye–Bueche theory, in which a
body force term, �	v, is added to the right-hand side of Eq. (6) to reflect the resistance
arises from the presence of the surface layer. We have

�f

@v

@t
¼ �r2v� rp� �er�� 	v ð7Þ

where 	 is a frictional coefficient. Here, the surface layer is simulated by attached polymer
segments [50], and each polymer segment is viewed as the center of resistance. If a polymer
segment is treated as a sphere of radius rp, then according to Stoke’s law, the resultant
friction force is 6
�rpv. If there are Np polymer segments, then

	 ¼ 6
�rpNp ð8Þ

If 	 ! 1, the surface layer becomes a rigid phase, and the radius of the particle needs to
be adjusted accordingly. On the other hand, if 	 ! 0, the surface layer does not exist.

3. Ion Conservation Equation

Suppose that the transport of ions in the liquid phase can be described by the Nernst–
Planck equation [1]:

@nj
@t

¼ �r � fj ð9Þ

fj ¼ �Dj rnj þ
zjenj
kBT

r�

� �
þ njv ð10Þ

In these expressions fj and Dj are, respectively, the local ion flux and the diffusivity of ionic
species j, and kB and T are the Boltzmann constant and the absolute temperature, respec-
tively. The first term on the right-hand side of Eq. (10) denotes the contribution of
Brownian motion, the second term arises from the local electrical field, and the third
term arises from the flow of fluid. At steady state, the left-hand side of Eq. (9) vanishes.
In this case, substituting Eq. (10) into Eq. (9) leads to the ion-conservation equation.

4. Double-layer Polarization

When a charged entity is placed in an electrolyte solution, the electrostatic interaction
between the entity and nearby ions yields an ionic cloud surrounding the particle. If an
electrical field is applied, the relative motion between the entity and the ions in the cloud
leads to a distortion in the cloud, the so-called double-layer polarization. Let us consider
first the interaction between a spherical particle and the surrounding ions in a constant
electric field [7]. At a point far away from the particle, counterions move at constant
velocity, which can be evaluated if the applied electrical field is known. The presence of
the charged particle establishes an electrical field near its surface. The counterions that
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move toward the surface are accelerated, and those that move toward the bulk liquid
phase are decelerated. This leads to the distribution of the ionic cloud of counterions
shown in Fig. 1. The effect of the ionic cloud of coions on the electrophoretic behavior
of the particle is more complex than that of the counterions. However, since the concen-
tration of colons is much less than that of counterions, their influence is less significant
than that of the counterions.

The effect of double-layer polarization on the electrophoretic behavior of a particle
can be elaborated by referring to Fig. 1. The ionic cloud formed by the presence of
counterions leads to an electrical field, which is in the opposite direction to that of the
applied electrical field, and the electric force experienced by the particle is reduced. The
movement of counterions also yields a flow of fluid, and the flow field near the particle is
distorted. This increases the viscous force exerted on the particle surface. Therefore, the
electrophoretic velocity of a particle in an electrolyte solution is slower than that in an
electrolyte-free liquid.

At equilibrium, both fj and v vanish, and integrating Eq. (10) leads to the Boltzmann
distribution:

nj ¼ nj0 exp �
zje�

kBT

� �
ð11Þ

Combining this expression with Eqs (2) and (3) gives the so-called Poisson–Boltzmann
equation. The derivation of Eq. (11) suggests that it is applicable if the disturbance of the
flow field arising from the applied electrical field is significant. Since the concentration field
and the flow field are coupled, this implies that the degree of double-layer polarization is
negligible. In general, double-layer polarization is insignificant if a double layer is thin, the
surface potential is low, or the applied electrical field is weak.

O’Brien and White [7] suggested using the following expression of ionic concentra-
tion:

nj ¼ nj0 exp �
zjeð�þ gjÞ

kBT

� �
ð12Þ
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FIG. 1 Schematic representation of anion cloud surrounding a positively charged particle in an
electric field E.



Note that the inclusion of function gj is arbitrary. Substituting Eq. (12) into Eqs (10) and
(3) yields the governing equations for the case where the effect of double-layer polarization
is significant.

5. Solution Procedure

As suggested by Lee et al. [14–16], the pseudospectral method based on Chebyshev poly-
nomials [51] is readily applicable to the problem under consideration. This method has the
merits of having a high order of convergence, and convergent properties that are inde-
pendent of the boundary conditions. Since the computational domain is two-dimensional,
the pseudospectral method is applied in both the r and � domains. If fNMðr; �Þ is an
unknown function, its Nth-order 
Mth-order approximation can be expressed as

fNMðr; �Þ ¼
XN
i¼0

XM
j¼0

fNMðri; �jÞgiðrÞgjð�Þ ð13Þ

where fNMðri; �jÞ is the value of fNM at the kth, k ¼ ½ðN � 1Þi þ j�, collocation point. The
interpolation polynomials giðrÞ and gjð�Þ depend on the collocation points, which are
determined by mapping the computational domain on to the square ½�1; 1� 
 ½�1; 1� by

r ¼
b� a

2

 yþ

bþ a

2

� ¼



2

 ðxþ 1Þ

ð14Þ

In these expressions a and b are the radius of the outer and inner spheres, respectively. The
N þ 1 interpolation points in the interval ½�1; 1� are chosen to be the extreme values of an
Nth-order Chebyshev polynomial TNðyÞ:

yj ¼ cos

j

N

� �
; j ¼ 0; 1; . . . ;N ð15Þ

The corresponding interpolation polynomial giðyÞ is

gjðyÞ ¼
ð�1Þjþ1

ð1 � y2
ÞdTNðyÞ=dy

cjN
2ðy� yjÞ

; j ¼ 0; 1; . . . ;N ð16Þ

where cj is defined by

cj ¼
2; j ¼ 0;N
1; 1  j  N � 1

�
ð17Þ

Both the partial derivative and the integration of fNMðr; �Þ can be estimated on the
basis of Eq. (13). The axisymmetric nature of the problem under consideration suggests
that only half of the physical domain needs to be considered in the numerical calculations.
Therefore, we conduct calculations in half of the domain to obtain a high accuracy in
stream function solutions, although the variables in our system are either symmetric or
antisymmetric about the plane � ¼ 
=2 when the equations are linearized. The correspond-
ing nonlinear problem is then solved by a Newton–Raphson iteration scheme. Double
precision is used throughout the computation. Grid independence is checked to ensure
that the mesh used is fine enough.
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B. Surface Conditions

The evaluation of the electrophoretic mobility of a particle involves solving the spatial
variation of the equilibrium electrical potential due to the presence of the charged particle.
This potential is a function of the charged conditions of the surface of the particle. We
consider several typical types of surface conditions in practice.

1. Constant Potential/Charge Surface

For a rigid entity, we assume that it is impenetrable to ions, the surface charges are
homogeneously distributed, and the surface potential can be described by the Gouy–
Chapman model. Two types of surface condition are often adopted, namely, constant
surface potential and constant surface charge. The corresponding boundary conditions
at the particle surface are, respectively,

�e ¼ � ð18Þ

and

��r�e � n̂n ¼ 0 ð19Þ

In these circumstances, �e is the equilibrium electrical potential, � is the zeta potential, 0 is
the surface charge density, a constant, and n̂n is the unit normal vector of the entity surface.

2. Charge-regulated Surface

The surface of biocolloids contains dissociable functional groups, and their degree of
dissociation needs to be determined by chemical equilibrium [1]. In this case, the surface
condition is a function of solution pH, dissociation constant, and the concentration of
functional groups.

(a) One-site Model. Suppose that the dissociation reaction below occurs on the par-
ticle surface [52]:

AH , A�
þ Hþ

ð20Þ

Let Ka be the dissociation constant; then

Ka ¼
½A�

�½Hþ
�s

½AH�
ð21Þ

where a term in square bracket denotes concentration, and subscript ‘‘s’’ represents surface
property. Assuming Boltzmann distribution for ½Hþ

�, we have

½Hþ
�s ¼ ½Hþ

�b exp
�e�e

kBT

� �
ð22Þ

The total number of surface sites can be expressed as

Ns ¼ ½A�
� þ ½AH� ð23Þ

Equations (21)–(23) lead to

½A�
� ¼

Ns

1 þ
½Hþ

�b
Ka

exp �
e�e
kBT

� � ð24Þ

The surface charge, 0 is given by
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0 ¼ �e½A�
� ð25Þ

Substituting Eq. (24) into this expression yields:

0 ¼ �
eNs

1 þ
½Hþ

�b
Ka

exp �
e�
kBT

� � ð26Þ

Suppose that the relative permittivity of the solid phase is much smaller than that of the
liquid phase; then

 ¼ ��r�e � n̂n ð27Þ

Combining Eqs (26) and (27) yields boundary condition at the particle surface:

��r�e � n̂n ¼ �
eNs

1 þ
½Hþ

�b
Ka

exp �
e�
kBT

� � ð28Þ

(b) Two-site Model. Suppose that the dissociation reaction below occurs on the par-
ticle surface, which is an amphoteric one [52]:

AHþ
2 , AH þ Hþ

ð29Þ

AH , A�
þ Hþ

ð30Þ

Let Kþ and K� be, respectively, the corresponding dissociation constants of the above two
reactions. Following the same approach mentioned in the one-site model, we obtain:

0 ¼ eNs

½AHþ
2 � � ½A�

�

½AH� þ ½AHþ
2 � þ ½A��

¼ eNs

� sinh½eð�N � �eÞ=kBT �

1 þ � cosh½eð�N � �eÞ=kBT �
ð31Þ

where

� ¼ 2 Kþ=K�
� �1=2

ð31aÞ

�N ¼ 2:303ðkBT=eÞ
1

2
pKþ

� pK�
� �

� pH

� �
ð31bÞ

Therefore, the boundary condition at the particle surface becomes

��r�e � n̂n ¼ eNs

� sinh e �N � �eð Þ=kBT½ �

1 þ � cosh e �N � �eð Þ=kBT½ �
ð32Þ

3. Ion-penetrable Surface Layer

For biocolloids, charges carried by a particle may distribute in an ion-penetratable surface
layer rather than over a rigid surface. In this case, the fixed charges are distributed in a
finite volume in space, and the governing equations for the case of rigid charged surfaces
need to be modified accordingly. Apparently, the idea of zeta potential becomes mean-
ingless, and the distribution of fixed charge is of main concern in the calculation of the
spatial variation of electrical potential. Two classes of fixed charge distribution are often
considered, namely, uniform and nonuniform fixed charge distributions [37–46, 50]. The
former can be expressed as

�fix ¼ constant in the surface layer ð33Þ
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or

�fix ¼ e½X � in the surface layer ð34Þ

where [X ] denotes the concentration of functional groups, which is assumed to distribute
uniformly in the surface layer. The degree of dissociation of X is governed by the chemical
equilibrium. In the latter, a function is assumed to describe the spatial variation of fixed
charge. Typical examples includes linear and exponential functions. The condition that the
degree of dissociation of the functional groups is a function of the conditions of the liquid
phase may also lead to a nonlinear fixed charge distribution.

III. CONCENTRATED DISPERSION

In the previous section, the behavior of an isolated entity in an infinite solution was
discussed. This is realistic for the case of a dilute dispersion. If the concentration of the
dispersed phase is appreciable, the interaction between adjacent entities becomes signifi-
cant, and a more rigorous treatment is necessary. For uniformly dispersed spherical par-
ticles, the so-called unit cell model is applicable [53]. In this model, the behavior of a
dispersion is simulated by a particle surrounded by a concentric spherical liquid shell, and
the concentration of the dispersion is measured by the relative magnitude of the particle
and the liquid shell. Two types of boundary condition at the outer surface of the liquid
shell, the virtual surface, have been proposed for the resolution of the governing equations
for flow field. The first is suggested by Kuwabara [54], which assumes zero vorticity at the
virtual surface, and the second is used by Happel [55], which assumes zero shear at the
virtual surface. In the mathematical expression, we have

r 
 v ¼ 0 ð35Þ

for the former, and

h
� n̂n

	 


 n̂n ¼ 0 ð36Þ

for the latter. The first boundary condition is preferred since the result of Smoluchowski
[2] can be recovered as the concentration of a dispersion becomes infinitely dilute [53]. On
the other hand, the second boundary condition does not lead to this result.

IV. EXAMPLES

A. Entity Covered by an Ion-Penetrable Membrane

Let us consider the case shown in Fig. 2 where a planar particle, comprising a rigid,
uncharged core and an ion-penetrable charged membrane of thickness d, is immersed in
a symmetric electrolyte solution having a bulk a concentration n0. The membrane contains
a uniformly distributed fixed charge of density Nfix. An electric field E parallel to the
surface of the particle is applied. Without loss of generality, we assume that the fixed
charge is negative, and the particle moves in the opposite direction of E.

Assuming Boltzmann distribution for ions, then the spatial variation in electrical
potential in the membrane phase can described by
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�1

d2�

dx2
¼ 2n0z1e sinh

z1e�

kT

� �
þ eNfix; 0 < x < d ð37Þ

Similarly, that in the liquid phase can be expressed as

�2

d2�

dx2
¼ 2n0z1e sin

z1e�

kT

� �
; d < x <1 ð38Þ

The boundary conditions associated with these equations are assumed as

�! 0 and ðd�=dxÞ ! 0 as x ! 1 ð39Þ

�jx¼d�¼ �jx¼dþ ð40Þ

�1

d�

dx

� �����
x¼d�

¼ �2

d�

dx

� �����
x¼dþ

ð41Þ

d2�

dx2
¼

d�

dx
¼ 0 and � ¼ �D at x ¼ 0 ð42Þ

where �D is the Donnan potential. Here, we assume that the membrane is sufficiently thick
so that the Donnan potential is reached at the core–membrane interface. Equation (40)
suggests that the electrical potential is continuous at the liquid–membrane interface.
Equation (41) assumes that no net charges accumulate at the liquid–membrane interface.

The flow fields can be described by the Navier–Stokes equation (44). We have, in the
membrane phase:

�
d2v

dx2
� 	vþ �eðxÞE ¼ 0; 0 < x < d ð43Þ

and in the liquid phase:

�
d2v

dx2
þ �eðxÞE ¼ 0; d < x <1 ð44Þ
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FIG. 2 Biocolloid simulated by a rigid core covered by an ion-penetrable, charged membrane layer

of thickness d; �d and �D denote the electrical potential at the membrane–liquid interface and the
Donnan potential.



where E is the strength of electric field. The boundary conditions associated with Eqs. (43)
and (44) are assumed to be

v ! �U and ðdv=dxÞ ! 0 as x ! 1 ð45Þ

vjx¼d�¼ vjx¼dþ ð46Þ

dv

dx

� �����
x¼d�

¼
dv

dx

� �����
x¼dþ

ð47Þ

vjx¼0¼ 0 ð48Þ

Equation (45) implies that the magnitude of liquid velocity far away from the particle
surface is U, and its direction is parallel to the applied electric field. Equations (46) and
(47) state that both the liquid velocity and the tangential component of the stress tensor
are continuous at the liquid–membrane interface, and Eq. (48) represents the no-slipping
condition.

Solving the governing equations for the electric fields and those for the flow field
simultaneously subject to the boundary conditions assumed and employing the definition
� ¼ U=E, the electrophoretic mobility can be evaluated. Detailed derivations can be
found in the literature [37–41].

B. Entity in a Cavity

This problem has been analyzed by Lee et al. [15, 16] where the motion of a rigid non-
conducting spherical particle of radius a in a concentric spherical cavity of radius b is
considered. As illustrated in Fig. 3, a uniform electric field E is applied in the z direction.
Following the treatment of O’Brien and White [7], the total electrical potential � is
expressed as the sum of the electrical potential that would exist in the absence of the
applied electric field �1 (or the equilibrium potential) and the electrical potential arising
from the applied electric field �2. The effect of double-layer polarization is taken into
account by defining the function gj . We have

r
2�1 ¼ �

�1

�
�
XN
j¼1

zjenj0
�

exp �
zje�1

kBT

� �
ð49Þ

nj ¼ nj0 exp �
zjeð�1 þ �2 þ gjÞ

kBT

� �
ð50Þ

r
2�2 ¼ �

�2

�
¼ �

PN
j¼1

zjenj0
� exp �

zjeð�1 þ �2 þ gjÞ
kBT

� �

�
PN

j¼1

zjenj0
� exp �

zje�1

kBT

� �
0
BBB@

1
CCCA ð51Þ

� ¼ �1 þ �2 ð52Þ

� ¼ �1 þ �2 ð53Þ

r
2gj �

zje

kBT
r�1 � rgj ¼

1

D
j

u � r�þ
1

Dj

u � rgj þ
zje

kBT
r�2 � rgj þ

zje

kBT
rgj � rgj ð54Þ
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In these expressions nj0 is the bulk concentration of ionic species j. To reduce the number
of variables in the hydrodynamic equations the stream function formulation is adopted. It
can be shown that the stream function  satisfies

E4 ¼ �
1

�
sin � � r 
 �r �1 þ �2ð Þ½ � ð55Þ

where E4
¼ E2E2 with

E2
¼

@

@r2
þ

sin �

r2

@

@�

1

sin �

@

@�

� �
ð55aÞ

The r and the � components of the particle velocity, vr and v�, can be expressed respec-
tively, as

vr ¼ �
1

r2 sin �

@ 

@�
ð55bÞ

and

v� ¼
1

r sin �

@ 

@r
ð55cÞ

Equations (49)–(55) need to be solved simultaneously.
For illustration, we assume that both the particle and the cavity are nonconducting

and their surfaces remain at a constant electrical potential characterized by the corre-
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FIG. 3 Sphere of radius a in a spherical coordinates. E and U are, respectively, the applied electric
field and the velocity of the particle.



sponding zeta potentials, �a and �b, respectively. In this case, the boundary conditions for
�1 are

�1 ¼ �a; r ¼ a ð56aÞ

�1 ¼ �b; r ¼ b ð56bÞ

The boundary conditions for �2 are assumed to be

@�2=@rð Þ ¼ 0; r ¼ a ð57aÞ

@�2=@rð Þ ¼ �Ez cos �; r ¼ b ð57bÞ

Suppose that the concentration of ions reaches the equilibrium value at the cavity surface
and that the surface of the particle is nonpenetrable to ions. Therefore, the boundary
conditions for gj are

gj ¼ ��2; r ¼ b ð58aÞ

ð@gj=@rÞ ¼ 0; r ¼ a ð58bÞ

Since the magnitude of the velocity of the particle is U, we have the following boundary
conditions:

vr ¼ U cos � and v� ¼ �U sin �; r ¼ a ð59aÞ

vr ¼ 0 and v� ¼ 0; r ¼ b ð59bÞ

The corresponding boundary conditions for the stream function  are

 ¼ �
1

2
Ur2 sin � and

@ 

@r
¼ �Ur sin2 �; r ¼ a ð60aÞ

 ¼
@ 

@r
¼ 0; r ¼ b ð60bÞ

The symmetric nature of the problem under consideration suggests the following condi-
tions:

@�1

@�
¼
@�2

@�
¼
@g1

@�
¼
@g2

@�
¼  ¼

@ 

@�
¼ 0; � ¼ 0 and � ¼ 
 ð61Þ

For a simpler mathematical treatment, the governing equations and the correspond-
ing boundary conditions are rewritten in scaled forms. The zeta potential �a, (or �b for an
uncharged particle), the radius of the particle a, and the bulk density of cations, n10, are
selected as the scaling quantities. For z1 : z2 electrolyte the condition of electroneutrality in
the bulk liquid phase requires that n20 ¼ n10=�, where � ¼ ð�z2=z1n10Þ and n20 are, respec-
tively, the bulk concentrations of cation and anion. The reciprocal Debye length � can be
expressed as

� ¼
�kBTP
nj0ðezjÞ

2

 !�1=2

ð62Þ

Since n10z1 ¼ ð�aÞ2�kBT=ð1 þ �Þe2a2z1, �1 ¼ ��1�a (or ��1�bÞ, nj ¼ n�j nj0, and r
�
¼ ar, the

scaled form of Eq. (49) is

r
�2��1 ¼ �

1

ð1 þ �Þ

ð�aÞ2

�r
� n�1 � n�2ð Þ ð63Þ
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where n�1 ¼ exp½��rð�
�
1 þ �

�
2 þ g�1Þ� and n�2 ¼ exp½��rð�

�
1 þ �

�
2 þ g�2Þ�. The corresponding

scaled boundary conditions become

��1 ¼ 1 at r� ¼ 1 ð64aÞ

��1 ¼ �b=�a; r� ¼ 1=� ð64bÞ

or for an uncharged particle:

��1 ¼ 0; r� ¼ 1 ð65aÞ

�� ¼ 1; r� ¼ 1=� ð65bÞ

In these expressions, � ¼ a=b and �r ¼ �az1e=kBT (or �bz1e=kBT). Note that the Debye–
Hückel approximation is applicable if �r � 1. Similarly, the scaled form of Eq. (50) is

r
�2��2 ¼ �

1

ð1 þ �Þ

ð�aÞ2

�r
n�1 � n�2ð Þ � exp ��r�

�
1ð Þ � exp ��r�

�
1ð Þ½ �

� �
ð66Þ

The corresponding scaled boundary conditions are

@��2
@r

¼ 0; r� ¼ 1 ð67aÞ

@��2
@r

¼ �E�
z cos �; r� ¼ 1=� ð67bÞ

where E�
z ¼ Eza=�a. The scaled form of Eq. (54) for j ¼ 1 is

r
�2g�1 � �rr

���1 � r
�g�1

¼ Pe1u
�
� r

���1 þ Pe1u
�
� r

���2 þ Pe1u
�
� r

�g�1 þ �rr
�g�1 þ �rr

�g�1 � r
�g�1

ð68Þ

The corresponding scaled boundary conditions are

@g�1
@r�

¼ 0; r� ¼ 1 ð69aÞ

g�1 ¼ ���2; r� ¼ 1=� ð69bÞ

Similarly, the scale form of Eq. (54) for j ¼ 2 is

r
�2g�2 þ ��rr

���1 � r
�g�2

¼ Pe2u
�
� r

���1 þ Pe2u
�
� r

���2 þ Pe2u
�
� r

�g�2 � ��rr
���2 � r

�g�2

� ��rr
�g�2 � r

�g�2

ð70Þ

The corresponding scaled boundary conditions are

@g�2
@r�

¼ 0; r� ¼ 1 ð71aÞ

g�2 ¼ ���2; r� ¼ 1=� ð71bÞ

where Pej ¼ UEa=Dj are the electric Peclet numbers for ionic species j, UE ¼ ��2
a=�a being

the characteristic velocity. Note that UE is the electrophoretic velocity based on
Smoluchowski’s theory if an electric field of magnitude �a=a is applied. The electrostatic
force exerted on the particle can be calculated by FEz ¼

Ð Ð
S ð�r�ÞdA, where  is the

surface charge density and is related to �1 by Gauss’s theorem. In spherical co-ordinates
we have
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FEz ¼ 2
��2
a

ð

0

@��1
@r�

� �
r�¼1

@ ��1 þ �
�
2ð Þ

@r�
cos � �

1

r�
@ ��1 þ �

�
2ð Þ

@�
sin �

� �
r�¼1

r�2 sin �d� ð72Þ

For convenience, Eq. (69) is rewritten as

FEz ¼ 2
�2
aK

�KE ð73Þ

where E�KE is the definite integral in Eq. (72).
We define  =UEa

2 as the scaled stream function. The space charge density can be
expressed by � ¼ �0�

� with

�0 ¼ ��2 �a
ð1 þ �Þ�r

ð74Þ

�� ¼ n�1 � n�2 ð75Þ

It can be shown that the scaled form of Eq. [55] is

E�4 �
¼ �

ð�aÞ2

ð1 þ �Þ

@g�1
@r�

n�1 þ
@g�2
@r�

�n�2

� �
@��

@�
�

@g�1
@�

n�1 þ
@g�2
@�
�n�2

� �
@��

@r�

� �
sin � ð76Þ

The corresponding scaled boundary conditions are

 �
¼ �

1

2
U�r�2 sin �;

@ �

@r�
¼ �U�r� sin2 �; r� ¼ 1 ð76aÞ

 �
¼
@ �

@r�
¼ 0; r ¼ 1=� ð76bÞ

Where U�
¼ U=UE is the magnitude of the scaled terminal velocity of the particle.

According to Happel and Brenner [56], the drag force acting on the particle surface
in the z direction can be evaluated by

FDz ¼ �


ð

0

r4 sin3 �
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r2 sin2 �

 !
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In terms of scaled variables, we have

FDz ¼ 
��2
a
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0
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where

U�KDf ¼

ð

0

r�4 sin3 �
@

@r�
E�2

r�2
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sin2 �

 !
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d� ð79aÞ
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ð

0

r�2 sin2 � n�1 � n�2ð Þ
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r�¼1

d� ð79bÞ
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The mobility of the particle can be calculated on the basis that the net force exerted
on it vanishes at the steady state. We have FDz þ FEz ¼ 0, FDz and FEz being the drag force
and the electric force, respectively. Equations (73) and (78) yield:

U�
m ¼

�U

��aE
¼

U�

E�
¼

ð�aÞ2KDe=ð1 þ �Þ�r
� �

� 2KE

KDf

ð80Þ

Note that since both KEKDe and KDf in this expression are functions of the applied field
and the scaled terminal velocity of the particle, the estimation of U�

m involves an iterative
procedure. For a specified scaled electric field E�, and initial guess for U�, U�

i , is assumed
which is used to calculate KE by Eq. (73) and KDf and KDe by Eq. (79). Equation (80) is
then used to calculate the value of U� in the next stage, U�

iþ1, by Eq. (80). This procedure is
continued until a convergent U� is obtained.

If the applied electrical field is low, the ion density, the electrical field, and the flow
field are only slighted distorted. In this case the nonlinear electrokinetic equations can be
approximated by the corresponding linearized forms. It can be shown that

r
�2��1 ¼ �

1
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According to O’Brien and White [7], the problem described by Eqs (81)–(87) can be
decomposed in two problems. In the first problem the particle moves with a uniform
velocity U with no applied field. We have

u�r ¼ U� cos �; r� ¼ 1 ð88aÞ

u�� ¼ �U� sin �; r� ¼ 1 ð88bÞ

@��2
@r

¼ 0; r� ¼ 1=� ð88cÞ

In the second problem the particle is held fixed in an applied electric field E, and the
nonslip condition is assumed at the cavity surface. We have

u�r ¼ u�� ¼ 0; r� ¼ 1 ð89aÞ

@��2
@r

¼ �E� cos �; r� ¼ 1=� ð89bÞ
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As a result, the force required to move the particle with uniform U� in problem 1, f1, is
proportional to U�. Similarly, the force exerted on the particle in problem 2, f2, is propor-
tional to E�. The fact that the sum of forces acting on the particle vanishes leads to
U�

m ¼ f2=f1.

C. Concentrated Dispersions

Let us consider the case of a concentrated colloidal dispersion [14]. Referring to Fig. 4, the
cell model of Kuwabara [54] introduced in Section III is adopted. Here, the assumptions
and the parameters used are the same as those of Section IV.B, except for the boundary
conditions. For illustration, the linearized problem of Section IV is considered. The gov-
erning equations can be expressed by Eqs (81)–(87), and the corresponding boundary
conditions are

��1 ¼; r� ¼ 1 ð90aÞ

d��1
dr�

¼ 0; r� ¼ 1=� ð90bÞ

@��2
@r

¼ 0; r� ¼ 1 ð91aÞ

@��2
@r

¼ �E�
z cos �; r� ¼ 1=� ð91bÞ
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FIG. 4 The cell model of Kuwabara [54] used to simulate a concentrated spherical dispersion where

a is the radius of a particle and b is a spherical shell of thickness (b� a). E and U are, respectively,
the applied electric field and the velocity of fluid.
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Note that the boundary conditions for ��2 and  � are different from those for the case of a
sphere in a spherical cavity discussed in Section IV.B. To take into account the effect of
double-layer overlapping, and the fact that a unit cell as a whole is electroneutral, we must
have d��1=dr

�
¼ 0 at the virtual surface (r� ¼ 1=�Þ. For flow field, the vorticity vanishes at

the virtual surface, that is, r 
 v!¼ 0. In terms of the stream function we have

1

r�
d2

dr�2
�

2

r�3

" #
 ¼ 0

Following the treatment introduced in Section IV.B, the mobility can be evaluated on the
basis of a force balance.

D. Porous Entity

Let us consider the case of a spherical particle in an infinite fluid. The former comprises a
rigid core of radius a and an ion-penetrable surface layer of thickness d. The particle
moves at a constant velocity U as a response to an applied electric field E. Following
an approach similar to that presented in Section IV.B, and taking the nature of the surface
layer into account, the governing equations for the liquid phase in scaled forms are
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Similarly, the governing equations for the surface layer in scaled forms are
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In these expressions q� denotes the scaled fixed charge distribution, and �1 and �2 are
modified terms, which reflect the difference between the diffusivity of the surface layer and
that of the liquid phase. Solving the above equations subject to the assigned boundary
conditions yields the spatial variations in the electric field and flow field. The mobility of a
particle can then be calculated on the basis of a force balance similar to that introduced in
Section IV.B.

NOTATION

a radius of a particle (m)
b radius of spherical cavity (m)
d thickness of surface layer (m)
D diffusivity of ions (m2=s)
e elementary charge (1:6 
 10�19 coul)
E applied electric field (volt/m)
E magnitude of E (volt/m)
f molar flux of ions (mol/m2/s)
g potential function for the concentration of electrolytes (volt)
kB Boltzmann constant (1:38 
 10�23 J=K)
n molar density of ions (mol/m3)
p pressure (N=m2)
r r co-ordinate of spherical co-ordinates
t time (s)
U terminal velocity (m/s)
U magnitude of U (m/s)
v velocity of U (m/s)
x; y; z Cartesian co-ordinates
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Greek Letters

� ¼ �z2=z1

	 drag coefficient
� permeability (Coul/volt � mÞ

� zeta potential (volt)
� viscosity of fluid (kg=m � s)
� � co-ordinate of spherical co-ordinates
� inverse Debye length (1/m)
� space charge density in liquid phase (coul/m3)
 surface charge density (coul/m2)
� electric potential (volt)
� a correction factor for diffusivity
 stream function

Symbols

r gradient operator
r

2 Laplace operator
r� divergence operator
E2

¼ @
@r2 þ

sin �
r2

@
@�

1
sin �

@
@�

� �
E4

¼ E2E2

Superscripts

� scaled quantity

Subscripts

0 equilibrium state
1 cations
2 anions
j ion species
m mobility
r r co-ordinate
� � co-ordinate
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I. INTRODUCTION

Most substances acquire a surface electric charge when brought into contact with a polar,
normally aqueous medium. The underlying charging mechanisms, leading to the forma-
tion of an electrical double layer, are dissociation, ion adsorption, and ion dissolution.
One of the electrokinetic phenomena which arises when attempts are made to shear off the
mobile part of the electrical double layer from a charged surface is the movement of a
charged particle surface relative to stationary liquid by an applied electric field (particle
electrophoresis). The mobility of a particle under the influence of an electric field appears
to depend entirely on the nature of the particle surface, and is independent of the size or
the nature of the particle itself. Reuss may be considered to have provided the first
demonstration of electrophoretic phenomena in 1809 [1]

Particle electrophoresis has an important practical applicability for the characteriza-
tion and control of the surface behavior of particles in fields such as colloid and polymer
chemistry, biotechnology, and biological applications. Thus, considerable efforts have
been undertaken to develop and improve this surface characterization technique. A
remarkable advance in particle electrophoresis was the electrophoretic fingerprinting
introduced by Marlow and coworkers [2–16]. The electrophoretic mobility has been
shown to be a function of the measurable quantities pH and specific conductance of the
medium [17, 18]. Thus, the electrophoretic fingerprint is a three-dimensional diagram of
these experimental data which can be used to characterize an unknown system of particles
or to explore the nature of the electrochemical surface.

However, the concept of zeta potential, developed for smooth surfaces, was often in
contradiction to the behavior of complex (real) surfaces, for which reason it was improved
experimentally as well as theoretically. For a comprehensive electrophoretic analysis of
‘‘hairy’’ layers, local charge density isotherms have been combined with hydrodynamic
flow penetration into the layer to provide an iterative numerical procedure for the calcula-
tion of the electrophoretic mobility as a function of pH and salt concentration based on
the linearized Poisson–Boltzmann equation [19]. The consideration of highly charged
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surfaces led to the development of a numerical procedure providing a solution to the
nonlinear electrostatic problem including dissociation, adsorption, and association [20].
This procedure makes it possible to fit the experimental fingerprint data with a theoretical
fingerprint calculated by variation of a number of physiochemical parameters.

Another way to improve the analysis of electrophoresis data is the electrophoretic
multiparameter analysis of cells and particles which is the simultaneous measurement and
combination of cell (particle) characterizing parameters such as electrophoretic mobility,
size, density (sedimentation), and shape [21]. The final data are represented as histograms
and two- or three-dimensional (2D or 3D) plots or compared by using statistical analysis.
This method can be used to characterize complex processes on surfaces and to detect small
differences between particles or cells including pathological changes in biomedical and
clinical research.

The focus of this chapter is to demonstrate the usefulness of electrophoretic finger-
printing and multiparameter analysis in analyzing biological and nonbiological surfaces.
The presented work covers the theoretical background as well as experimental aspects and
applications.

II. INSTRUMENTATION

Owing to the important practical applicability of particle electrophoresis many attempts
have been done to improve electrophoretic devices. In the last years it became clear that
the comprehensive analysis and prediction of reactions on cell and particle surfaces and
the detection of small differences between normal and pathological cells require a modern
electrophoretic instrumentation capable of measuring several parameters simultaneously
and processing a large number of data. Most commercially available electrophoretic
devices have these properties to a high degree.

One of the modern devices with a very high accuracy is the electrophor (Fig. 1). This
apparatus, which has been described in detail elsewhere [22], relies on the conception of
single-cell electrophoresis and should serve here as typical for a modern instrument mea-
suring several parameters simultaneously. Essentially, the observation of particles in the
electrophoresis chamber is realized with a microscope and a video camera. A personal
computer with a frame grabber tracks each particle in the video image on-line. A feature
extraction determines the evident parameters for the particles, such as size and co-ordi-
nates of the center of mass. From these data, the tracing procedure calculates the whole set
of parameters for each particle. The on-line measurement gives the following parameters:
(1) electrophoretic mobility, (2) sedimentation velocity (density), (3) particle size, (4)
intensity, and (5) shape.

A set of parameters for the tracking procedure (e.g., a size range) defines which
particles will be considered in the measurement. This allows one to select cells from a
cell mixture and to eliminate the influence of dirt and particles which are out of focus. The
particle diameter range extends from some 1 nm (darkfield illumination) up to 50�m. This
is optimal for biological, medical, and biophysical purposes. The construction of the
apparatus allows use of the spectrum of available microscopic methods, e.g., darkfield,
phase contrast, and fluorescence. This minimizes the preparation procedure for the par-
ticles and, thus, irreversible changes to the particle surface by the preparation. The elec-
trophoretic chamber, which has a flat profile, and the stationary layer at the center, are
separated from the electrodes by a semipermeable membrane. Separate electrolyte flow
circuits at both platinum electrodes protect particles from electrolysis products. The tem-
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perature of the electrophoretic chamber, and of the pH-electrode and conductivity cell, is
stabilized to exclude the influence of changing viscosity on the electrophoretic mobility of
particles. Automatic sample injection and sample movement between cycles of the electro-
phoretic measurement simplify the handling and assure the tracking of different cells at
each cycle for the calculation of mean mobility values and mobility distributions.

The apparatus allows one simultaneously to measure pH and specific conductance
which strongly influence the particle mobility and surface charge. This and the automatic
titration allow the measurement of the pH and/or conductance dependence of the surface
charge (electrophoretic fingerprints).

From the measurements one can save different data for further use: (1) snapshots
from the microscopic image of the particles, (2) a file with the complete data set (11
parameters) of each measured particle for statistical calculations, comparison and plotting
(MES file), and (3) in the case of automated titration, a file with mean values of the particle
parameters at each titration step (TIT file).

A program for statistical calculations on MES files allows one to: (1) generate and
statistically compare histograms of all measured parameters, (2) calculate mean values and
standard deviation, (3) compare mean values using the t-test, (4) generate different types
of 2D and 3D plots, (5) compare different classes of measurements (variance analysis),
(6) calculate a density coefficient from sedimentation and size, and (7) calculate the portion
of different populations in a histogram.
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FIG. 1 Schematic representation of the Electrophor Electrophoretic Analyzer: (1) microscope,
video camera, and electrophoresis system; (2) computer; and (3) automated titration system.



III. ELECTROPHORETIC FINGERPRINTING

A. Introduction

The zeta potential and its directly measured quantity, electrophoretic mobility, have been
widely used as a characterizing parameter in colloid science. The idea of representing the
electrophoretic mobility of colloidal particles as function of pH and the logarithm of the
conductance was developed at Pen Kem, Inc., and first applied to latex surfaces at the
University of Massachusetts by Marlow and coworkers [2–5]. The term ‘‘electrophoretic
fingerprinting’’ was coined in the first journal publication of the method [8]. The electro-
phoretic fingerprinting is based on a theoretical point of view, since all theories that treat
the charging of colloidal surfaces in aqueous medium have as variables potential, conduc-
tivity, and pH (when hydrogen ions and hydroxyl ions are potential determining) [17, 18].

The electrophoretic mobility may be represented as a function of two state variables:
the pH and the p�, which is the negative logarithm of the specific conductance. The
representation of electrophoretic mobility as a function of pH and p� is called ‘‘electro-
phoretic topography’’ and yields a 3D template or ‘‘fingerprint’’ which is the correspond-
ing isomobility contour plot. This is the definition by Marlow et al. [2–5]. In the following
we define the electrophoretic fingerprint as the 3D representation of the mean electro-
phoretic mobility of particles versus pH and conductivity. The first electrophoretic finger-
prints were measured by Marlow and coworkers [2, 4, 5] using the Pen Kem System 3000
Automated electrokinetics analyzer which has been described elsewhere [23, 24]. The
colloid was sampled automatically and the electrophoretic mobility, pH, and conductivity
were measured. The sample was automatically dosed with the appropriate acid or base
from a digital buret by using back and forth titration. The mobility data were represented
as a 3D plot, where pH and conductivity represented the independent variables and
mobility the dependent variable, giving a third space axis. For a fingerprint, typically
100–400 individual spatial points were used. The data were first gridded to produce
regularly spaced data in the x–y plane required for contour mapping and 3D display.
The gridding procedure used Kringing, a technique that utilizes a regional variable theory
and assumes an underlying linear variogram [25]. The gridded data were then smoothed by
using a cubic spline. Some studies of the dependence of the fingerprint pattern on the
number and distribution of experimental points have been carried out [10]. It became clear
that of the order of 70 data points are required to produce meaningful isomobility contour
plots. However, a much larger number would be preferable for defining the finer details of
these plots. We have used a similar procedure for data plotting [21]. Electrophoretic
titration data, measured in solutions with different sodium chloride concentrations, are
not regularly distributed in the pH–conductivity plane. Therefore, values for an equally
spaced grid have been calculated from the measured data using an inversed distance
method followed by splining. The experimental fingerprints can be represented in a system
of pH–conductivity–electrophoretic mobility or pH–inverse Debye radius–apparent
charge co-ordinates. The procedure mentioned above is important for making fingerprints
comparable, presenting the data as 3D plots or 2D isomobility contour plots and calculat-
ing gradients and differences between fingerprints.

In the course of application the electrophoretic fingerprint was shown to be a char-
acteristic property of a system of charged colloidal particles which may be used to char-
acterize an unknown system of particles or to explore the nature of the electrochemical
surface by comparison with theoretical models. The electrophoretic fingerprint seems to be
a characteristic of the surface electrical state of a system. Fingerprints for different systems
are quite different and should be reproducible in different laboratories.
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Electrophoretic fingerprints have been used as a sensitive probe of the surface elec-
trochemical state of particle surfaces and a measure of colloid stability. However, the
fingerprint technique has also been applied to biological problems. The idea of detecting
pathological changes in human body fluids in contact with colloidal indicator particles was
conceived at the University of Rostock in 1987 [26]. Clinical studies have revealed that the
electrophoretic mobility of indicator colloids can be used to diagnose and follow the
treatment of disorders such a cystic fibrosis, fetal lung maturity, meningitis, and respira-
tory distress syndrome in newborns. The disease-induced changes in body fluids are man-
ifest by a shift, relative to healthy persons, in the electrophoretic mobility of indicator
particles that have been contacted with the body fluid. Interestingly, it has been found that
different batches of the same type of particles may or may not respond in this simple test.
The objective of the collaboration with Marlow et al. [8] was to describe the differences in
surface chemistry between responsive and unresponsive polystyrene particles and thus to
demonstrate the usefulness of electrophoretic fingerprinting in analyzing biological active
versus nonactive surfaces. From the electrophoretic isomobility contour plots cuts have
been taken at true constant conductivity and pH, for comparison with theoretical calcula-
tions. It has been shown that the unresponsive particles had a surface which could be
described by a single acid site dissociation model [17, 18], the acid site being characterized
by a pK similar to that of carboxylic acid. The surface charge density was low and there
was no evidence of more than one type of acidic group, nor was there evidence to suggest
an expandable layer at the surface [3–5]. This type of surface had no isoelectric point but
approached a zero mobility at low pH. There was evidence provided that Naþ and Cl�

adsorption does not occur at a pH of 7.4 and that specific adsorption of cations occurs,
but only at low pH values.

In contrast, the polystyrene latex particles, responsive to body fluid, had a surface
which could be described by a two-site dissociation model [8, 17, 18]. At low ionic strength
the responsive particles showed characteristics of an amphoteric surface, the surface group
being more than likely hydroxyl. Such a group can be easily produced through hydrolysis
of sulfate groups. With an increased conductivity this surface undergoes significant uptake
of Cl� ions. There was also no evidence to suggest that the responsive polystyrene particles
had an expandable surface. Summarizing, one can conclude that the unresponsive particles
had predominantly negative electron-donor sites whereas the responsive microspheres had
both negative donor sites, positive acceptor sites, and, in addition, sites containing
adsorbed Cl� ions. These studies have clearly shown that surface chemistry plays a key
role in the biological activity of indicator particles and that electrophoretic fingerprinting
is a powerful method for characterizing biologically active and nonactive surfaces.

Later, some attempts have been made to explore the nature of the electrochemical
surface by comparison with theoretical models [12]. Electrokinetic data on polymer col-
loids can only be quantitatively explained by using models involving drastically different
physical interpretations, e.g., anomalous surface conductance or ion mobility of a bound
layer of ions within a shear plane [27–29], expansion or contraction of surface layers under
changing electrochemical stresses [12, 29, 30], and variation in surface charge density
through preferential ion adsorption [12, 27–29, 31]. It has been demonstrated how elec-
trophoretic fingerprinting can sort out which of these phenomena is occurring for a model
polymer colloid in a given electrochemical state. Furthermore, it was shown that discre-
pancies between zeta potential calculated from electrophoretic mobility measurements and
relatively low-frequency conductivity under similar thermodynamic conditions can be
understood by making electrophoretic fingerprints. The surfaces were fingerprinted by
laser Doppler electrophoresis. The electrophoretic mobilities were calculated using a single
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acid dissociation model and the theoretical fingerprints fitted to the experimental data.
These studies have revealed that there are several mechanisms operative concerning the
surface layers structures and accompanying double layer of the polymer colloid investi-
gated, which have different degrees of significance under different electrochemical states.
They include electrophoretic relaxation, shear plane expansion, and conductance within
the shear plane. It has been demonstrated how the electrophoretic fingerprinting can be
used as an ‘‘in situ surface analysis’’ tool and can sort out the electrochemical conditions
under which different mechanisms controlling the chemistry and structure of the surface
and accompanying double layer are operative.

Later, Prescott et al. [16] have reported on hydrodynamic fingerprinting where the
hydrodynamic fingerprint was the isothermal contour diagram of the hydrodynamic size
as a function of pH and conductance. It was shown that the hydrodynamic fingerprint,
like the electrophoretic fingerprint, is a characteristic pattern of a particular colloidal
system.

Paulke et al. [32] have reported on electrophoretic fingerprinting of latex particles
with divergent characteristics such as charge, surface morphology, and functional groups.
The surface of these microspheres was more complex than the colloids investigated by
Marlow et al. [8] The fingerprints revealed two types of latex particles: (1) the electro-
phoretic mobilities depend on the conductivity of the medium, and the influence of pH is
negligible, and (2) the electrophoretic mobility depends strongly on pH, and the influence
of conductivity is slight. The first group concerns polystyrene particles with hydroxyl as
well as ammonium and amidinium groups and polymethacrylate particles with hydroxyl
groups, and the second group polystyrene particles with the combination of sulfate/hydro-
xyl groups and ammonium/hydroxyl groups on the surface. The electrophoretic behavior
of these two types of latex particles has been discussed using independent charge density
data.

B. Smooth Surfaces

For a better characterization of dissociation and adsorption processes on particle surfaces,
the pK values of surface chemical groups and their concentration have been calculated by
use of the electrophoretic fingerprint [22]. Briefly, the corresponding program uses a model
of a smooth surface with charges originating from the dissociable surface group, consider-
ing monovalent ions from the NaOH/HCl electrolyte. For large particles, the zeta poten-
tial, �, may be calculated from the electrophoretic mobility, �, by means of the
Smoluchovsky equation:

� ¼
��

�r�0
ð1Þ

where �r and �0 are the relative and absolute dielectric permeability, respectively, and � is
the dynamic viscosity of the solvent. For smooth surfaces the zeta potential does not differ
essentially from the electrostatic surface potential and the surface charge density � can be
calculated by using the Gouy–Chapman equation:

� ¼
2�r�0�kT

�0
sinh

e0�

2kT
ð2Þ

when ��1 is the Debye screening radius:
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��1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r�0kT

e20NA

P
i z

2
i ci

s
ð3Þ

where e0 and NA are the electronic charge and the Avogadro number, respectively, ci and
zi are the concentration and valency of the ith ion species, and k and T are the Boltzmann
constant and absolute temperature, respectively.

The surface charge density, �, calculated from Eq. (2), results essentially from two
processes on the particle surface: (1) dissociation of surface chemical groups depending on
pH of the solution, and (2) adsorption of the four different ions (Naþ, Cl�, Hþ, OH�) on
to the surface. The surface charge density, �Dissi , which is caused by the dissociation of
molecules of the sort i, may be described by a chemical equilibrium:

�Dissi ¼
zic

Diss
i

1þ 10ziðpHSurf�pKiÞ
ð4Þ

where cDissi is the surface density of dissociable sites, pKi is the decadic logarithm of the
dissociation constant, and pHsurf is the pH on the particle surface. We have to consider
that the ion concentration near the surface csurf differs form the bulk concentration c0
owing to the surface potential. This is described by the Boltzmann relation:

csurf ¼ c0 exp �
ze0�

kT

� �
ð5Þ

The surface charge density �Adsi caused by ion adsorption at the surface can be described
by a Langmuir adsorption isotherm:

�Adsi ¼
zic

Ads
i

1þ c50i =c
surf
i

ð6Þ

where c50i is the ion concentration where half of the adsorption sites are occupied, cAdsi is
the total density of adsorption sites on the surface, and cSurfi is the concentration of sort i
at the surface given by Eq. (5). Using the measured electrophoretic mobility (zeta poten-
tial), pH, and the specific conductance, the equations may be now solved, resulting in the
parameters cDissi , pKi, c

Ads
i , and c50i .

The solution of the set of nonlinear equations is calculated with a modified Monte
Carlo algorithm which searches the global minimum of the deviation of measured data
from electrophoretic mobilities from pK and concentration values [33].

C. Nonideal Surfaces

The model mentioned above has been developed for smooth surfaces and provides reason-
able results for liposomes and simple latex microspheres. More complex surfaces such as
‘‘hairy surfaces’’ with a spatial charge distribution may lead to inaccurate results. This was
the starting point for our efforts to improve the theory of electrophoretic fingerprinting
which considers the hairy character of structured real surfaces [19, 20]. In the case of a
complex distribution of the fixed charges at the surface/solution interface the electrostatic
as well as hydrodynamic properties may significantly differ from those of smooth surfaces
where the fixed charges are assumed to be homogeneously distributed in a plane.
Therefore, theories have been developed to describe the case of a charged layer penetrable
for hydrodynamic flow [34–47] and applied to different classes of hairy layer particles such
as cells, polymer micelles, and microgels [48–52]. Although providing considerable infor-
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mation about electrostatic and hydrodynamic properties [42, 47, 53] electrokinetic meth-
ods are rarely used for studies of the structure and dynamics of charged surface layers.
This could be explained by the exclusion of the mechanism of fixed charge generation from
the hairy layer electrokinetic theories. For this reason we have added an iterative numer-
ical procedure to the charged layer electrophoretic concept which considers for the first
time the additional dependence of the surface change density on the electrical potential
provided by the shift in the local pH as compared to the bulk pH [19]. This shift depends
on the distance of the charge from the surface and represents the fundamental difference
from the classic case of charges distributed in a plane. The contribution of fixed surface
charges, located at different distances from the particle surface, to the electrophoretic
mobility is controlled by the Debye length. If one can assume a flow through the charged
layer, more deeply located fixed charges also determine the electrophoretic mobility. Thus,
varying the Debye length can provide information on the spatial distribution of the fixed
charges. Therefore, a variation in ionic strength as well as pH, which is realized in the
technique of electrophoretic fingerprinting, leads to a comprehensive interpretation of
electrophoretic results.

In the following we will describe briefly the feature of our attempt to combine local
charge density isotherms with the hydrodynamic flow penetration into the layer in order to
develop an iterative procedure to calculate the electrophoretic mobility as a function of pH
and salt concentration based on the linearized Poisson–Boltzmann equation. Details are
described elsewhere [19].

We consider a particle whose radius is much larger than the Debye length ��1. The
fixed surface charges are spatially distributed in a layer extending from the particle surface
toward the bulk solution. This layer is considered to be uniform in the tangential direction.
The thickness of the layer is assumed to be much smaller than the particle radius.
Perpendicular to the surface, arbitrary distribution functions of m dissociable groups
describe the potential spatial charge density of the dissociable sites 	mðxÞ. Here ,x denotes
a co-ordinate axis perpendicular to the surface with the origin located at the particle
surface. The m different dissociable sites are described by their respective pKm and zm
values; zm is þ1 for a proton being released or, respectively, �1 for a proton generating a
positively charged site by means of association. In the case of monovalent groups the
actual fixed charge density 	m produced by the mth group is given by

	m ¼
	mðxÞ

1þ 10
zm pKm � pH �

e0 ðxÞ
kT lnð10Þ

� � ð7Þ

Here,  ðxÞ denotes the electrical potential. A corresponding relationship could be used to
treat ion adsorption or association.  ðxÞ is given by the solution of the linearized Poisson–
Boltzmann equation:

 00
� �2 ¼ �

1

� �0

X
m

	mðxÞ

1þ 10
zm pKm � pH �

e0 ðxÞ
kT lnð10Þ

� � ¼ f ½x;  ðxÞ� ð8Þ

where � and �0 are the dielectric constant and the permittivity of a vacuum, respectively.
As we have shown previously [54], when the right-hand side of Eq. (8) does not

depend on  , an analytical solution is possible. This was given in terms of Green function
integrals over the net fixed charge density. This is not possible with Eq. (8) here. A further
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linearization of Eq. (8) is not meaningful, since this would lead to a linear differential
equation with variable but arbitrary coefficients. Therefore, an iterative numerical proce-
dure was executed, starting from the analytical solution of Eq. (8), but with

f x;  ðxÞ½ � ¼ �
1

� �0

X
m

	mðxÞ ð9Þ

The calculated intermediate electric potential distribution was used to find, successively,
the respective intermediate fixed charge density distributions.

We will now discuss some curves resulting from the theoretical considerations. The
first plot (Fig. 2) demonstrates the effective charge density of a particle covered with a
charged layer of different thickness as a function of pH and ionic strength. This is the
simple case of a spatial charge distribution of one single, negatively charged site, homo-
geneously distributed in the charged layer, and without flow penetration into the layer. In
case of a 5 nm layer thickness it has been found that the electrophoretic effective charge is
much less than the net surface charge density. The curves show that even the saturation
value of �eff , far from the pK , does not approach the theoretical limit for plane surface
charges (�0:022C=m2). As one can expect, the difference between the theoretical limit for
plane surface charges and the plateau values in the case of spatially distributed charges is
reduced when the layer thickness decreases compared to the Debye length (see curves for a
layer thickness of 0.5 nm). It becomes clear that the distribution of surface charges in a
layer is responsible for the decreased �eff with increasing ionic strength. The dependence of
�eff on ionic strength can be explained as follows. In the case of a short Debye length
compared to the layer thickness, most fixed charges are screened by counterions within the
layer and, consequently, do not contribute to the electrophoretic mobility, provided that
the flow does not penetrate into the charged layer.
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FIG. 2 Theoretical plot of the effective charge density �eff ¼ ��� of a particle covered with a
charged layer of different thicknesses as a function of pH and ionic strength. The spatial charge

density in the layer was �0:022Cm�2, pK ¼ 4. No flow inside the layer. (Reprinted with permission
from Ref. 19. Copyright 1996 American Chemical Society.)



Exploring the influence of a moderate flow penetration into the layer and the presence
of an additional, positively charged site, one finds an increase of the absolute value of �eff
compared to the situation where no flow occurs. This may be explained by a more effective
contribution from more deeply located fixed charges to the particle electrophoretic mobi-
lity. The point of zero �eff does not depend on ionic strength, which is attributed to the
underlying assumption of the identical, uniform distribution for both dissociable sites.

Another aspect can be drawn from Fig. 3 where the comparison of the effective
charge densities as a function of the ionic strength in the presence and absence of hydro-
dynamic flow penetration is shown. The increase of �eff mentioned above is more pro-
nounced for larger ionic strength, leading to a nontrivial, nonmonotonous dependence of
�eff on the Debye length.

Information about the fixed charge distribution can be obtained from the depen-
dence of the zero point of electrophoretic mobility on ionic strength (Fig. 4). For this
purpose a theoretical calculation of the effective charge density as a function of pH has
been carried out; instead of a homogeneous charge density distribution a linearly increas-
ing site density distribution function together with one decreasing toward the outer edge of
the hairy layer were assumed. From this graph we can conclude that (1) in this way the
plateau value of �eff far from the pK of the dominating group is modified and the charged
site, which increases toward the bulk, contributes more efficiently to �eff , and (2) this gives
rise to a dependence of the zero �eff point on ionic strength.

In Fig. 4 the point of zero mobility is plotted as a function of the salt concentration.
It clearly shows that a qualitatively different behavior of the zero point of mobility as a
function of salt concentration occurs when the charge distributions are reversed. The
influence of charging site distribution asymmetry is discussed in detail in Ref. 19, where
we also considered structural changes in the surface charge distribution, structural changes
in the surface charge distribution function, and the theoretical and experimental change in
�eff around the zero point of mobility.
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FIG. 3 Comparison of the effective charge densities as a function of the ionic strength expressed in

inverse Debye length in the absence and presence of hydrodynamic flow penetration. (Reprinted with
permission from Ref. 19. Copyright 1996 American Chemical Society.)



D. Application to Red Blood Cells

The above theoretical considerations have been compared to experimental electrophoretic
fingerprints of the often measured, but not fully understood, surface of human red blood
cells. The experimental plot of the effective charge density of erythrocytes as a function of
pH and ionic strength shows, down to pH 5, a negative electrophoretic mobility (sialic acid
and some carboxyl groups) whereas in the range pH 3–5 a charge reversal occurs, clearly
demonstrating the presence of positive groups (amino groups of the surface glycopro-
teins). A comparison of the fingerprints of normal erythrocytes, neuraminidase-treated
erythrocytes (removal of sialic acid sites), and glutaraldehyde-treated erythrocytes
(removal of the majority of positive sites) has revealed the following results. In the case
of neuraminidase-treated red blood cells the point of zero �eff has significantly shifted to
their pH, reflecting the increased relative contribution of positive charges to the net effect.
Furthermore, a gradual reversal of the order of the pH shift as a function of ionic strength
takes place. Obviously, the removal of negative charges occurs preferentially in the outer
regions of the charged layer. The theoretical curves reproduce the pH shift in the zero
point of mobility when the remaining positive charges are preferentially distributed to the
outer border of the layer, signifying the removal of sialic acid by neuraminidase predo-
minantly in the outer region of the glycocalyx. As in the case of control red blood cells, the
theoretical results are significantly lower than the experimental data at low pH. Obviously,
structural alterations to the surface layer and consequently a more condensed layer has to
be considered to explain this result [19].

In the case of glutaraldehyde-treated red blood cells it is clearly seen that the point of
zero �eff is strongly shifted to lower pH values. This point does not depend on ionic
strength, demonstrating that the different distribution functions of positive and negative
groups are responsible for the pH shift.
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FIG. 4 Zero mobility point as a function of ionic strength for the two cases of charge distribution.
Curves 1 and 2 have the positive charges preferentially located toward the bulk (outside) whereas in
curve 3 the negative charges increase toward the outside. In curve 2 a flow penetration depth of 1 nm

is additionally taken into account. (Reprinted with permission from Ref. 19. Copyright 1996
American Chemical Society.)



Summarizing, the results revealed that negative groups on the red blood cell surface
occur preferentially in the outer regions of the layer. To assume a penetration depth of 1
nm into the 3.5 nm thick hairy layer seems to be reasonable. Upon sialic acid removal,
alterations to the glycocalyx structure occur, resulting in possible changes in the fixed
charge distribution. One can conclude that intramolecular as well as intermolecular elec-
trostatic interactions are important for the structure of the hairy layer. No evidence for the
adsorption of small ions has been found. The comprehensive interpretation of theoretical
and experimental fingerprints in the case of human red blood cells on the basis of the
charged layer concept of electrophoresis provides an improved understanding of the elec-
trophoretic behavior of the erythrocyte surface, a weakly charged grafted polyelectrolyte
layer. The sensitivity of electrophoretic fingerprinting to the charged layer properties in the
short-nanometer range has been impressively demonstrated.

E. Highly Charged Surfaces

However, there are some restrictions of the theoretical approach based on the linearized
Poisson–Boltzmann equation, particularly at low ionic strength and highly charged sur-
faces. In the case of highly charged surfaces such as polyelectrolytes the equations
obtained with the linearization of the Poisson–Boltzmann equation do not describe com-
prehensively the electrophoretic fingerprint data because the influence of surface conduc-
tance has to be considered [55]. Additionally, one has to account for steric small-ion
exclusion and layer polarity.

These considerations led to the development of a numerical procedure providing the
solution of the nonlinear electrostatic problem including dissociation, adsorption, and
association [20]. This procedure enables us to fit the experimental fingerprint data with
a theoretical fingerprint calculated by variation of various physicochemical parameters
such as thickness of the charged layer, depth of hydrodynamic flow, association constants
of ions, surface conductivity, charge distribution, dissociation constants of surface chemi-
cal groups, and dielectric permittivity. From this fitting one can obtain information about
the real structure of the charged hairy layer. The procedure has been applied to the
consecutive layer-by-layer adsorption of polyelectrolytes on colloidal charged latex parti-
cles. In the following we will describe the characteristics of this theoretical approach.
Details are described in Ref. 20.

It is now well accepted that the electrophoretic mobility � of a particle with a hairy
surface layer cannot be described by means of the Helmholtz–Smoluchowsky equation
valid only for smooth surfaces with fixed charges arranged in a plane.

The Smoluchovsky equation essentially provides the definition of the zeta potential
�. In the case of a smooth surface the zeta potential is the electric potential difference
between the plane of shear and infinity. In the absence of a well-defined plane of shear,
which is the case for particles covered with hairy layers, the definition of the zeta potential
is more complex. A new description of the electrophoretic properties of surfaces with hairy
layers is required.

To solve the problem of the electrophoretic mobility of a particle covered with a
charged hairy layer, we make use of Onsager’s law in order to replace the problem of
calculating the electrophoretic mobility by the calculation of the streaming current near a
hypothetical hairy surface in a rectangular chamber [56]. This approach has the advantage
of conveniently separating the hydrodynamic and the electrostatic part of the problem.
Indeed, the magnitude of the electrophoretic velocity of a particle is equal to the electro-
osmotic velocity of the flow at infinite distance from the particle surface. On the other
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hand, the electro-osmotic velocity coefficient represents one of the cross coefficients on
Onsager’s flow matrix, L12

J ¼ L11�pþ L12� 

I ¼ L21�pþ L22� 
ð10Þ

where L11 has the meaning of the hydrodynamic conductance of the hypothetic rectangular
chamber, L21 is the streaming current coefficient, and L22 represents the electric conduc-
tance of the system;�p is the hydrodynamic pressure difference, and J and I are charge and
volume flow, respectively. Onsager’s law L12 ¼ L21 proves that the streaming current is,
except for a normalizing coefficient, identical to the electrophoretic mobility.

The electrostatic part consists of calculating the electrical potential  ðxÞ as a func-
tion of distance from the particle surface; x denotes the co-ordinate perpendicular to the
interface with the origin placed at the particle surface. Hydrodynamics provide the con-
vective flow velocity ðxÞ in the hypothetical rectangular chamber driven by the pressure
difference �p applied along the chamber [57]. The streaming current is given by the flow of
ions transported by a convective flow parallel to the surface under study. Thus, the
streaming current per unit width of the chamber is equal to

I ¼

ð1
0

	mobðxÞnyðxÞdx ð11Þ

where 	mobðxÞ is the equilibrium charge density given by the Boltzmann distribution of
mobile ions according to the electric potential profile  ðxÞ. The electrophoretic mobility is
obtained by the streaming current divided by the pressure gradient and the chamber width.

Summarizing, Eqs (10)–(12) will not be linearized but solved numerically. Having
finally obtained the electrical potential  ðxÞ, the spatial charge density due to the distribu-
tion of the electrolyte ions inside the layer is given by

	mobðxÞ ¼ NAe0
X
i

ciziXie
�

zi e0 ðxÞ

kT ð12Þ

where NA, e0, ci, zi, Xi, k, and T are Avogadro’s constant, elementary charge, concentra-
tion of the ith ionic species of the electrolyte, charge number, steric exclusion factor with
Xi ¼ 1 for x > �, Boltzmann constant, and absolute temperature. This charge density
provides a contribution to the surface conductivity.

If thick and highly charged layers are considered, it becomes necessary to correct the
mobility for surface conductivity. The surface conductivity consists of the migrative and
convective part. The migration contribution, Km, is given by the excess spatial density of
the mobile ions in the double layer compared to the bulk:

Km ¼ NA

X
i

zie0ci

ð1
0

uiXie
�

zi e0 ðxÞ

kT � ubulki


 �
dx ð13Þ

Here, ui denotes the mobility of the ith ionic species. As a first approximation we shall
equate the ionic mobility within the layer to its bulk value, ubulk. The convective part of the
surface conductivity Kc is given by

Kc ¼
1

E

ð1
0

ðxÞ	mobðxÞdx ð14Þ

Here, ðxÞ is the electro-osmotic flow velocity and is given by the solution of

Electrophoresis of Cells and Particles 705



ðxÞ 00 � a2ðxÞ ¼ E	mobðxÞ ð15Þ

where a�1 is the Brinkman length, with the boundary conditions:

ð0Þ ¼ 0

 0ð�Þ ¼ continuous

ð1Þ ¼ bounded

The mobility is corrected for the surface conductivity as follows:

�corr ¼ �
1þRelð1��Þ

1þ2
1

1þRel 1þ21

" #
ð16Þ

where Rel is the dimensionless criterion:

Rel ¼
2Ks

K d
ð17Þ

where Ks, K , and d are surface conductivity, bulk conductivity, and particle diameter,
respectively;� is a dimensionless coefficient describing the influence of the Rel criterion on
the mobility. It expresses the ratio between the noncorrected mobility calculated by means
of using the counterion excess charge density instead of the total mobile ion charge
density, over the conventional noncorrected particle mobility; u1 and u2 are counterion
and coion mobility, respectively. Equation (17) is an extension of the Henry–Booth con-
cept [58, 59] of the correction of the electrophoretic mobility for surface conduction.

This theoretical approach results in new aspects introduced by considering the non-
linearity of the Poisson–Boltzmann equation. In Fig. 5 the influence of this nonlinearity on
the apparent charge density and, in addition, the effect of the surface conductivity correc-
tion [Eq. (17)] is demonstrated. The linear approximation is compared to the nonlinear
solution which is derived with and without the correction for the surface conductivity.
Under conditions of high dissociation the linear solution yields a much larger apparent
charge density of the particle than the nonlinear one. The extremum of the linear solution
in the region of low concentrations is a result of an increasingly large shift in the apparent
pK due to unrealistically high electrical potentials. The extremum of the apparent charge
density in the case of the nonlinear solution is basically a result of the increasing impor-
tance of nonlinearity toward low ionic strength. The correction for the surface conductiv-
ity at low ionic strength is quite important and reduces the apparent charge density at 1
mM by almost 50%. This gives rise to a maximum of the mobility itself. At a smaller
degree of dissociation at pH ¼ pK the surface conductivity correction is less pronounced.
Here, only the nonlinearity is of some importance, yield a reduction the mobility of the
order of 15–30%. This effect can be partly explained by the influence of the potential.
Equally important is the indirect effect of nonlinearity on the actual charge density. At
pH ¼ pK the effect of the electric potential on the state of dissociation is most pronounced
because the slope of the titration curve is at minimum at pH ¼ pK . For this reason
relatively small changes in the potential results in a pronounced effect upon the group
dissociation equilibrium. To summarize Fig. 5, it can be concluded that nonlinearity as
well as surface conductivity provide an important influence on the mobility (apparent
charge density) of particles with charged hairy layers.

The theoretical plot of the electrophoretic apparent charge density as a function of
pH for a particle covered with a charged layer revealed a small but well-pronounced shift
in the half-saturation value of the mobility toward higher pH with decreasing ionic
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strength [20]. This was caused by the dependence of the apparent pH on the electrical
potential. Furthermore, concerning the effect of the hydrodynamic flow inside the hairy
layer on the apparent charge density, it was shown that a characteristic flow penetration
depth of a few angstroms results in a large effect on the particle mobility.

A further theoretical plot has demonstrated the effect of steric mobile ion exclusion
on the apparent charge density as a function of ionic strength, which was not considered
before in the context of electrophoresis. The complete or gradual exclusion of a cation, for
instance, results in a remarkable increase in the apparent charge density.

In order to provide a theoretically based description of the polyion-covered latex
particle surface we compared theoretical with experimental fingerprints. For this reason a
number of physicochemically based assumptions including molecular considerations have
been made to achieve a good agreement between theory and experiment. However, one
cannot expect a good fit over the whole range of fingerprints because the structure of the
charged layer most probably changes with pH and conductivity.

In the following we will shortly discuss two typical 3D graphs representing the
comparison between the theoretical electrophoretic fingerprint and the corresponding
experimental data. The objects of investigation are consecutively adsorbed poly(allylamine
hydrochloride) (PAH) and poly(styrenesulfonate) (PSS) layers on polystyrene latex beads.
Figure 6 shows the comparison of the experimental fingerprint of the fist adsorbed PAH
layer (filled circles) with the corresponding theoretical fingerprint (grid). There is a good
coincidence between experiment and theory (except at low pH) if a 1 nm thick adsorbed
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FIG. 5 Effect of nonlinearity and surface conductivity on the apparent charge density as a function

of ionic strength. Layer parameters were as follows: thickness 4 nm; density of charged sites
0:03Cm�2; pK ¼ 5; zero flow penetration; relative permittivity 80. Particle radius 1�m. No steric
exclusion effects and no surface conductivity correction. (Reprinted with permission from Ref. 20.

Copyright 1997 American Chemical Society.)



hairy layer is assumed, which presumably consists of PAH. The divergence at low pH that
has been observed at any ionic strength can be explained considering that the underneath
latex charges (carboxyl groups) are not dissociated and thus release some PAH charges
which have been immobilized by ion-pair formation with the latex charged groups at high
pH. The PAH largely replaces the adsorbed cations from the latex surface; the PAH layer
is too thin to be capable of hydrodynamically screening the latex surface charges. About
one-third of the PAH charges form ion pairs with the polystyrene carboxyl groups and
become electrophoretically active only after protonation of these groups. The coverage of
the latex surface by adsorbed PAH seems to be probably not complete. Figure 7 demon-
strates the influence of the second consecutively adsorbed PAH layer. Again one observes
the characteristic release of some apparent extra charges at low pH, indicating the ion-pair
formation of approximately one-third of the polyion charges and again the fingerprint is
consistent with the assumption of 1 nm layer thickness. It is worth noting that the latex
charge forms a significant part of the electrophoretic effect charge concluded from the
broad pK dependence. We favor a picture of polymer-free spots at the surface which might
be too small in diameter to provide a possibility for further ion-pair formation between
polyanions and polycations, especially since the binding energy per ion pair is only of the
order of kT [60]. The interpretation of the fingerprint does not require interpenetration of
the charged polymer layers. Otherwise, it cannot be ruled out.
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FIG. 6 3D comparison in terms of apparent charge density between the theoretical fingerprint
(grid) and the experimental data of the PAH covered sulfate latex (filled circles). Parameters for
the theoretical surface: latex surface – charged sites, density 0:04Cm�2, pK ¼ 4:5, and density

0:05Cm�2, pK ¼ 6:5, homogeneous site distribution and no adsorption of ions are assumed;
PAH charges: density 0:03Cm�2, pK ¼ 9, and density 0:03Cm�2, pK ¼ 10, both distributions
homogeneous. PAH layer thickness 1 nm. Adsorption sites in the PAH layer, density 0:04Cm�2,

anion adsorption constant 100/M, homogeneous distribution. Flow penetration depth is 1.34 nm;
85% ion accessible volume within the layer; layer hairs 0.5 nm radius. (Reprinted with permission
from Ref. 20. Copyright 1997 American Chemical Society.)



Summarizing, each layer deposition is accompanied by charge overcompensation.
Not only the top layer but also the underneath layers and the naked latex surface con-
tribute to the particle mobility which can be interpreted as an incomplete coverage or a
polyelectrolyte interpenetration. The thickness of the top adsorbed hairy layer is of the
order of 1 nm. About one-third of the charged groups of the top layer forms ion pairs with
the underneath charges. Counterion adsorption to the charged groups of the top layer can
be observed. These conclusions regarding the consecutively adsorbed polyion layers on a
latex support underline the usefulness of electrophoretic fingerprinting.

The large number of unknown parameters in the procedure mentioned above may
produce a certain arbitrariness. However, the results are mostly satisfactory, particularly if
further molecular and structural information is available. We hope that the comprehensive
interpretation of electrophoretic fingerprints described here give rise to further applica-
tions of electrokinetics to hairy particles.

IV. ELECTROPHORETIC MULTIPARAMETER ANALYSIS

In the last years it became clear that many problems in research and practice cannot
be solved by simple electrophoretic investigations and that the additional, simultaneous
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FIG. 7 3D comparison in terms of apparent charge density between the theoretical fingerprint
(grid) an the experimental data on PAH–PSS–PAH covered sulfate latex. Parameters for the theo-
retical surface: latex surface same as in Fig. 6. First PAH layer has no charges. PSS charges: density

0:005Cm�2, pK ¼ 3:5, homogeneous distribution, layer thickness 1 nm. No adsorption to PSS.
Outermost PAH layer charges: density 0:02Cm�2, pK ¼ 9; density 0:02C=m2, pK ¼ 10, both dis-
tributions homogeneous. Layer thickness 1 nm. Anion adsorption sites in the outermost PAH layer:

density 0:05Cm�2, adsorption constant 100/M, homogeneous distribution. Flow penetration depth
is 1.34 nm; 85% ion accessible volume within the layer; layer hairs 0.5 nm radius. (Reprinted with
permission from Ref. 20. Copyright 1997 American Chemical Society.)



measurement of several particle and cell characterizing parameters such as size, density,
and shape are necessary to improve the interpretation of electrophoretic results.

The simultaneous measurement of several parameters characterizing the particle and
cell may be successful for the discrimination between normal and pathological cells, par-
ticularly in cases where conventional methods fail to work. Figure 8 shows typical graphs
of particle-characterizing parameters of human erythrocytes. The combination of the
measured parameters electrophoretic mobility, density (sedimentation), and size provides
2D graphs with distinct spots which are characterized by shape, localization, and standard
deviation. The corresponding 3D plot represents electrophoretic mobilities of the cells
versus cell size and density (Fig. 9).

Furthermore, electrophoretic fingerprints obtained by measuring the electrophore-
tic mobility of particles as a function of pH and the specific conductance can be practi-
cally used to detect very small differences and changes in surface properties. The aim of
the following examples is to demonstrate the usefulness of the multiparameter analysis
for the discrimination of particles and cells and for the detection of small changes on
surfaces.

A typical example for the detection of cellular alterations in the course of a disease is
shown in Fig. 10 a–c [21]. The figure demonstrates the simultaneous measurement of
electrophoretic mobility and size of individual cells in a cell mixture which was prepared
from the peritoneal dialysate of a patient in different stages of peritonitis. The cells were
independently identified using monoclonal antibodies. In the acute state, the electrophore-
tic mobility of macrophages is decreased as expected for activated cells [61]. Six weeks
after drug treatment a normalization of number and composition of cells was observed,
accompanied by an increased macrophage mobility.

Moreover, the sensitive measurement of the particle/cell density (via sedimentation
rate) using the electrophoretic multiparameter analysis is a simple alternative to time-
consuming standard methods. The density is an important parameter for cell character-
ization, particularly the restorage of granula, the organelle content, and heterogeneity of
circulating platelet populations. Density and volume/density relations play an important
but not completely understood role in hematological diseases with pathological platelet
populations [62]. The combination of density and surface charge, which is known to be
characteristic for blood cells, opens a powerful method in the diagnosis of hematological
diseases.

For the detection of structural alterations on surfaces one has to analyze exactly
where the changes in the 3D graph of an experimental electrophoretic fingerprint took
place. One possibility is the subtraction of the electrophoretic mobilities of two
measured fingerprints. Their difference was estimated by calculating the electrophoretic
mobilities in the same PH – p� (logarithm of the specific conductance) space, followed
by subtraction of the corresponding grid points. Differences below the noise range,
which was defined by reproducibility measurements of erythrocytes, have been
eliminated. Such differences in the case of two fingerprints representing human red
cell concentrates are shown in Fig. 11 [21]. Leucocyte-depleted red cell concentrates
are generally considered to be the standard product to administer to immunocomprised
patients [63]. Their advantages are the prevention of nonhemolytic febrile transfusion
reactions, reduction of alloimmunization, and prevention of cytomegalie virus transmis-
sion [64, 65]. The depletion of leucocytes by means of filtration of red cell concentrates
reduces the risk that the degradation of leucocytes during storage leads to the release
of leucocyte-associated virus particles and humoral factors.
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FIG. 8 Typical 2D graphs representing human erythrocytes: (a) electrophoretic mobility
(10�8 m2 s�1 V�1) versus density index (arbitrary units), (b) electrophoretic mobility versus size

(arbitrary units), and (c) density versus size. (From Ref. 22.)



To investigate the influence of filtration on the erythrocyte membrane, red cell con-
centrates were stored for five weeks after filtration and then compared with nonfiltered
batches using the electrophoretic fingerprint technique. The measured fingerprints showed
a considerable difference between filtered and nonfiltered cells one week after filtration.
This difference became smaller in the course of storage and disappeared nearly after
five weeks. This demonstrates a storage-dependent effect of filtration on the red cell
membrane [21].

In conclusion, the combination of several, simultaneously measured parameters such
as size, density, and shape with the electrophoretic mobility offers new potential fields of
application in nonbiological and biological research and clinical medicine. The 2D and 3D
graphs make it possible to detect small changes in small portions of cells.

V. CONCLUSIONS

Particle electrophoresis has become an increasingly effective method for characterizing the
surface electrostatic properties of colloidal particles and cells. An important step was the
introduction and theoretical treatment of electrophoretic fingerprinting. The measurement
of the electrophoretic mobility of a single particle under varying conditions (pH and
conductance of the medium) connected with a comprehensive analysis of experimental
fingerprints by using calculated fingerprints makes it possible to obtain a better insight
into charge-generating processes and their dynamics at particle surfaces and leads to more
information about the surface electrical structure. Using the simultaneous measurement
and combination of electrophoretic mobility with particle size, density, and shape one can
detect small differences between normal and pathological cells and thus can complete
diagnosis and prognosis of diseases.
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FIG. 9 3D graph of human erythrocytes. Electrophoretic mobility in 10�8 m2 s�1 V�1 (x axis)
versus size (y axis) and density index (z axis), both in arbitrary units. (From Ref. 22.)
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FIG. 10 Electrophoretic mobilities (10�8 m2 s�1 V�1) versus size (arbitrary units) of cells obtained
from the peritoneal dialysis solution of a patient in different stages of peritonitis: (a) acute state, (b) 2

weeks later, (c) 6 weeks later, 1 – erythrocytes; 2 – granulocytes, 3 – macrophages, 4 – lymphocytes.
(From Ref. 22.)
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FIG. 11 Difference between experimental fingerprints of filtered and nonfiltered red blood cells
after storage for 1 week (top) and 5 weeks (bottom). The difference between the electrophoretic

mobilities (EPM in 10�8 m2 s�1 V�1) is plotted versus pH and the decadic logarithm of conductivity
(in S/m). (From Ref. 21.)
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Electrophoresis of Polymer-coated Particles

KIMIKO MAKINO Science University of Tokyo, Tokyo, Japan

I. INTRODUCTION

Polymer coating produces a new surface on the original surface of the material. The surface
properties and structure change by this modification. That is, if the layer produced on the
surface by the modification is thick enough, the surface shows the properties of the polymer
layer used to coat. It is well known that PEGylation, i.e., modification with poly(ethyle-
neglycol), makes various polymer surfaces more hydrophilic [1, 2]. Therefore, PEGylation
using block copolymer, by surface immobilization or other methods, has been reported to
reduce the levels of cell adhesion and protein adsorption, the effects of which have been
applied to stealth liposomes and microspheres in the field of drug delivery systems. Such
changes in surface properties are especially observed in charge density originating from
various groups fixed in the surface area and in surface softness, which can be predicted by
electrokinetic measurements on polymer particles and from analysis of the data [3, 4].

Electrokinetic measurements on small particles give us information on the structure
of their surface layers. The properties of the surfaces are known to change markedly in the
direction of the depth from the surfaces, which is more obvious in the surfaces of the
smaller particles than of the larger ones, because the relative surface area is much larger in
the former. It is well known that the interfacial region between two phases has a finite
thickness and in this narrow region properties of the system change over microscopic
dimensions. Due to such changes of the properties, it is often observed that the charged
groups do not distribute uniformly in the surface layer. In particular, in microspheres
prepared by polymerization of aqueous monomer molecules proceedings in water/oil (w/o)
emulsion, the charged groups distribute nonuniformly in a single microsphere, as will be
discussed later. Also, the membrane of microcapsules prepared by an interfacial polymer-
ization method at the interface between the oil phase and water phase has an asymmetrical
structure in the normal direction to the membrane surface.

In this chapter, it will be discussed that the structure of the particles is dependent on the
particle size, that is, the smaller particles have higher surface charge density than larger ones,
if they are produced by the polymerization of monomers from the w/o emulsion process,
even though the initial monomer composition before polymerization is kept constant. This
phenomenon is especially observed in small systems and not in bulk polymerization. The
relationship between distribution of charged groups in microcapsule membranes and the
membrane swellability will also be discussed. The changes in polymer surface properties
produced by PEGylation of surfaces and the effects of PEGylation upon the interaction
between the polymer surface and biological cell surfaces will then be discussed.
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II. PREPARATION OF MONODISPERSE POLY(ACRYLAMIDE-CO -
ACRYLIC ACID) HYDROGEL MICROSPHERES BY MEMBRANE
EMULSIFICATION TECHNIQUE AND THEIR SIZE-DEPENDENT
SURFACE PROPERTIES

When microspheres are used as drug devices, their size and surface properties are primarily
important. Highly monodisperse microspheres of less than 1�m are applicable to the
targeting of drugs to various organs such as the lung, liver, kidney, and especially the
brain [5–8]. Since the pioneering work by Nakashima et al. [9] on the preparation of
monodisperse microspheres using SPG (Sirasu porous glass) membranes, various kinds
of monodisperse microspheres with a narrow size distribution have been developed [10–
13]. The electrical surface properties are also important when they are used as drug
devices, because the device surface interacts with various kinds of biological cell surfaces
carrying different electrical charges after the microspheres are administered and before
they reach the target organ [14–18]. For the same reasons, the softness and hydrophilicity
of the surfaces are also required for the microspheres used as drug devices. Hydrogels have
been considered to be useful as a material for drug devices, because of their high biocom-
patibility and softness [9–22]. In view of these points, we have prepared monodisperse
poly(acrylamide-co-acrylic acid) hydrogel microspheres with different polymer composi-
tions (0–10 mol% acrylic acid and 90–100 mol% acrylamide) and with different sizes from
w/o emulsion using SPG membranes of various pore sizes [23–25]. By measuring the
electrophoretic mobility of microspheres and by analyzing the data with an electrokinetic
theory for ‘‘soft’’ surfaces, it was found that the microsphere surface became more nega-
tively charged and softer by the addition of acrylic acid, as will be described later. It was
also suggested that the microspheres with smaller sizes have higher surface charge density
than those with larger sizes, although the microspheres were prepared from the solution
with the same monomer composition. From this, it is found that copolymerization of
acrylamide monomers and acrylic acid monomers does not proceed homogeneously within
a single microsphere. The density of polymer networks composed of both monomers is
higher in the core region than in the surface layer of the microspheres. The accumulation
of polymers in the core region of a microsphere explains the decrease in microsphere size
with the increase in acrylic acid concentration observed in smaller microspheres.

A. Preparation of Microspheres

Three kinds of monomer solutions containing different concentrations of acrylamide and
acrylic acid were prepared. The composition of the monomer solutions is shown in Table
1. The total monomer concentration was kept at 4.0 M in each solution. A 15-ml portion
of the aqueous monomer solution was dispersed in an oil phase composed of 500 ml of
cyclohexane containing 0.06% (w/v), 2,2 0-azobis(isobutyronitorile), 1.0% (v/v)
Sunsoft818H (surfactant) to prepare a w/o emulsion by the use of a hydrophobic MPG
(microporous glass) membrane apparatus (Ise Chemical Corp.). The average pore sizes of
the respective MPG membranes used in this process were 0.33, 0.73, 1.15, and 1:70�m.
The emulsion prepared was stirred at 365 r.p.m. at 70�C under nitrogen atmosphere, and
10 mL of cyclohexane containing 1.0% (v/v) Sunsoft818H and 1.5% (w/v) 2,2 0-azobiis
(isobutyronitorile) was added every 5 min. After adding a total of 300 mL of the cyclo-
hexane solution, the reaction was continued at 70�C for 3 h. The microspheres prepared
were centrifuged for 10 min at 1000 r.p.m. and washed with cyclohexane, isopropanol,
ethanol and methanol, and finally with distilled water.
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TABLE 1 Feed Composition of Aqueous Solution Phases for Preparing Microspheres

Acrylamide
(mol/L)

Acrylic acid
(mol/L)

N,N 0-methylene-
bisacrylamide
(mol/L)

N;N;N 0;N 0-tetramethyl
ethylenediamine

(% v/v)
NaCl
(mol/L)

Poly (acrylamide) microsphere 4.0 0 0.4 0.2 0.75
Poly[acrylamide-co-acrylic acid (5 mol%)] microsphere 3.8 0.2 0.4 0.2 0.75

Poly[acrylamide-co-acrylic acid (10 mol%)] microsphere 3.6 0.4 0.4 0.2 0.75



B. Measurements of Particle Size

The volume-averaged diameter of the microspheres and their size distribution were mea-
sured with a light scattering particle sizer (Malvern 3601, Master sizer/E/Malvern, Inc.).
The size distribution was evaluated with the Span value defined as follows.

Span ¼
D90% �D10%

D50%

ð1Þ

Here ,DN% (N ¼ 10, 50, 90) means that the volume percentage of microspheres with
diameters up to DN% is equal to N%. A smaller span value indicates a narrower size
distribution. The results are summarized in Table 2. A broader size distribution was
observed in the microspheres composed of hydrogel containing more acrylic acid. The
size distribution was not affected by the membrane pore size. The microsphere size, on the
other hand, was dependent on both the membrane pore size and the polymer composition.
As the membrane with a larger pore size was used, larger microspheres were obtained.
When the membrane with a pore size of 1:70�m was used, the microsphere size clearly
increased as acrylic acid concentration in the monomer mixture increased, while it
decreased as acrylic acid concentration increased when the membranes with smaller
pore sizes were used. It will be discussed in Section II.E how the pore size of the SPG
membrane and the monomer composition affects the microsphere size and distribution,
with their effects on the structure of the microsphere.

C. Measurements of Electrophoretic Mobility of Microspheres

The surface properties of the microspheres have been studied from their electrophoretic
mobility values. The electrophoretic mobility of microspheres was measured in pH 7.4
buffer solutions of various ionic strengths by using an automated electrokinetic analyzer
(Pen Kem System 3000) at 37�C. The ionic strength was adjusted by dilution of the buffer
solution (with ionic strength 0.154) with distilled water. The values obtained for the
electrophoretic mobility of microspheres containing no arylamide are plotted against
the ionic strength of the dispersing media in Fig. 1. The electrophoretic mobility values
for the poly(acrylamide) microspheres were almost zero or slightly negative in solutions at
pH 7.4 with ionic strengths between 0.005 and 0.154, and no size dependence was
observed.

Figures 2 and 3 show the electrophoretic mobility of poly(acrylamide-co-acrylic acid)
microspheres containing 5 and 10 mol% acrylic acid, respectively. The electrophoretic
mobility value of the microspheres were negative at all ionic strengths, implying that
the surfaces of those microspheres have net negative charges, which originate from acrylic
acid. Also, the electrophoretic mobility values became more negative as the acrylic acid
concentration increased, with two exceptions. Only two types of poly(acrylamide-co-
acrylic acid) microspheres (samples 11 and 12 in Table 2) prepared with the membrane
of largest pore size (1:70�m) showed almost the same electrophoretic mobility values
(�1:5 to �0:4�ms�1 V�1 cm) at all ionic strengths although they were composed of
hydrogels of different acrylic acid concentrations (5 and 10 mol%). It should be empha-
sized here that the dependence of the electrophoretic mobility upon acrylic acid concen-
tration in the hydrogel constituting the microspheres is not clear when the microsphere size
is large. Interestingly, the electrophoretic mobility values for the microspheres containing
acrylic acid have shown clear size dependence. More negative mobility values were
obtained with smaller microspheres than with the larger ones, as shown in Figs 2 and 3.
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TABLE 2 Relationship Between Pore Size and Microsphere Diameter with Size Distribution

Feeding

composition

Dispersion phase

4.0 M Acrylamide
3.8 Acrylamide

þ0:2 M Acrylic acid
3.6 M Acrylamide
þ0:4 M Acrylic acid

Membrane

poor size
(�m) Sample #

Mean diameter
(�m) Span Sample #

Mean diameter
(�m) Span Sample #

Mean diameter
(�m) Span

0.33 1 1.45 0.65 2 1.47 0.72 3 1.35 0.80
0.73 4 2.59 0.35 5 2.37 0.42 6 2.33 0.42
1.15 7 3.75 0.65 8 3.42 0.73 9 3.09 0.77

1.70 10 6.29 0.49 11 6.64 0.64 12 7.43 0.98
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FIG. 1 Electrophoretic mobility of poly(acrylamide) microspheres. Symbols are experimental data
measured as a function of the ionic strength in the suspending medium at pH 7.4 and 37�C: (~)
sample 1; (^) sample 4; (&) sample 7; (*) sample 10. Solid curves are theoretical ones calculated

with zN ¼ �0:007 M and 1=� ¼ 0:83 nm (curve 1); zN ¼ �0:012 M and 1=� ¼ 0:89 nm (curve 2);
zN ¼ �0:004 M and 1=� ¼ 0:7 nm (curve 3).

FIG. 2 Electrophoretic mobility of poly[acrylamide-co-acrylic acid (5 mol%)] microspheres.
Symbols are experimental data measured as a function of ionic strength in the suspending medium

at pH 7.4 and 37�C: (~) sample 2; (^) sample 5; (&) sample 8; (*) sample 11. Solid curves are
theoretical ones calculated with zN ¼ �0:078 M and 1=� ¼ 0:80 nm (curve 1); zN ¼ �0:053 M and
1=� ¼ 0:90 nm (curve 2); zN ¼ �0:039 M and 1=� ¼ 0:98 nm (curve 3); zN ¼ �0:023 M and 1=� ¼

1:05 nm (curve 4).



The microspheres composed of 3.8 M acrylamide and 0.2 M acrylic acid (5 mol%
acrylic acid) showed changes in electrophoretic mobility values from �2:6 to �1:0�ms�1

V�1 cm in solutions with ionic strengths between 0.005 and 0.154 in sample 2 (smaller size),
while they have shown changes from �1:5 to �0:4�ms�1 V�1 cm in the same solutions in
sample 11 (largest size). The microspheres composed of 3.6 M acrylamide and 0.4 M
acrylic acid (10 mol% acrylic acid) displayed similar size-dependent changes in their
electrophoretic mobility. That is, the electrophoretic mobility of sample 3 changed from
�2:6 to �1:5�ms�1 V�1 cm in solutions with ionics strengths between 0.005 and 0.154,
while that of sample 12 changed from �1:5 to �0:4 in the same solutions. The size
dependence of the electrophoretic mobility is unexpected because the electrophoretic
mobility is independent of the particle size, if the latter is much larger than the Debye
length, 1=� [where � is given later in Eq. (8)]. This phenomenon will be explained by the
size dependence on the structure of microspheres. In order to obtain information on the
structure of the microspheres, the electrophoretic mobility data were analyzed with
Ohshima’s electrokinetic theory for ‘‘soft’’ particles [26].

The electrophoretic mobility of samples 1–12 is negative at all ionic strengths, and it
becomes less negative as the ionic strength becomes higher in each sample. Also, the
electrophoretic mobility values tend to a nonzero value even in the solution with an
ionic strength as high as 0.154. This phenomenon suggest that the surface of this particle
is ‘‘soft’’ and the data obtained can be discussed in terms of Ohshima’s theory [26]. In this
model, ionized groups of valency z are uniformly distributed at a number density of
Nðm�3

Þ in the surface layer. Suppose that the particle moves in a liquid containing a
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FIG. 3 Electrophoretic mobility of poly[acrylamide-co-acrylic acid (10 mol%)] microspheres.

Symbols are experimental data measured as a function of ionic strength in the suspending medium
at pH 7.4 and 37�C: (~) sample 3; (^) sample 6; (&) sample 9; (*) sample 12. Solid curves are
theoretical ones calculated with zN ¼ �0:080 M and 1=� ¼ 0:90 nm (curve 1); zN ¼ �0:066 M and

1=� ¼ 0:99 nm (curve 2); zN ¼ �0:053 M and 1=� ¼ 1:02 nm (curve 3); zN ¼ �0:023 M, and 1=� ¼

1:05 nm (curve 4).



symmetrical electrolyte of valency � in the applied field, and n (m�3) is the bulk concen-
tration of symmetrical electrolytes in the dispelling medium. The electrophoretic mobility
� is then expressed as [26]
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Here, a is the particle radius, d is the thickness of the ion-penetrable surface layer, 	
is the viscosity, � is the frictional coefficient of the surface layer, �r is the relative permit-
tivity of the solution, �0 is the permittivity of a vacuum,  DON is the Donnan potential of
the surface layer,  0 is the potential at the boundary between the surface layer and the
surrounding solution, and � is the Debye-Hückel parameter. We call  0 the surface
potential of a ‘‘soft’’ particle and  m can be interpreted as the Debye-Hückel parameter
in the surface layer. The parameter � characterizes the degree of friction exerted on the
liquid flow in the surface layer, and zN represents the number density of the fixed charges
in the surface layer. The reciprocal of �, i.e., 1=�, has the dimension of length and can be
considered to be a ‘‘softness’’ parameter, since at the limit 1=�! 0, the surface layer
becomes rigid. Although Eq. (2) assumes symmetrical electrolytes, the electrolytes used
are not symmetrical (cations are univalent but anions are not); the value of � is set
approximately equal to unity ð� ¼ 1), since anions are less important for negatively
charged particles. Note that in typical ‘‘soft’’ particles having core particles [14–18], the
factor f ðd=aÞ in Eqs. (2) and (3) can practically be set equal to 1, because d 	 a. However,
microspheres in this section may be regarded as spherical polyelectrolytes with no core
(a ¼ 0) so that f may be put equal to 2/3. Equation (2) involves two unknown parameters,
N (m�3) and 1=� (nm), which now represent the fixed charge density in the microsphere
and its softness, respectively. By a curve-fitting procedure [15–18], zN and 1=� were
determined. The values of � calculated via Eq. (2) were plotted again the ionic strength
in comparison with the experimental data in Figs 1–3 (solid lines). We found it possible to
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draw a curve with a pair of single values each of zN and 1=� that is in good agreement with
the experimental data over a wide range of ionic strengths (0.04–0.154) except for very low
ionic strength. This means that the hydrogel microsphere surface can be considered as a
‘‘soft surface’’ described by Eq. (2) at ionic strengths between 0.04 and 0.154. Thus, this
agreement enables us to estimate the values of the unknown parameters zN and 1=� by a
curve-fitting procedure. In the calculation, we used the value of the relative permittivity �r
of water (�r ¼ 74:39 at 37�C).

The best-fit values for the charge density (zN) and the softness parameter (1=�) of the
surface of each sample are presented in Table 3. In this table, the size dependencies of both
charge density (zN) and the softness parameter (1=�) are clearly observed in poly(acryla-
mide-co-acrylic acid) microspheres, while they are not in poly(acrylamide) microspheres.
As the size of the poly (acrylamide-co-acrylic acid) microspheres increases, the negative
charge density decreases and the softness parameter (1=�) slightly increase, although the
microspheres of each mean diameter were all prepared from monomer mixture solutions
with a constant composition. The increase in the negative charge density with decreasing
particle size can be caused by the concentration of acrylic acid at the surface layer of the
microsphere, or by the decrease in concentration of acrylic acid incorporated in the poly-
merization reaction. Both mechanisms may be available to decrease the charge density.

D. Determination of Total Amount of Carboxylic Acid Groups Located in
Microspheres

Poly(acrylamide-co-acrylic acid) microspheres were redispersed in 0.01 M NaOH and were
titrated potentiometrically with 0.01M HCl under a nitrogen atmosphere. By means of this
titration, it was confirmed that constant concentration of acrylic acid is incorporated in
the polymerization reaction with acrylamide, independent of the emulsion size.

E. Size-dependent Structure of Microspheres

In the electrokinetic experiments, the fixed charges that are located over the depth of
order 1=�m (
 1=�Þ measured inward from the surface contribute to the values of the
electrophoretic mobility. The parameter N can be considered to be an average density
over the depth 1=�. The increase in zN with the decrease in particle size is probably
caused by the increase in the density of acrylic acid in the surface layer. That is, in the
polymerization process, acrylic acid monomer or oligomer containing acrylic acid are
considered to move toward the emulsion core, escaping from the w/o interfaces, because
the microspheres were prepared from w/o emulsion, as noted in Section II.A. Therefore,
the more charged polymer chains are stable in the core of the microspheres, whereas the
surface region of the microspheres is composed of the less charged polymer chains. In a
microsphere with a large diameter, charged polymer chains can be localized in the
microsphere core, but with decreasing diameter of the microsphere, charged polymer
chains cannot exist in the core escaping from the w/o interface. For example, when two
particles (particles A) with a radius of 0:25�m exist in a particle (particle B) with a
radius of 0:5�m, the surfaces of particles A are in contact with the surface of particle B,
and the volume fraction of particles A in particle B is 12.5%. If the radius of particle B
is 3:5�m and includes 12.5% (v/v) of particles A with a radius of 0:25�m, then particles
A can be localized in the core region within a radius of 2:2�m, assuming that the
porosity of particles A to be 47.6% in particle B. This may cause changes in zN,
depending on the particle size, as shown in Table 3.
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TABLE 3 Dependence of Surface Charge Density (zN) and Softness Parameter (1=�) on Size and Composition of Microspheres

Feeding
composition

Dispersion phase

4.0 M Acrylamide
3.8 M Acrylamide
þ0:2 M Acrylic acid

3.6 M Acrylamide
þ0:4 M Acrylic Acid

Membrane pore
size (�m)

Sample
#

Mean

diameter
(�m)

zN
(M)

1=�
(nm)

Sample
#

Mean

diameter
(�m)

zN
(M)

1=�
(nm)

Sample
#

Mean

diameter
(�m)

zN
(M)

1=�
(nm)

0.33 1 1.45 �0:007 0.83 2 1.47 �0:078 0.80 3 1.35 �0:080 0.90
0.73 4 2.59 �0:007 0.83 5 2.37 �0:053 0.90 6 2.33 �0:066 0.99

1.15 7 3.75 �0:012 0.89 8 3.42 �0:039 0.98 9 3.09 �0:053 1.02
1.70 10 6.29 �0:004 0.70 11 6.64 �0:023 1.05 12 7.43 �0:023 1.05



Figure 4 shows schematically the possible structure of poly(acrylamide-co-acrylic
acid) microspheres of different sizes. Particle A in the above discussion corresponds to
the more charged polymer chains, and particle B to the microsphere as a whole. The
concentration of acrylic acid monomers and charged oligomers is higher in the core region
than in the surface layer of the microspheres, and the surface charge density in the surface
layer increases as the size of microsphere decreases. At the same time, acrylamide mono-
mer concentration should be higher in the core region of the microsphere in order to
reduce electrical repulsion acting between negative charges. From these, not only the
density of acrylic acid but also that of acrylamide should be lower in the surface region
than in the microsphere core. On the other hand, when the hydrogel microspheres are
composed of noncharged homopolymer such as poly(acrylamide), the microsphere struc-
ture is almost homogeneous, because such a heterogeneity of polymerization of monomers
does not occur.

In Table 3, it is also clear that the microsphere surface becomes softer by the addition
of acrylic acid, with two exceptions. That is, by the addition of acrylic acid, the softness
parameter (1=�) of the microspheres prepared using a SPG membrane with a pore size of
0:33�m increases from 0.83 nm (sample 1) to 0.9 nm (sample 3). These increases in
magnitude of zN and 1=� by the addition of acrylic acid are observed also in microspheres
prepared with the SPG membranes of pore sizes 0.73 and 1.15 m. Two exceptions are
samples 11 and 12, which are prepared using a SPG membrane of pore size 1:7�m. These
microspheres are composed of 95 mol% acrylamide with 5 mol% acrylic acid, and 90
mol% acrylamide with 10 mol% acrylic acid, respectively. The same values of zN and 1=�
were, however, obtained for these two samples, the reasons for which will be discussed
later.

Also in Table 2, it is clearly observed that the size distribution of microspheres
becomes broader as the ratio of acrylic acid to acrylamide increases, independent of the
pore size of SPG membranes, by comparison between samples 1–3, samples 4-6, samples
7–9, and samples 10–12, as noted before (Section II.B). The mean diameter clearly
increases as acrylic acid concentration increases when SPG membranes with a pore size
of 1:70�m are used. When SPG membranes with smaller pore sizes are used, such depen-
dence of microsphere size upon acrylic acid concentration is not observed, but the micro-
sphere size decreases as acrylic acid concentration increases. This phenomenon would be
explained by the size-dependent microsphere structure, as discussed above. Acrylic acid
concentration is higher in the core region than in the surface layer of the microspheres, and
acrylamide monomers should accumulate in the core region of the microspheres to reduce
electric repulsion acting between acrylic acid molecules. Such an accumulation of polymers
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FIG. 4 Polymerization of acrylamide and acrylic acid in w/o emulsion: (*) acrylamide (non-
charged monomer); (�- ) acrylic acid (negatively charged monomer).



in the core region would explain the decrease in microsphere size with the increase in
acrylic acid concentration observed in microspheres prepared with the SPG membranes of
pore sizes of 0.33, 0.73, and 1:15�m. In these cases, the polymer networks in the core
region become more dense as the acrylic acid concentration increases, although the surface
layer is composed of a loose polymer network. On the other hand, when the microsphere
size is relatively large (samples 10–12), sufficient volume is available for 10 mol% acrylic
acid inside the microspheres, so that the polymer network become looser. Therefore, the
microsphere size increases as the acrylic acid concentration increases, as observed in
samples 10–12. This volume increase explains the same electrophoretic mobility values
observed in two types of large microspheres containing different concentrations of acrylic
acid (5 and 10 mol%) and the same values of zN and 1=� for both samples reported in
Table 3. We have also found that poly(acrylamide-co-acrylic acid) microspheres contain-
ing 15 mol% could not be obtained from w/o emulsions with this system, because the
hydrogel was composed of a loose polymer network and was mechanically weak.

III. EFFECTS OF PEGYLATION ON SURFACE PROPERTIES OF
MICROCAPSULES

A. Two-layer Structure of Microcapsule Membrane as Predicted from
Electrophoretic Studies

In this section, we discuss the preparation and properties of two types of microcapsule
membranes with a two-sublayer structure, each of which has a different charge density and
softness [27]. By PEGylation of these microcapsule surfaces [1, 2, 28–30], it will be shown
that the charge density in the outer sublayer decreases, while that in the inner sublayer is
not affected. Also, the surface layer became softer by PEGylation. The effects of mem-
brane composition upon the swellability of the microcapsule membrane will be also dis-
cussed [27, 31]. That is, the asymmetrical structure of microcapsule membranes causes the
nonuniform distribution of charges and then the swellability of the microcapsule changes,
depending on the permittivity of the dispersing medium.

1. Preparation of Microcapsules

Four types of hydrophilic gel microcapsules containing water have been prepared by an
interfacial polymerization method. Each type of microcapsule has membranes of different
composition. Using three kinds of monomers, N;N-dimethylacrylamide (DMMAm), 4-
aminomethylstyrene (AmSt), and N;N-dimethylaminopropylacrylamide (DMAPAA),
two types of water-soluble copolymers with different compositions having primary and
tertiary amino groups were synthesized. Two more types of copolymers were also synthe-
sized by copolymerization of �-acryloxypoly(ethyleneglycol) (a-PEG) with the above two
kinds of monomer mixture. Structural formulas of the copolymers are shown in Fig. 5.
Polymerization conditions are summarized in Table 4; copolymers 1 and 2 represent
poly(DMAAm-co-DMAPAA-co-AmSt) and copolymers 3 and 4 represent poly-
(DMAAm-co-DMAPAA-co-AmSt-co-PEG). These four types of copolymer (copolymers
1–4) were polymerized with terephthaloy dichloride at the w/o interface to prepare four
types of microcapsules (MCs 1–4) containing water. A mixed organic solvent was prepared
from a mixture of cyclohexane and chloroform (3 : 1, v/v). Triethylamine (0.5 ml), sorbitan
trioleate (SO-30) (0.5 ml), and 2-propanol (1.5 ml) were dissolved in 100 ml of the mixed
organic solvent. One of the copolymers 1–4 (Table 4) was dissolved in 10 ml of distilled
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water to a concentration of 2.0% (w/v). The copolymer solution was added to the above
organic solution and the mixture was stirred at 848 r.p.m. for 20 min at room temperature.
Terephthaloyl dichloride was dissolved in 100 ml of the mixed organic solvent to a con-
centration of 0.03M and the solution was then added to the above emulsion without
stopping the stirring. After stirring for 90 min at 4�C, cyclohexane was added in order
to terminate the reaction. Microcapsules were centrifuged at 2000 r.p.m. for 15 min and
were washed in cyclohexane, in 2-propanol, in ethanol, in methanol, and finally in distilled
water. Microcapsules thus prepared were kept in distilled water at 4�C, before use for the
following experiments. These microcapsules were termed MCs 1–4 corresponding to the
kind of copolymers used.
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FIG. 5 Structures of poly(DMAAm-co-DMAPAA-co-AmSt) and poly(DMAAm-co-DMAPAA-
co-AmSt-co-PEG).

TABLE 4 Synthesis of Copolymers Having Primary and Tertiary Amino

Groups

Samples

Feed composition (mol%)

Yield %DMAAm AmSt DMAPAA a-PEGa

1 85.00 5.00 10.0 0.0 53.5

2 80.00 5.00 15.0 0.0 55.0
3 84.80 4.99 9.98 0.23 68.4
4 79.81 4.99 14.96 0.24 54.8

Solvent: ethanol (100 mL), initiator 2,20-azobis (2,4-dimethylvaleronitrile) V-65
(10 mM), reaction temp.: 45�C, reaction time: 24 h.
a a-PEG: �-acryloxylpoly(ethylene glycol).



2. Total Amount of Fixed Charges Located in Microcapsule Membranes

To determine the number of carboxylic acid groups fixed in microcapsule membranes, a
certain volume of microcapsules was redispersed in 0.01 M NaOH and then the dispersion
medium was titrated with 0.01 M HCl under a nitrogen atmosphere and the titration was
monitored potentiometrically. For the determination of the number of amino groups fixed
in microcapsule membranes, the microcapsules were redispersed in 0.01 M HCl and the
dispersion medium was titrated with 0.01 M NaOH.

The total amounts of amino groups and carboxylic acid groups located in the micro-
capsule membranes measured in above process are summarized in Table 5. The values
show the number of charges which 1 ml of microcapsules carries. The values were calcu-
lated by assuming that microcapsules are spherical and that 25% of their sedimentation
volume is the void volume. Negative and positive charges originate from carboxylic acid
groups and amino groups, respectively. It is clear that MCs 1–4 have both positive and
negative charges in their membranes, but the numbers of negative charges are larger than
those of positive ones. Therefore, the net charges are negative in the membranes of MCs 1–
4. If the charges are uniformly distributed in the membranes, these values can be converted
into charge density in the membranes by using the values of microcapsule size and the
membrane thickness. If the microcapsule membrane has an asymmetrical structure in the
normal direction to the membrane surface, however, the charge density is not uniform in
the membrane.

3. Membrane Structure of Microcapsules Predicted from Electrophoretic
Studies

Further information on the surface properties of hydrogel microcapsules and charge dis-
tribution in the membranes is available from the electrophoretic mobility measurement of
the microcapsules [32–34]. The electrophoretic mobility of microcapsules was measured in
Dulbecco’s buffer solutions at pH 7.4 with various ionic strengths by using an automated
electrokinetic analyzer (Pen Kem System 3000) at 37�C. The ionic strength was adjusted
by dilution of Dulbecco’s buffer solution (ionic strength 0.154 M) with distilled water.

The measured values of electrophoretic mobility of MCs 1–4 are plotted against the
ionic strength of the dispersion medium in Figs 6 and 7.

Two kinds of microcapsules (MC 1 and MC 3) exhibit negative mobility values in all
solutions at pH 7.4 with ionic strengths between 0.005 and 0.154 M, as shown in Fig. 6,
implying that the surfaces of these microcapsules have net negative charges which origi-
nate from rich carboxylic acid groups. Unexpectedly, the electrophoretic mobility values
show a minimum at an ionic strength of 0.01. That is, the electrophoretic mobility
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TABLE 5 Total Fixed Charges Located in Membranes of

MCs 1–4

Samples

Negative charges

(mmol)

Positive charges

(mmol)

Net charges

(mmol)

MC 1 0.121 0.021 �0:100
MC 2 0.089 0.018 �0:071
MC 3 0.101 0.028 �0:072
MC 4 0.091 0.035 �0:056
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FIG. 6 Electrophoretic mobility of MC 1 and MC 3. Symbols are experimental data with MC 1
(~) and MC 3 (*) measured as a function of ionic strength in the suspending medium at pH 7.4 and
37�C. Solid curves are theoretical ones calculated with z1N1 ¼ �0:111 M, z2N2 ¼ 0:041 M, 1=� ¼

0:505 nm, d ¼ 1:706 nm (MC 1), and with z1N1 ¼ �0:048 M, z2N2 ¼ 0:048 M, 1=� ¼ 1:230 nm, d ¼

3:758 nm (MC 3).

FIG. 7 Electrophoretic mobility of MC 2 and MC 4. Symbols are experimental data with MC 2
(&) and MC 4 (^) measured as a function of ionic strength in the suspending medium at pH 7.4 and
37�C. Solid curves are theoretical ones calculated with z1N1 ¼ �0:140 M, z2N2 ¼ 0:166 M, 1=� ¼

0:471 nm, d ¼ 2:090 nm (MC 2), and with z1N1 ¼ �0:084 M, z2N2 ¼ 0:159 M, 1=� ¼ 0:778 nm, d ¼

2:751 nm (MC 4).



increases in magnitude from about �1:0 to �2:0�ms�1 V�1 cm between ionic strengths of
0.005 and 0.01 M. In solutions with ionic strengths higher than 0.01 M, the mobility
becomes less negative as the ionic strength rises and reaches nonzero values.

On the other hand, the electrophoretic mobility values of MC 2 and MC 4 alter their
sign from positive to negative as the ionic strength rises at ionic strengths between 0.01 and
0.02 M, as shown in Fig. 7. They also show a minimum mobility for an ionic strength
around 0.06 M and reach nonzero negative values as the ionic strength rises. In all cases
(Figs 6 and 7), the electrophoretic mobility tends to nonzero values even in solutions with
ionic strengths as high as 0.154. This means that the surfaces of MCs 1–4 are ‘‘soft’’ and
their surface properties can be analyzed by the electrokinetic theory for soft surfaces [26].
This theory provides us with information on the softness and charge density of a surface
layer, as has already been seen in the previous section. As described below, the presence of
the mobility minimum observed in MCs 1–4 suggests that the surface layer of each of the
microcapsules is composed of at least two sublayers, each of which has a different charge
density. In particular, in the case of MC 2 and MC 4, the surface layers are considered to
be composed of two oppositely charged sublayers, the outer sublayer of which is nega-
tively charged and the inner one is positively charged. The data obtained can be discussed
with Ohshima’s electrokinetic theory for a ‘‘soft’’ particle with a nonuniformly charged
surface layer [35].

Suppose that a colloidal particle covered with an ion-penetrable surface charge layer
consisting of two charged sublayers moves in a liquid containing a symmetrical electrolyte
of valency � and bulk concentration n in an applied electric field. The particle radius and
the thickness of the surface charge layer are assumed to be much larger than 1=�. An x axis
is taken perpendicular to the particle surface with its origin at the front surface of the
surface charge layer (Fig. 8). The outer sublayer (sublayer 1) of the particle surfaces carries
ionized groups of valency z1 and number density N1, while the inner sublayer (sublayer 2)
carries ionized groups of valency z2 and number density N2. Let the thickness of sublayer 1
be d. We then have

fixðxÞ ¼ 1 ¼ ez1N1; �d < x � 0 ð9Þ

fixðxÞ ¼ 2 ¼ ez2N2; x � �d ð10Þ
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FIG. 8 Schematic representation of a soft surface covered by an ion-penetrable surface charge layer

consisting of two oppositely charged sublayers 1 and 2. Fixed charges are represented by large
squares and circles with plus and minus signs, while electrolyte ions are by small circles with plus
and minus signs. The thickness of the outer sublayer (sublayer 1) is d. The slipping plane is located

inside at x < �d. It is assumed that �d � 1.



where 1 and 2 are, respectively, the densities of fixed charges in sublayers 1 and 2, and e
is the elementary electric charge. Since the thickness of the inner sublayer is assumed to be
much larger than 1=�, then it can practically be set equal to infinity for mathematical
convenience. Thus, deep inside sublayer 2, the potential is equal to the Donnan potential
in that sublayer, which will be shown later in Eq. (16). The electrophoretic mobility � is
then expressed by Eq. (11) [35]:
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where � and � are, respectively, given by Eqs (6) and (8); z1N1 and z2N2 represent the
number density of the fixed charges in sublayers 1 and 2, respectively.

By a curve-fitting procedure, z1N1, z2N2, 1=�, and d were determined. The values of
� calculated via Eq. (11) were plotted against the ionic strength together with the experi-
mental data in Figs 6 and7 (solid lines, MCs 1–4). We found it possible to draw a curve
with a combination of single values for each of z1N1, z2N2, 1=�, and d that is in good
agreement with the experimental data over a wide range of ionic strengths (0.005–
0.154M). This means that the hydrogel microcapsule surface can be considered as a
‘‘soft surface’’ composed of two sublayers described by Eq. (11). Thus, this agreement
enables us to estimate the values of the unknown parameters z1N1, z2N2, 1=�, and d by the
curve-fitting procedure. In the calculation, we used the value of the relative permittivity �r
of water (�r ¼ 74:39 at 37�C).

The best-fit values for the charge density of sublayers 1 and 2 (z1N1 and z2N2), the
softness parameter (1=�) of the surface, and the thickness of sublayer 1 (d) of each type of
microcapsule are shown in Table 6. As summarized in this table, it was found that
PEGylation causes the surface charge density of the outer sublayer (z1N1) to decrease,
while that of inner sublayer (z2N2) is little affected. That is, the value of z1N1 for MC 3 is
less negative than that for MC 1, and that for MC 4 is less negative than that for MC 2. On
the other hand, the values of z2N2 for MC 1 and MC 3 are almost the same, and those for
MC 2 and MC 4 are also almost identical. The softness parameter (1=�) for MC 3 is larger
than that for MC 1, implying that the surface of MC 3 is softer than that of MC 1. The
parameter 1=� for MC 4 is also larger than that for MC 2. From this, it is clear that the
surface becomes softer and its charge density is reduced by PEGylation.

The potential distribution across the surface layer as predicted from the present two-
sublayer model is shown in Fig. 9. We take an x axis perpendicular to the microcapsule
surface with its origin 0 at the front surface of the outer sublayer, as in Fig. 8. The region
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TABLE 6 Values of z1N1, z2N2, 1=�, and d of MCs 1–4

Samples z1N1 (M) z2N2 (M) 1=� (nm) d (nm)

MC 1 �0:111 0.041 0.505 1.706
MC 2 �0:140 0.166 0.471 2.090

MC 3 �0:048 0.048 1.230 3.758
MC 4 �0:084 0.159 0.778 2.751



x < 0 shows the microcapsule membrane and the region x  0 shows the bulk solution
phase. These potential curves are for MCs 1–4 suspended in a solution with an ionic
strength of 0.154 at 37�C. The potential distribution  ðxÞ was calculated from Eqs
(12)–(14) [35]:
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where  DON;1 and  DON;2 are, respectively, the Donnan potentials of sublayers 1 and 2.
Figure 9 shows that the potential distribution in the membranes of MC 2 and MC 4

varies much more than that of MC 1 and MC 3 in the normal direction to the membrane
surface. The potential values far inside the surface layers of MC 2 and MC 4 are more
positive than those of MC 1 and MC 3, while the differences in potential values in the
outer sublayers are relatively small. The differences in the charge distribution depending
on the kind of microcapsules are explained by the differences in the partition coefficients
of the copolymers in the preparation process, as follows. The amounts of total positive
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FIG. 9 Potential distribution across the membranes of microcapsules redispersed in an aqueous
solution with ionic strength 0.154 at 37�C.



charges fixed in each type of microcapsules were little affected by the composition of
copolymers used, as shown in Table 5. The content of DMAPAA in copolymer 2 used
to prepare MC 2 is, however, larger than that in copolymer 1 used to prepare MC 1, as
shown in Table 4. In the monomers used to prepare the copolymers 1 and 2, the amino
group in DMAPAA is more easily protonated than that in DMAAm. Also, both of the
water-soluble copolymers 1 and 2 diffuse from the inner aqueous phase to the outer oil
phase of w/o emulsion followed by the reaction with terephthaloyl dichloride. Therefore, it
is reasonable to assume that the dissociable and more hydrophilic moiety in the polymer
chains has a tendency to remain in the inner side of the microcapsule membranes. Also,
more concentrated carboxylic acid groups originating from terephthalic acid are consid-
ered to be fixed in the outer surface layer rather than in the inner one, because terephtha-
loyl dichloride diffuses from the outer oil phase to the inner aqueous one. This mechanism
may lead to the lower value of z2N2 for MC 1 than that for MC 2. This tendency is also
observed when MC 3 and MC 4 are compared. That is, the value of z2N2 for MC 3 is less
than that for MC 4. Also, the degree of polymerization is considered to be relatively low,
and that the microcapsule membranes have a soft structure.

4. Changes in Microcapsule Sizes Depending on Relative Permittivity of
Dispersing Medium

The values for the average diameters of MCs 1–4 kept in water and in cyclohexane are
summarized in Table 7. The average diameters of MCs 1–4 kept in distilled water are not
affected by the membrane composition. When microcapsules are kept in cyclohexane,
however, MC 1 and MC 3 have much larger average diameters than in distilled water,
while the average diameters of MC 2 and MC 4 are almost the same as those in distilled
water [27,31]. These differences are considered to be caused by those in the swelling ratio
of the membranes, which may be due to the differences in charge density and charge
distribution in the microcapsule membranes. That is, these phenomena can be explained
by the dissociation of carboxylic acid and amino groups in the microcapsule membranes.
When microcapsules are in water, the dissociable groups in membranes are easily disso-
ciated and make an ion complex between anionic and cationic groups. The ion-complex
formation leads the membrane to be in a shrunken state. Microcapsules in cyclohexane,
however, cannot be in a shrunken state because the groups are little dissociated due to the
low permittivity of cyclohexane. This would explain the changes in diameters of MC 1 and
MC 3, depending on the permittivity of the solvents. On the other hand, the average
diameters of MC 2 and MC 4 were almost the same in both water and cyclohexane.
This suggests that ion-complex formation occurs less effectively to shrink the membrane
of MC 2 and MC 4 when they are redispersed in water. It is of interest to observe the

Electrophoresis of Polymer-coated Particles 735

TABLE 7 Average Diameter of MCs 1–4 in Distilled Water and in Cyclohexane

Samples Average diameter in distilled water (�m)
Average diameter in
cyclohexane (�m)

MC 1 18.12 38.41
MC 2 19.50 18.91

MC 3 19.43 26.76
MC 4 15.23 17.38



potential distribution in microcapsules which are redispersed in a very diluted electrolyte
solution. We have calculated the potential distribution of MCs 1–4 redispersed in an
aqueous solution with ionic strength of 0.01 at 37�C (Fig. 10).

As clearly seen in Fig. 10, the outer sublayers of MC1 and MC 3 are negatively
charged and the potential in the outer sublayers is negative, while the potential in the inner
sublayers is positive. Therefore, the membranes of MC 1 and MC 3 can be shrunken by
ion-complex formation (between positive charges and negative charges) in the normal
direction to the membrane surface. On the other hand, the potential in the outer sublayers
of MC 2 and MC 4 is positive and that in the inner sublayers is also positive. In these
microcapsule membranes, the shrunken state is less available, because the number of
negative charges is too small compared with that of positive charges in to allow formation
of the ion complex. When MC 2 and MC 4 are kept in the aqueous solution with the
higher ionic strengths, however, the potential in the outer sublayer is negative, as shown in
Fig. 9.

The observed difference is the potential distributions between Figs 9 (ionic strength
0.154) and 10 (ionic strength 0.01) is caused by the difference in the Donnan potential of
the surface layers. The Donnan potential is negative in the outer sublayers and is positive
in the inner sublayers of MCs 1–4. The magnitude of the Donnan potential is higher in a
solution with lower ionic strength. Also, the Donnan potential of the inner sublayers of
MC 2 and MC 4 is much higher than that of MC 1 and MC 3, as is seen in Figs 9 and 10.
The potential values for MC 2 and MC 4 are highly positive in the inner sublayers, and the
potential values in the outer sublayers are affected not only by the Donnan potential in the
outer sublayer but also the Donnan potential in the inner sublayers. Therefore, when the
Donnan potential in the inner sublayer is highly positive, the potential in the outer sub-
layer becomes positive, even if the Donnan potential in the outer sublayer is negative. It
was thus concluded that the asymmetrical structure of microcapsule membranes cause a
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FIG. 10 Potential distribution across the membranes of microcapsules redispersed in an aqueous
solution with ionic strength of 0.01 at 37�C.



nonuniform distribution of charges and affects the swellability of the membrane in sol-
vents with different permittivities.

B. Interaction Between Charged Soft Microcapsules and Red Blood Cells

It has been reported that cationic surfaces are easily recognized as foreign materials and
positively charged materials are eliminated from the biosystems, because the cell surfaces
are usually negatively charged [3]. PEGylation of polymer surfaces has been reported to
suppress effectively the interaction of the polymeric materials with biological cells, while
the mechanisms are still obscure [1, 2, 28, 29]. In this section, it will be discussed how the
surface properties such as softness and surface charge density of the microcapsules are
related to the interaction of these membranes with those of biological cells such as RBC
(red blood cells).

As has been discussed in Section III.A, the membranes of both of poly(DMAAm-co-
DMAPAA-co-AmSt-alt-terephthalic acid) microcapsules (denoted by MC 1 and MC 2)
and poly(DMAAm-co-DMAPAA-co-Amst-co-PEG-alt-terephthalic acid) microcapsules
(MC 3 and MC 4) have a two-layer structure, the outer sublayer of which is negatively
charged and the inner one positively charged. By PEGylation the surface charge density of
the outer sublayer becomes less negative, while that of inner sublayer is not affected, and
the surface layers become softer.

In addition to the microcapsules (MCs 1–4) noted in Section III.A, two more kinds
of microcapsules, the membranes of which are positively charged, have been prepared by
the same method as mentioned in the previous section. A monomer, 2-[(methacryloxy)
ethyl] trimethyl ammonium chloride (METAC), which has one ammonium group in the
structure, was used instead of DMAPAA to synthesize an aqueous copolymer,
poly(DMAAm-co-METAC-co-AmSt). Another type of copolymer, poly(DMAAm-co-
METAC-co-AmSt-co-PEG) was also synthesized by the combination of a-PEG with
DMAAm, METAC, and AmSt. The structure of those copolymers is shown in Fig. 11.
Using these two aqueous copolymers, poly(DMAAm-co-METAC-co-AmSt-alt-terephtha-
lic acid) microcapsules (MC 5) and poly(DMAAm-co-METAC-co-AmSt-co-PEG-alt-ter-
ephthalic acid) microcapsules (MC 6) were prepared.

Four types of hydrophilic gel microcapsules containing water (MC 2 and MC 4 with
MC 5 and MC 6) are used to study the interaction between their surfaces and RBC
surfaces in this section. The compositions of the copolymers used to prepare each type
of microsphere are summarized in Table 8.

1. Membrane Structure of Microcapsules Predicted from Electrophoretic
Studies

The structure of the membranes of MC 5 and MC 6 has been analyzed by the same
method as mentioned in Section III.A. As shown in Fig. 12, the electrophoretic mobilities
of MC 5 and MC 6 are positive in all solutions at pH 7.4 with ionic strengths between
0.005 and 0.154, implying that the surfaces of those microcapsules have net positive
charges, which originate from quaternary ammonium groups and primary amino groups.
As the ionic strength rises, the electrophoretic mobility decreases, because the shielding
effects of electrolyte ions in the medium increase as the ionic strength rises. The electro-
phoretic mobility reaches a nonzero value at an ionic strength as high as 0.154, which
means that the surfaces are soft and the surface properties can be discussed in terms of the
electrokinetic theory for ‘‘soft’’ particles. The electrophoretic mobilities of MC 2 and MC
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4 are also plotted in Fig. 12 as a function of the ionic strength. By a curve-fitting proce-
dure, z1N1, z2N2, 1=�, and d were determined. Theoretical values of � calculated via Eq.
(11) are plotted against the ionic strength (solid lines) together with the experimental data
(symbols) in Fig. 12. The best-fit values of z1N1, z2N2, 1=�, and d of each type of micro-
capsule are given in Table 9.

As summarized in Table 9, it was found that the values of charge densities in the
outer sublayers (z1N1) of MC 5 and MC 6 are positive and those in the inner sublayers
(z2N2) are almost zero. The values for charge densities in the outer sublayers (z1N1) of MC
2 and MC 4 are negative and those in the inner sublayers (Z2N2Þ are positive, as mentioned
before. The softness parameters (1=�) for MC 5 and MC 6 are larger than those for MC 2
and MC 4, implying that the surfaces of MC 5 and MC 6 are softer than those of MC 2
and MC 4. In softer surfaces, water moves more easily than in harder surfaces. In Table
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FIG. 11 Structure of poly(DMAAm-co-METAC-co-AmSt) and poly(DMAAm-co-METAC-co-
AmSt-co-PEG).

TABLE 8 Synthesis of Copolymers Having Primary and Tertiary Amino Groups,a Copolymers

2 and 4, and Those Having Primary and Quaternary Ammonium Groups, Copolymers 5 and 6

Samples

Chemical composition in feed (mol%)

Yield %DMAAm AmSt DMAPAA METAC a-PEGb

Copolymer 2 80.00 5.00 15.00 — — 55.0

Copolymer 4 79.81 4.99 14.96 — 0.24 54.8
Copolymer 5 80.00 5.00 — 15.0 — 57.0
Copolymer 6 79.80 4.99 — 14.97 0.25 35.6

a Solvent: ethanol (100 mL), initiator: V-65 (10 mM), reaction temp.: 45�C, reaction time: 24 h.
b a-PEG: �-acryloxypoly(ethylene glycol).



10, the average diameter of each of the microcapsules redispersed in distilled water is
shown. As clearly observed, MC 5 and MC 6 are much larger than MC 2 and MC 4,
even though they were prepared under the same conditions except for their materials.
Also, from this observation, it is apparent that the membranes of MC 5 and MC 6 are
softer and more hydrophilic than those of MC 2 and MC 4.

As for the effects of PEGylation, it was found that the surface charge density of
outer sublayer (z1N1) decreases, while that of inner sublayer (z2N2) was little affected by
the PEGylation. That is, the value of z1N1 for MC 4 is less negative than that for MC 2,
and that for MC 6 is less positive than that for MC 5. On the other hand, the values of
z2N2 for MC 2 and MC 4 are almost the same. Also, the values of z2N2 for MC 5 and MC
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FIG. 12 Electrophoretic mobility of MC 2, MC 4, MC 5, and MC 6. Symbols are experimental
data for MC 2 (*), MC 4 (~), MC 5 (^), and MC 6 (&) measured as a function of the ionic

strength in the suspending medium at pH 7.4 and at 37�C. Solid curves are theoretical ones
calculated with z1N1 ¼ �0:140 M, z2N2 ¼ 0:166 M, 1=� ¼ 0:471 nm, d ¼ 2:090 nm (MC 2), with z1
N1 ¼ �0:084 M, z2N2 ¼ 0:159 M, 1=� ¼ 0:778 nm, d ¼ 2:751 nm (MC 4), with z1N1 ¼ 0:049 M,
z2N2 ¼ �0:012 M, 1=� ¼ 1:336 nm, d=3.000 nm (MC 5), and with z1N1 ¼ 0:010 M, z2N2 ¼ 0:006
M, 1=� ¼ 1:916 nm, d ¼ 10 nm (MC 6).

TABLE 9 Surface Charge Density, Softness Parameter, and Thickness of Outer Sublayers

of MCs 1–4 and RBC

Samples z1N1 (M) z2N2 (M) 1=� (nm) d (nm)

MC 2 �0:140 þ0:166 0.471 2.090
MC 4 �0:084 þ0:159 0.778 2.751

MC 5 þ0:049 �0:012 1.336 3.000
MC 6 þ0:010 þ0:006 1.916 10.00
RBC �0:830 þ0:194 0.841 1.000



6 are very small, while the sign is different. The softness parameter (1=�) for MC 4 is larger
than that for MC 2, implying that the surface of MC 4 is softer than that of MC 2. The
softness parameter (1=�) for MC 6 is also larger than that for MC 5. From these data, it is
clear that the surface becomes softer by PEGylation.

2. Membrane Structure of RBC Predicted from Electrophoretic Studies

Sheep blood was centrifuged at 3000 r.p.m. for 10 min to separate RBC from plasma. The
separated blood cells were dispersed in isotonic saline solution. The surface structure of
RBC was also studied by electrophoretic mobility measurements in the same way as above
mentioned. To adjust the ionic strength, Dulbecco’s buffer solution at pH 7.4 was diluted
with distilled water and then sucrose was added to the solution to adjust the osmotic
pressure. As shown in Fig. 13, the electrophoretic mobility of RBC is negative in all
solutions at pH 7.4 with ionic strengths between 0.005 and 0.154, implying that the surface
has net negative charges. As the ionic strength rises the electrophoretic mobility becomes
less negative and reaches a nonzero value. By a curve-fitting procedure the best-fit values
of z1N1 , z2N2, 1=�, and d were determined and are shown in Table 9. The theoretical value
of � calculated with the values via Eq. (11) were plotted against the ionic strength (a solid
line) for comparison with the experimental data (closed circles) in Fig. 13. It was thus
found that the membrane of RBC is composed of two sublayers, the inner one of which is
positively charged, while the outer one is negatively charged, and that the surface of RBC
is soft.

3. Interaction of Microcapsules with RBC

The interactions between microcapsule surfaces and RBC surfaces were evaluated by the
hemolysis of RBC and their adsorption on microcapsule surfaces. Each kind of micro-
capsule was resuspended so that the final concentration was 10% (v/v) in saline solution
and was kept at 37�C. Sheep RBC (50�L) were added to 3 mL of the microcapsule
suspension. The mixture was incubated at 37�C for 15 min. The size distributions of the
mixture were measured with a light-scattering particle sizer (Malvern 3601, Master sizer/E/
Malvern, Inc.). The size distributions of microcapsules and RBC redispersed in isotonic
saline solution were also measured.

The changes in size distribution of microcapsules and RBC before and after they
were mixed and incubated were studied. The size distributions of MCs 2, 4, 5, and 6 are
shown in Figs 14a–17a, respectively, together with that of RBC before mixing, and those
after mixing in Figs 14b–17b. The sizes of MC 2 and MC 4 before mixing with RBC are
distributed between about 4 and 40�m with the maximum frequency value at the fraction
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TABLE 10 Average Diameter of Each
Microcapsule Redispersed in Distilled Water

Samples Diameter (�m)

MC 2 19.50
MC 4 15.23
MC 5 28.98

MC 6 29.22



with a diameter of about 12:5�m. The sizes of MC 5 and MC 6 before mixing with RBC
are distributed between 7 and 84�m with the maximum frequency value at the fraction wit
ha diameter of about 25�m. The size of RBC is distributed between 2 and 7�m. In Figs
14a–17a, the sum of the frequencies in the distributions of RBC and microcapsules is
adjusted to 100% in each figure. This adjustment was done as follows. The microcapsules
and RBC are mixed under the condition that the volume fractions of microcapsules and
RBC are, respectively, 9.84 and 1.64% (v/v). The size distributions of microcapsules and
RBC in Figs 14a–17a were normalized by taking into account the above volume fraction
ratio.

The mixtures of RBC and each type of microcapsule suspension were incubated for
15 min at 37�C. Figures 14b–17b show the size distribution of the mixture after incuba-
tion. By comparison of Fig. 14a with Fig. 14b, it is clearly seen that the fraction of RBC
disappears and the fractions between 40 and 70�m newly appear when RBC are incu-
bated with MC 2. This change in size distribution is considered to be caused by the
simultaneous adsorption of a certain portion of RBC on two microcapsule surfaces. This
type of adsorption of RBC on microcapsule surfaces bridges between two microcapsules
and then produces new fractions with larger diameters. This possibility is also confirmed
by the observation that the frequency of the fractions of microcapsules with diameters
between 10 and 20�m decreases by the incubation. Also, it was found that MC 4
interacts with RBC, although the interaction is weaker than that observed in the case
of MC 2, as shown in Fig. 15. After incubation, the fractions of RBC decrease and new
fractions with diameters between 40 and 70�m appear. From the comparison of Fig. 14
with Fig. 15, it was found that the interaction of microcapsule with RBC is suppressed
by PEGylation of the microcapsule surfaces.
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FIG. 13 Electrophoretic mobility of RBC. Symbols are experimental data measured as a function

of ionic strength in the suspending medium at pH 7.4 and at 37�C. The solid curve is a theoretical
one calculated with z1N1 ¼ �0:830 M, z2N2 ¼ 0:194 M, 1=� ¼ 0:841 nm, d ¼ 1:000 nm.



On the other hand, no changes in the size distribution of RBC were observed by
the incubation of RBC with MC 5, although the frequency of the fractions of RBC
increases, as shown in Fig. 16. Also, the frequency of the fractions of MC 5 decrease
after incubation. The increased frequency of RBC fractions can be explained by the
differences in refractive index between RBC and MC 5. The refractive index of MC 5
seems to be less than that of RBC, because the microcapsule membrane may be more
hydrophilic than the RBC membrane. Also, the size distribution of MC 5 did not change
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FIG. 14 Size distribution of MC 2, RBC, and their mixture. (a) MC 2 and RBC; MC 2 is shown
with striped columns. (b) The mixture of MC 2 and RBC after incubation.



with incubation and the new fraction which was observed in Figs 14b and 15b did not
appear after incubation.

The mixture of MC 6 and RBC also shows the same tendency, as observed in Fig. 17.
From Figs 16 and 17, it is clear that the surfaces of both MC5 and MC 6 doe not interact
with the RBC surfaces.
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FIG. 15 Size distribution of MC 4, RBC, and their mixture. (a) MC4 and RBC; MC 4 is shown

with striped columns. (b) The mixture of MC 4 and RBC after incubation.



A certain portion of RBC may disappear by hemolysis, when they are incubated with
MC 2 or MC 4. The data on hemolysis by measuring the absorbance at 540 nm were not
available, because it was confirmed by the following experiments that the hemoprotein
adsorbs on the microcapsule. RBC 50�m was redispersed in 3 mL of distilled water to
obtain complete hemolysis, and then each type of microcapsule was added to the solution.
After incubation at 37�C for 15 min, the suspension was centrifuged and the absorbance of

744 Makino

FIG. 16 Size distribution of MC 5, RBC, and their mixture. (a) MC 5 and RBC; MC 5 is shown
with striped columns. (b) The mixture of MC 5 and RBC after incubation.



the supernatant was measured spectrophotometrically at 540 nm. In all cases, the absorp-
tion at 540 nm was almost zero, and the microcapsules obtained at the bottom after
centrifugation were observed to be colored brown, while they were almost transparent
or white before being added to the solution obtained by the hemolysis of RBC.

From Figs 14–17, it is clear that the surfaces of MC 2 and MC 4 interact with RBC
surfaces, although those of MC 5 and MC 6 do not. This result was unexpected, because
the outer surfaces of MC 2 and MC 4 are negatively charged, while the surfaces of MC 5
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FIG. 17 Size distribution of MC 6, RBC, and their mixture. (a) MC 6 and RBC; MC 6 is shown

with striped columns. (b) The mixture of MC 6 and RBC after incubation.



and MC 6 are positively charged. These results suggest that the surface charges do not
control the interaction of the microcapsule surfaces with RBC surfaces.

It should be emphasized that microcapsules with soft surfaces (MC 5 and MC 6) do
not interact with RBC, even though the microcapsule surfaces are positively charged and
the surface of RBC is negatively charged. On the other hand, microcapsules with nega-
tively charged but harder surfaces (MC 2) interact with RBC to introduce hemolysis. The
membrane surface of MC 4, which is obtained by PEGylation of MC 2, becomes softer
than that of MC 1 so that the interaction with RBC is weakly suppressed. From these
observations, we have concluded that the dominant factor controlling the interaction
between RBC and the synthetic polymer is not their surface charges but the softness of
the surfaces. Therefore, it is considered that synthetic polymers are not recognized by
biological cells as foreign materials, if the polymer surfaces are soft and hydrophilic,
even though their surfaces are positively charged.
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Electrical Surface Properties and
Electrokinetics of Colloidal Particles:
Theory and Applications

RYSZARD SPRYCHA Sun Chemical Corporation, Carlstadt, New Jersey

I. INTRODUCTION

Colloidal systems containing finely dispersed particles of solids in liquids are commonly
met in everyday life, e.g., paints printing inks, polymer dispersions, photographic emul-
sions, pharmaceuticals, insecticides and pesticides, cosmetics, etc. Dispersion of solids can
be prepared in different ways, e.g., by precipitation and stabilization of colloidal size
particles or by comminution of large particles by grinding or milling. Whenever a new
solid/liquid interface is formed some rearrangement of electrical charges in the interfacial
region takes place so that the surface of the solid becomes charged.

The surface charge plays a very important role in stabilizing of colloidal dispersions.
In addition, systems containing charged particles are used in practice, e.g., in electrophore-
tic painting and coating or in printing inks (liquid toners). The electrical charge on the
surface of a solid can affect significantly such processes as adsorption at the solid/liquid
interface or the kinetics of surface reactions. The mechanism of surface charge formation
and distribution of charges in the interfacial region are important and interesting from
both theoretical and practical points of view.

The purpose of the present chapter is to discuss briefly: the origin of the electrical
charge at the solid/liquid interface in different systems; the structure of the electrical
interfacial layer (EIL); and electrokinetic properties of such systems. Section II outlines
the mechanisms of surface charge formation at different types of interfaces and experi-
mental methods for investigation of the EIL at the solid/liquid interface. The methods of
evaluation of some parameters of the EIL from electrokinetic data are discussed in Section
III. Finally, practical applications of electrokinetic measurements in selected areas are
overviewed in Section IV with special emphasis on the printing ink industry.

II. ORIGIN OF SURFACE CHARGE AT THE SOLID/LIQUID INTERFACE:
THE ELECTRICAL INTERFACIAL LAYER

In most cases, solid particles dispersed in a liquid carry on their surface net electric charge.
Because the entire system is electroneutral the surface charge is counterbalanced by an
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equal and opposite charge in the solution. The surface charge on the particle and counter-
charge in the solution form the so-called electrical interfacial layer (EIL). The mechanism
by which the surface of a solid particle acquires electrical charge depends on the type of
both the solid and the solution. For practical purposes, colloidal dispersions can be
divided into aqueous systems (water is a solvent of high dielectric constant, � 80) and
nonaqueous systems (mostly containing solvents of low dielectric constant, e.g., hydro-
carbons). The structure and properties of the electrical interfacial layer in different systems
have been extensively studied [1–40].

A. Aqueous Systems

The surface charge at the solid/electrolyte interface can be formed mainly as a result of:

. dissociation of surface functional groups

. adsorption of ions from solution

. ion exchange (clays)

Examples of different charging mechanisms in water are presented below. More details on
this subject can be found in the literature [1–11, 17–20].

1. Metal/Electrolyte Interface

Metal electrodes may behave as perfectly polarizable (no charge transfer across the inter-
face) or reversible (charges are transferred across the interface until the system reaches
equilibrium) electrodes. The mercury electrode is a good example of a polarizable elec-
trode. The surface of the metal may acquire a positive or negative charge, depending on
the externally applied potential. The mercury/electrolyte system has been widely used to
study the properties of the EIL because for this metal direct measurements of capacitance
as well as of surface tension of the externally polarized liquid metal are possible [21–23].

2. Ionic Crystal/Electrolyte Interface

The surfaces of ionic crystals (e.g., AgCl) cannot be charged by an externally applied
potential. For such systems, electrical surface charge can be formed by adsorption of
potential determining ions (constituents of crystal lattice). Thus, AgCl can carry positive
or negative net surface charge depending on the concentration of Agþ and Cl� ions in the
aqueous solution. The surface potential of AgCl is described by the Nernst equation and
changes by about 59.2 mV for every 10-fold increase in the concentration of potential
determining ions [22, 24–26].

3. Metal (Hydr)oxide/Electrolyte System

Potential determining ions for metal oxides and hydroxides are Hþ and OH� ions [2, 7, 8,
20. 27, 28]. This results from the fact that the surfaces of metal oxides are covered with
metal hydroxyl groups (-MOH) which have amphoteric properties and may accept or
donate protons in water, depending on the pH of the solution:

-MOHþHþ
$ -MOHþ

2 ð1Þ

-MOH $ -MO�
þHþ

ð2Þ
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As -MO� and -MOHþ
2 charged groups are not constituents of the crystal lattice of the

metal oxide their concentrations may vary significantly when the pH of the electrolyte
changes. Thus, the surface potential of oxides cannot be described by the Nernst equation
[3, 9, 15, 29, 30]. The deviation of surface potential from Nernst’s value depends on the
oxide type and extent of ionization of surface–MOH groups [17, 29].

B. Nonaqueous Systems

Solid particles dispersed in low-conductivity nonaqueous solvents can carry the electrical
surface charge. However, the mechanism of charging in such systems is different from that
in aqueous dispersions [31]. For example, particles of carbon black dispersed in benzene
containing calcium alkylsalicylate were positively charged [32]. Assuming adsorption of
alkylsalicylate ions on the particle (such a mechanism operates in aqueous systems) the
surface should carry a net negative charge.

Though the mechanism of surface charge formation in nonaqueous systems is less
understood than that in aqueous dispersions it is generally accepted that acid–base
(Brönsted) interactions between the surface of the particle and solvent/solute molecules
are responsible for surface charge development in such systems. In the system consisting of
both protic particles (PH) and solvents (SH) only, Lyklema [33] proposed the following
mechanism of particle charging:

PHþ SH $ P�
þ SHþ

2 ð3Þ

or

PHþ SH $ PHþ
2 þ S� ð4Þ

In the first case, the particle gains negative charge by donating protons to the solvent. The
particle can gain positive charge by accepting protons from the solvent, Eq. (4). Thus, for
a given system the sign of the surface charge depends on the acid–base properties of the
solid and solvent.

A similar approach regarding the mechanism of charging in low-conductivity media
(e.g., hydrocarbons) was proposed by Fowkes and coworkers [34–36]. In aprotic solvents,
particles can be charged by addition to the system of special chemicals that can be
adsorbed at the surface of the particle via acid–base interactions. The process of charging
takes place in three steps. For example, for acidic particles (AH) and basic additive (B), in
the first step basic additive adsorbs on to acidic sites of the solid particle:

AHþ B $ AH � � �B ð5Þ

In the second step proton transfer from acid solid to the basic additive takes place:

AH � � �B ! A � � �HB ð6Þ

Finally, desorption of basic additive carrying the proton from the surface to the solution
takes place, leaving a negatively charged solid particle:

A � � �HB ! A�
þHBþ

ð7Þ

The electrical properties of nonaqueous systems can be affected very strongly by even a
small amount of water. Because it is very difficult to remove water from a nonaqueous
system completely its presence should be taken into account in many practical applica-
tions. Dissociation of water (Hþ and OH� ions) can contribute to the charging in totally
aprotic systems.
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For aproptic particle (P) and solvent (S) the following mechanism of charging has
been proposed [37]:

Pþ SþHþ
þOH�

$ PHþ
þ SOH�

ð8Þ

or

Pþ SþHþ
þOH�

$ POH�
þ SHþ

ð9Þ

Thus, if surface of particle is more basic than solvent molecule reaction (8) dominates and
is responsible for particle charging. If solvent is more basic than particle surface than
reaction (9) will dominate in the system.

C. Structure of the Electrical Interfacial Layer

To describe the distribution of the electrical charges in the interfacial region early theories
used the double-layer (DL) models. The compact layer (flat condenser) model was pro-
posed by Helmholtz [21] and a diffuse-layer model by Gouy and Chapman [21–23], who
assumed that the surface charge is counterbalanced by a purely diffuse atmosphere of
charges. Due to the very limited applicability of such models more complicated models
have been developed [1–22, 38–44].

The triple-layer model (TLM) was first proposed by Stern [38] and developed by
Grahame [21] and others [1–30, 39–44]. Later, a four-layer model was proposed to take
into account the very strong specific adsorption of ions which were placed closer to the
surface than to the inner Helmholtz plane (IHP) [39]. Other authors also used multilayer
models for a more accurate description of the EIL structure [40–44].

Though the term ‘‘electrical double layer’’ is commonly used to describe the charge
distribution at the interfaces it seems that using the term ‘‘electrical interfacial layer’’ is
more appropriate. The latter term is very general and does not implicate any specific
distribution of the charges at the interface. Different parameters of the EIL can be deter-
mined by use of appropriate experimental techniques.

1. Surface Charge

The surface charge (�0) of a mercury electrode can be calculated from the theory of
electrocapillarity by using the Lippman equation [21–23]. For ionic crystals and metal
oxides the surface charge can be determined by a potentiometric titration method [12, 20,
25, 28, 45–46]. The surface charge density is calculated from the difference between the
amount of potential determining ions added to the dispersion and the amount of those
ions remaining in the solution. The potentiometric titration experiments are performed at
a constant concentration of so-called ‘‘indifferent electrolyte.’’ For sparingly soluble oxi-
des, potential determining ions (Hþ and OH�) can be consumed in the process of oxide
dissolution. Therefore, modified procedures of potentiometric titration are used to take
this effect into account [47, 48].

The charge density of particles dispersed in low-conductivity nonaqueous media can
be determined directly by separation of the particles from the liquid. Because the EIL in
low-conductivity solution is very thick [37] it is easy to remove particles by a simple
‘‘filtration’’ process. The liquid with entrained countercharges is collected in the container
connected directly to an electrometer [49]. More details on the determination of surface
change in nonaqueous low-conductivity media can be found in the literature [37, 49–53]
and in Section IV of this chapter.
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2. Surface Potential

The potential of metal electrodes can be measured directly. Such measurements for oxides
are rather difficult. Recently, directly measurements of the surface potential ( 0) were
performed for oxides using the ion-sensitive field effect transistor [54] and other techniques
[28, 55]. More detailed discussion on the surface potential can be found elsewhere [12, 22,
28, 56].

3. Electrokinetic Potential

The zeta (electrokinetic) potential, (�) i.e., the potential at the effective shear plane between
the moving and stationary parts of the EIL, cannot be measured directly. However, the
zeta potential can be calculated from electrokinetic measurements by using the appropri-
ate theory describing the given phenomenon. All electrokinetic phenomena are due to
relative motion between the charged solid surface (including the compact immobile part
of the EIL) and the solution containing the diffuse layer. This motion may result, e.g.,
from an applied electric field (electrophoresis), force liquid flow (streaming potential) or
other factors [18, 22, 56–62].

Though electrokinetic effects can be measured relatively easily the conversion of
experimental electrokinetic data into zeta potential is not a trivial matter. An excellent
review paper on this subject has been published by Hidalgo-Alvarez [58]. More details on
different experimental techniques for zeta-potential measurements can be found in the
literature [56–60] as well as in other chapters of this book.

Microelectrophoresis, electrophoretic light scattering, and electroacoustic methods
are at present most frequently used to measure zeta potential in aqueous as well as non-
aqueous systems [59, 60]. It is, however, well known that electrokinetic measurements in
low conductivity and low dielectric constant media are difficult [60–63].

Zeta-potential measurements can be used for many purposes in fundamental
research [64–101] as well as industrial research [102–117]. Examples of the application
of electrokinetic data in basic research will be discussed in Section III. Practical applica-
tions of zeta-potential measurements in different industrial areas will focus mainly on
those related to the printing ink industry (see Section IV).

III. EVALUATION OF EIL PARAMETERS FROM ELECTROKINETIC DATA

Electrokinetic data can be used to evaluate certain parameters of the EIL at the solid/
solution interface. For example, one of the important parameters in the surface complexa-
tion model (SCM) of the EIL [2, 7, 9, 18] is the surface ionization constant. These con-
stants can be determined graphically [1, 7, 9] or numerically [17, 118, 119] from
potentiometric titration data, or graphically from electrokinetic data [120–122].

A. Estimation of Surface Ionization Constants

According to the SCM model of the EIL for oxides [2, 7, 9, 18] the following four reactions
are responsible for the development of surface charge:
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-MOHþ
2 $ -MOHþHþ

S ð10Þ

-MOH $ -MO�
þHS

þ
ð11Þ

-MOHþ
2 X

�
$ -MOHþHþ

S þX
�

� ð12Þ

-MOHþYþ
� $ -MO�Yþ

þHþ
S ð13Þ

Reactions (10) and (11) describe the process of dissociation of surface metal hydroxyl
groups (-MOH). Reactions (12) and (13) represent the process of surface complex forma-
tion between surface hydroxyl groups and anions (X�) or cations (Yþ) of the supporting
1 : 1 electrolyte YX – subscripts ‘‘s’’ and � denote the surface and IHP, respectively [2, 7].

Assuming that the concentration of Hþ ions within the EIL can be described using
the Boltzman equation [1, 2, 7] the ionization constants in the logarithmic form for reac-
tions (10) and (11), respectively, can be expressed as follows:

pK int
a1 ¼ pH þ log �MOHþ

2

� �
� log �MOH½ � þ

e 0

2:3kT
ð14Þ

pK int
a2 ¼ pH� log �MO�

½ � þ log�½MOH� þ
e 0

2:3kT
ð15Þ

where k is the Boltzman constant and T denotes absolute temperature. If ½-MOH. ½-MO�
�;

and ½-MO�
� components in Eqs (14) and (15) are known, then the acidity constants can be

obtained by extrapolation of the respective acidity quotients:

pQa1 ¼ pHþ log �MOHþ
2

� �
� log ½�MOH� ð16Þ

pQa2 ¼ pH� log �MO�
½ � þ log �MOH½ � ð17Þ

to the point of zero charge (p.z.c.) where surface potential  0 is equal to zero. For
indifferent electrolytes the values of the p.z.c. and isoelectric points (i.e.p.) coincide [2,
7, 14, 24].

According to the SCM model of the electrical interfacial layer the diffuse-layer
charge (�d) is determined by ½-MO�

� and ½-MOHþ
2 ] components [2, 7, 120]:

�d ¼ B �MOHþ
2

� �
� �MO�
½ �

� �
ð18Þ

where B is a conversion factor from mol dm�3 to Cm�2.
Assuming that, for low ionic strength of the electrolyte solution (c � 10�2 mol dm�3)

the potential at the onset of the diffuse layer (�d) is equal to the electrokinetic potential
[123–126], then the diffuse-layer charge can be calculated from Gouy–Chapman theory
[18, 21, 22].

�d ¼ �11:74
ffiffiffi
c

p
sinh

ze�

2kT
ð19Þ

where c is electrolyte concentration. The concentrations of [-MOHþ
2 ] and ½-MO�

� groups
are comparable only in the vicinity of the p.z.c. [127, 128] and at a certain distance from
the p.z.c. one can assume that

�d � �B �MO�
½ � ð20Þ

for pH > pHpzc, and
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�dþ � B �MOHþ
2

� �
ð21Þ

for pH < pHpzc. For low electrolyte concentrations one can use as a first approximation
that ½-MOH� � Ns (total number of surface sites available per unit area [7, 9]. The value of
Ns can be evaluated experimentally for a given solid [2, 18, 127]. Thus, from Eqs (16)–(21)
the acidity quotients can be expressed as follows:

pQa1 � pHþ log
�dþ
B

� logNs ð22Þ

pQa2 � pH� log
j�d�j

B
þ logNs ð23Þ

These acidity quotients can be calculated for different values of pH and electrolyte con-
centration, using electrokinetic data, and then plotted as a function of pH. To eliminate
the effect of electrolyte concentration on the surface ionization constants the so-called
double extrapolation technique [2, 7, 9] can be applied (extrapolation to pHpzc and to
c ¼ 0). An example of such straight-line extrapolation for an alumina/KNO3 system is
presented in Fig. 1.
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lated ones. (From Ref. 120; copyright # 1984 Academic Press, Inc.)



From Eqs (14) and (15) and (22) and (23) the value of the surface potential can be
evaluated; for pH < pHpzcðiepÞ:

e 0

2:3kT
� pK int

a1 � pQa1 ð24Þ

and for pH > pHpzcðiepÞ:

e 0

2:3kT
� pK int

a2 � pQa2 ð25Þ

It was found (from the electrokinetic data for different oxides) that the surface potential
changed by about 53 mV for SiO2, 56 mV for TiO2, 56 mV for Al2O3, and 54 mV for
FeOOH per pH unit 10, 28, 120, 122. Moreover, far enough from the p.z.c.(i.e.p.) those
values were almost independent of the electrolyte concentration.

For more accurate evaluation of the surface potentials, especially in the vicinity
of the i.e.p., the so-called ‘‘curvilinear’’ interpolation method [121] can be used instead
of the straight-line extrapolation technique described above. An example of such inter-
polation for the alumina/KNO3 system is shown in Fig. 2. As seen for 0:01mol dm�3

electrolyte solution all experimental points lie on the curve. However, for diluted
electrolyte solution (0.1 mmol dm�3) the experimental points in the pH range 8–9
deviate from the interpolated curve because in this range the assumptions expressed
by Eqs (20) and (21) are not valid [121]. Using the data from Fig. 2 the surface
potentials of alumina for different ionic strengths were evaluated [121]. The results
are presented in Fig. 3. As observed, far enough from the i.e.p. the slope of the curves
does not depend on electrolyte concentration. However, in the vicinity of the i.e.p. the
surface potential change for higher electrolyte concentration is much less than that
observed for diluted electrolyte solution. This is in agreement with literature data for
oxides [15–29].

756 Sprycha

FIG. 2 pQa1 versus pH plot for Al2O3=KNO3 system obtained by curvilinear interpolation
method. (From Ref. 121; copyright # 1987 Academic Press, Inc.)



Other investigators used the approach presented in this chapter for different systems.
They found that such analysis of zeta-potential data could be useful in evaluation of
surface ionization constants as well as for obtaining information on the surface potential
versus pH for oxides [122]. The plot of calculated surface potential for a fused silica sample
versus pH for different electrolyte concentrations is presented in Fig. 4. As seen, the
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FIG. 4 Surface potential for a fused silica versus pH for SiO2=KCl system. (From Ref. 122; copy-
right # 1992 American Chemical Society.)



surface potential changed by � 54mV per pH unit, and the shape of the curves was in
good agreement with model calculations for silica [29].

B. Evaluation of Shear-Plane Separation Distance

The location of the shear plane within the EIL is not known and cannot be measured
directly. The evaluation of the slipping plane location, though possible, is not an easy task
and is based on some reasonable assumptions. Some authors concluded that this plane
coincides with the outer Helmholtz plane (OHP), i.e.,  d ¼ � [2, 120, 123–126] while others
assumed the slipping plane to be farther out from the OHP [19].

Eversole and coworkers [129, 130] were the first who evaluated slipping-plane
separation distance for glass samples using the Gouy–Chapman theory of the diffuse
electrical layer. The values obtained by them ranged from 24 to 110 Å, depending on
the type of electrolyte used. Later on it was shown that those values were considerably
overestimated. Eversole and coworkers [129, 130] assumed applicability of the diffuse-
layer theory in the entire interfacial region, and independence of surface potential and
separation distance (x) from the electrolyte concentration. They used data obtained for
diluted solutions, but high pH values (high zeta potentials). Such an approach resulted in
an underestimation of surface potential.

Sprycha and Matijevic [131] used the same approach to evaluate the slipping-plane
separation distance for silver iodide (c � 0:01mol dm�3) and metal oxides (c � 0:001mol
dm�3) by analyzing electrokinetic data in the close vicinity of the i.e.p. Under such con-
ditions the entire EIL (low electrolyte concentrations and low surface potentials) most
closely corresponds to the diffuse-layer model. In addition, for silver iodide and some
metal oxides, independent methods of surface potential determination can be used as a test
of validity of this approach.

According to the Gouy–Chapman theory of the EIL [18, 21, 22]:

ln tanh
ze�

4kT

� �
¼ ln tanh

ze 0

4kT

� �
� 
x ð26Þ

where 
 denotes the reciprocal of the Debye length [21, 22], which can be expressed as
follows:


 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�e2nz2

�kT

s
ð27Þ

where e is an electronic charge, n denotes concentration of ions per unit volume, z is the
valency of the ions, and � denotes dielectric constant of the solvent. At room tempera-
ture (T ¼ 298K) and assuming � ¼ 78:8 for water in the bulk, Eq. (26) can be written as
[131]

log tanh
�

102:8
¼ log tanh

 0

102:8
� 0:142x

ffiffiffi
c

p
ð28Þ

If  0, x, and � in the region between the solid surface and the shear plane are indeed
independent of the electrolyte concentration the plot of the left-hand term in Eq. (28)
versus

ffiffiffi
c

p
should yield straight lines. In such a case the separation distance x can be

determined from the slope of the straight line, and the surface potential value from the
intercept of the straight line with the y axis.
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Examples of such plots obtained for silver iodide and for chromium hydroxide and
titania (rutile) are presented in Figs 5 and 6, respectively. Dashed lines represent extra-
polated parts of the curves. As seen in Fig. 5, in the concentration range 0–10�2

mol dm�3 the EIL can be satisfactorily described by the Gouy–Chapman model in the
vicinity of the p.z.c. (a straight line). For higher electrolyte concentrations and far from
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FIG. 5 Plot of log tanh (�=102:8) versus c1=2 for AgI=KNO3 system. (From Ref. 131; copyright #
1989 American Chemical Society.)

FIG. 6 Plot of log tanh (�=102:8) versus c1=2 for chromium hydroxide and titania (rutile) for two
different pH values. (From Ref. 131, copyright # 1989 American Chemical Society.)



the i.e.p. the presence of the Stern layer causes deviations from the linear dependence of
the plot. The shear plane separation distance for AgI calculated from Fig. 5 is � 17 Å.
This value differs from the � 6 Å value commonly accepted for AgI [24, 126]. The
discrepancy arises from the value of the dielectric constant for water used in Eq. (28).
Due to the ordering of water molecules at the AgI/water interface the value of the
dielectric constant for the ordered layer is about 5–10 [24, 126]. When this lower
value of � is substituted in Eq. (27) the calculated separation distance is � 5–6 Å, in
agreement with literature data [24, 126].

Using data from Fig. 6 the slipping-plane separation distance calculated for chro-
mium hydroxide and rutile was � 40 Å for both oxides. For oxides, in addition to a
strongly bound first layer of water molecules (� � 6) a secondary layer of water is also
present with an estimated � of � 20–40 [59]. Assuming an average value of � ¼ 15–20 in
the immobile region between the surface and the shear plane, the value of the slipping-
plane separation distance calculated from Fig. 6 is about 17–20 Å. This value is similar to
that evaluated for colloidal hematite from adsorption data [11] and in line with the value
used in the TLM model of the EIL [2].

The shear-plane separation distance is sensitive to the value of the solvent dielectric
constant used in the calculations, Eq. (26). To visualize how � affects the value of the
separation distance for AgI, TiO2, and CrðOHÞ3 the plot of x versus � is presented in Fig.
7. As seen, the slipping plane for metal oxides is located considerably farther from the
surface than that for AgI.

Analysis of electrokinetic data for oxides in the vicinity of the i.e.p. can furnish some
information regarding the relationship between  d and � potentials. Using experimental
electrokinetic data for chromium hydroxide and following the analysis by Smith [132] it
was shown that the assumption used in the literature that  d ¼ � is justified for low
potentials and low electrolyte concentrations [131].
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compact part of the EIL for chromium hydroxide, titania, and silver iodide. (From Ref. 131; copy-
right # 1989 American Chemical Society.)



IV. APPLICATION OF ELECTROKINETIC MEASUREMENTS IN THE
PRINTING INK INDUSTRY

Electrical properties of colloidal systems play a very important role in numerous practical
applications. They contribute significantly to the stability and rheology of colloidal dis-
persions, emulsions, or foams. Zeta-potential measurements are widely used in the indus-
try and industrial research related to the recovery of mineral ores by flotation [115, 131–
135], paper making [108, 116, 136–138], pigments, and printing inks [106, 109, 114, 139–
145], to mention a few. In this section a few examples of the application of electrokinetic
measurements related to the printing ink industry will be briefly discussed.

A. Stability of Pigment Dispersions and Inks

Pigment dispersions and printing inks are examples of concentrated and very complex
colloidal systems. Printing ink consists of pigment, resins, solvents, and different additives.
Properties of inks and dispersions may vary considerably. Many commercial products
contain organic solvents while others are water based. Some of these solvents may be
toxic and harmful for humans, e.g., toluene. Thus, there is growing pressure on the graphic
arts industry to reduce or eliminate the use of toxic organic solvents and switch to water-
based formulations. Depending on the area of application the printing inks may have
relatively low concentrations of pigments and binders (low viscosity), e.g., ink-jet ink or
gravure inks, or very high concentrations of pigments and resins, e.g., lithographic paste
inks (high viscosity). The stability of inks is a key issue in achieving good printability and
color development. In addition, it determines the shelf-life of the product.

Colloidal dispersions can be stabilized by different mechanisms such as electrostatic
or steric stabilization. If colloidal particles carry high surface charge then electrostatic
repulsion between them may be strong enough to prevent aggregation. The same can be
achieved by adsorption of a thick layer of polymeric material (polymers, surfactants). The
most stable systems are formed when both mechanisms of stabilization are involved, so-
called electrosteric stabilization [57, 146–150].

The first theory that described the stability of lyophobic colloidal systems in terms of
attraction–repulsion forces (Van der Waals’ attraction forces – electrostatic repulsive
forces) was the DLVO theory derived by Deriaguin, London, Vervey, and Overbeek
[149, 150]. The DLVO theory can predict the effect of electrolyte concentration on the
stability of dispersions (Shultze–Hardy rule) and can explain the phenomenon of weak
reversible flocculation at the ‘‘secondary minimum’’ [22, 56, 149, 150]. The existence of this
minimum is very important from a practical point of view. Colloidal particles flocculated
in secondary (very shallow) minimum can be very easily redispersed. On the other hand,
the structure formed is strong enough to prevent particle sedimentation and keep the
system in the dispersed state for a long time (paints, inks). Though the DVLO theory
was one of the most important achievements of colloidal science in the twentieth century
and was successful in the description of lyophobic colloids, it failed to predict the stability
of lyophilic colloidal dispersions and the effect of surfactant addition on the stability of
lyophobic systems [57, 149, 150].

Different dispersants and dispersing techniques are used to prepare pigment disper-
sions, depending on the chemistry of pigment and solvent used [60]. Oxide-type pigments,
e.g., TiO2, CaCO3, or Fe2O3 can be successfully dispersed in water using inorganic (e.g.,
polyphosphates) or organic (e.g., polyacrylate) polyions [60]. In the first case, electrostatic
charge and high zeta potential are responsible for dispersion stabilization. The latter case
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is an example of electrosteric stabilization. For the pigment dispersion to be electrostati-
cally stabilized the pigment particles must be charged. The mechanisms of solid surface
charging in aqueous and nonaqueous systems were briefly discussed in Section II.

The mechanism by which pigment dispersion is stabilized has to be carefully selected.
Most water-based inks are formulated using anionic polymers (acrylates, maleates, sulfo-
nated polyesters, etc.), therefore pigment dispersions designed for such systems must be
stabilized by anionic or nonionic polymers (surfactants) to achieve good compatibility.
Polymers and pigments which carry opposite charges cannot be used together to formulate
ink.

The sign and value of the electrical charge of pigment particles can be determined by
one of the electrokinetic methods. Because inks and pigment dispersions are concentrated
systems the experimental technique that can handle such a system without dilution is
desired and recommended for use, e.g., electrokinetic sonic amplitude [60].

Electrokinetic properties of pigments depend strongly on surface treatment [139,
140, 151, 152]. Many pigments are treated to ease their dispersibility and improve ink
stability or change other properties such as chemical resistivity, weathering, durability,
etc.. Some pigments may be abrasive and cause excessive wear of printing plates or the
gravure printing cylinder. Larger pigment aggregates can accelerate wear processes very
significantly. Thus, keeping such pigments well dispersed in the submicrometer size range
is very important for printers. Treatment pigments showing high affinity towards polymers
(binders) used in printing inks will usually exhibit a very high degree of dispersion (lack of
aggregates) not only in the liquid ink but also in the dry ink film. Good pigment dispersion
is very important for achieving high gloss and color strength of the print. Different
approaches were used to describe the polymer/pigment interactions in practical systems.
Some of them considered pigment/polymer interactions and the process of pigment dis-
persion in terms of surface energies of the pigments and polymers used [60, 153].

Inorganic pigments are very often coated to change their surface properties, e.g.,
with silica or aluminum oxide. In such a case, the electrokinetic properties of coated
pigments change and approach that characteristic for a given coating [139]. For example,
the i.e.p. of silica (pHiep ¼ 2) is shifted to the higher pH values when silica is coated with
alumina. The shift depends on the coverage of the silica surface with aluminum oxide.
When coverage is complete the i.e.p. of such particles is the same as that for alumina
(pHiep ¼ 9). If basic particles (pHiep > 7) are coated with a more acidic coating than the
i.e.p. of coated material will be shifted towards lower pH values. This technique is com-
monly used for surface treatment of titania and iron oxide pigments [153–156]. The effect
of surface coating of the values of the zeta potential and i.e.p. of the particles of chromium
hydroxide and hematite is presented in Figs 8 and 9, respectively. As seen in Fig. 8,
contamination of the chromium hydroxide surface with silica shifted the i.e.p. from the
original value (pHiep ¼ 8:4) to lower pH values (pHiep ¼ 7:2). Similarly, the i.e.p. of
hematite particles (pHiep ¼ 6:5) coated with chromium hydrous oxide was shifted to the
higher pH values (pHiep ¼ 7:5). The latter value for coated particles is the same as that for
pure chromium hydrous oxide [69]. Detailed information on the objectives of surface
treatment of pigments can be found in the literature [60, 154].

To improve the dispersibility of organic pigments their surfaces can be treated with
substances which anchor with one end of the molecule attached to the pigment surface and
expose functional groups (e.g., carboxylic, amino) to the air. Surface functional groups are
easily accessible for interactions with solvent and can render surface charge to the particle.
Electrokinetic properties of coated organic pigments depend on the chemistry of treatment
applied [60, 152]. Surface treatment can be performed at different stages of pigment
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manufacture. There is a vast patient literature available on surface treatment of pigments,
e.g. [157–159].

There is a special class of pigment dispersants called ‘‘hyperdispersants’’ [160, 161].
These substances are polymeric materials which were designed specifically to anchor very
strongly on the surface of a given pigment and form a very effective steric layer protecting
pigment particles against flocculation. Examples of hyperdispersants are fatty polyesters
containing carboxylic functionality, fatty polyureas, or polyurethanes. Hyperdispersants
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FIG. 8 Electrophoretic mobilities of chromium hydroxide particles versus pH: pure sample (*);
sample contaminated with silica (&). (From Ref. 131; copyright # 1989 American Chemical

Society.)

FIG. 9 Electrophoretic mobilities of hematite, hematite coated with chromium hydrous oxide, and
pure chromium hydrous oxide particles versus pH. (From Ref. 69; copyright # 1988 American

Chemical Society.)



are widely used in the printing ink industry to make high-strength pigment bases of the
desired rheological properties. They allow for reduction of processing costs and can
increase the capacity of the plant [160, 161].

B. Liquid Toners

Liquid toner is a special type of ink designed to be used to in electrophotographic printing
as an alternative to dry toning (‘‘xerography’’). The process of liquid development of a
latent image was first proposed by Metcalfe [162]. In the printing devices using liquid
toners a latent image is created on the photoconductive insulating surface of a cylinder as
a pattern of electrostatic charges. The process of image development is based on electro-
phoretic transfer of charged pigmented toner particles to the charged sites of the cylinder.
The image on the cylinder and the colloidal toner particles have opposite charges. The
developed image from the cylinder is then transferred to paper. Liquid immersion devel-
opment has some advantages over the dry toning process. For example, high resolution
can be achieved by use of fine colloidal toner particles. Detailed information on liquid
immersion development processes can be found elsewhere [51–53, 163, 164].

Liquid toner consists of pigment particles dispersed in low-conductivity solvent
containing polymer (for stabilization, fusing), dispersant, and charge-control agent. The
materials used to make ink must meet special requirements [51].

The solvent has to be an insulating liquid of very low conductivity (resistivity greater
than 109�=cm�1 to prevent the latent image from discharging. In addition, the solvent
should have very low viscosity (to allow fast migration of toner particles to the surface), to
be safe for users (high flash point, nontoxic, odorless), and to be inexpensive. Some
aliphatic hydrocarbons meet these criteria and are used in liquid toners.

Different types of pigments are used in liquid toners, depending on the color. they
may be inorganic or organic pigments. The way of their manufacture is protected with
patents. Pigments also have to meet special requirements regarding color, lightfastness,
resistance, low bleed, and others.

A polymer (dispersant) used in liquid toner should ensure good pigment dispersion,
protection of particles against flocculation, and fixing of the toner particles to the sub-
strate. These materials may be natural or synthetic and have to adsorb very strongly on the
pigment surface. Many of the synthetic materials are alkyl methylacrylate-based copoly-
mers.

The main purpose of using ‘‘charge-control agents’’ in liquid toners is to give the
toner particles electrical charge so that the electrophoretic deposition of particles is pos-
sible. A variety of different charging agents can be used such as metal soaps, metal
resinates, surfactants, etc. The mechanism of charging in nonaqueous systems was briefly
discussed in Section II of this chapter.

There are three charged species in the liquid toner: toner particles, coions, and
counterions. For effective image development it is important that the number of coions
is relatively low so that mostly pigment particles are electrophoretically transferred to the
surface. The charge density on pigment particles is a very important parameter character-
izing liquid toners. Usually, the so-called Q=m (charge-to-mass ratio) is used to character-
ize toners because this value can be easily measured [51–53].

The electrokinetic charge on the toner particle can be expressed as follows [51]:

Q ¼ 4���r ð29Þ

where, r is the radius of the toner particle. The mass of that particle is
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m ¼
4

3
�r3 ð30Þ

where  is the toner particle density. By combining Eqs (29) and (30) one obtains:

Q

m
¼
3��

r2
ð31Þ

Equation (31) clearly shows that for a given system (r ¼ constant,  ¼ constant, and
� ¼ constant) the Q=m value is a measure of the zeta potential of the particles. For fast
development of the latent image the Q=m should be high, but some limitations also apply
[51].

One of the methods for measuring Q=m values for toners is the plate-out technique
[51–53] in which the electrical current versus time is measured during the deposition of
toner particles in a special cell. This allows for calculation of the total charge that passes
through the system. The amount of toner particles deposited on the electrode is deter-
mined gravimetrically. Having these two values the Q=m parameter can be easily calcu-
lated. Though the above method of electrokinetic characterization of toner particles seems
to be very simple the relationships between particle charge, mobility in the electric field,
and zeta potential in low-conductivity media are rather complicated [37, 50–52]. Detailed
studies showed that the electrophoretic mobility of charged particles in nonaqueous media
depended on the time the measurement was performed after the electric field was applied
[61]. The results obtained for carbon-black particles and two different concentrations of
the charge-control agent [poly(isobutylenesuccinimide), OLOA 1200, by Chevron] are
presented in Fig. 10. According to the authors [61], to make a claim that the particles
in nonaqueous media carry the net electrical charge, their measured mobility has to be
constant versus time or its value extrapolated to zero time should be greater than zero.
They also observed that the values of extrapolated zeta potential may depend on the cell
design [61]. The plots of zeta potentials versus concentration of charge-control agent for
two different cell designs are presented in Fig. 11.

It is noteworthy that the EIL that develops in low-conductivity solvents is signifi-
cantly different from that in aqueous solutions. Because in a nonaqueous system the
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FIG. 10 Electrophoretic mobility of carbon black particles versus time from filling of the cell for

two suspensions containing different concentrations of the charge-control agent (OLOA 1200).
(From Ref. 61; copyright # 1992 American Chemical Society.)



dissociation of electrolyte is very limited, the number of ions n in Eq. (27) is very low. The
lowering of n in low-conductivity media considerably surpasses the lowering of the dielec-
tric constant so that the value of 
 in Eq. (27) is significantly lower than that for aqueous
systems. Due to the low value of 
 the ‘‘thickness’’ (1=
) of the EIL [21–27, 56, 57] in low-
conductivity media is very large.

C. Lithographic Printing

Lithography is one of the major printing processes. The principle of the process is based
on the difference in surface properties between image and nonimage areas of the printing
plate. In conventional lithography the image area is oleophilic and thus it shows very high
affinity towards lithographic inks (oil based) and very low affinity towards water (water
repellent). The nonimage area is hydrophilic (high affinity towards water) and oil repellent
when wet. The image and nonimage areas are in the same plane on the printing plate.
During printing the plate before inking has to be damped with water (fountaining/dam-
pening solution) to form a thin film of water on the nonimage area. The wet nonimage
area is now ink repellent. Water film applied by the damping system to the image area
would break almost immediately into tiny droplets of water, leaving uncovered ink-accept-
ing surface. When ink film is applied to the damped plate by the inking roller only image
areas of the plate will be covered with the ink. Ink from the image area can be transferred
directly to the substrate in the nip of the printing press. The process of direct lithographic
printing (plate in direct contact with substrate) is nowadays rather rare [164, 165]. Most
printers use offset process in which the image from the printing plate is at first ‘‘offset’’ to
the blanket roller and then transferred from the rubber blanket to the paper. Different
types of printing presses and damping systems are available on the market [164, 165].

For good printability a proper ink/fountain solution balance has to be achieved. The
tolerance of a given system for water, the so-called water window, depends on the chem-
istry of the lithographic ink and fountain solution used [165–168]. The main function of
the dampening solution is to keep nonimage areas of the printing plate clean and ink
repellent. New plates are covered with a thin layer of highly hydrophilic desensitizer, e.g.,
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FIG. 11 Zeta potential of carbon black particles versus concentration of charge-control agent

(OLOA 1200) measured in a parallel-plate cell (þ) and using Delsa 440 instrument cell (~).
(From Ref. 61; copyright # 1992 American Chemical Society.)



gum arabic. The thin layer of gum arabic would be worn very quickly during printing.
Thus, all fountain solutions contain desensitizer as a main component. Other additives can
also be used in the fountain solutions, depending on the particular task.

A fountain solution is not necessary in the ‘‘waterless’’ lithographic process.
Formulas for waterless inks are different from the conventional ones. Also, the printing
plate is designed and manufactured differently. The image area of the plate is receptive to
waterless ink, but the nonimage area covered with special silicone polymer is ink repellent.
Thus, lithographic printing without dampening solution is possible. Both conventional
and waterless processes have some advantages and disadvantages. More details on litho-
graphic printing can be found in the literature [164–173].

Due to the complexity of the lithographic systems it is very difficult to predict the
performance of a given ink on the press from laboratory tests [165–173]. Among different
experimental techniques used to characterize the interactions between the ink, plate, and
fountain solution, electrokinetic methods also caught the attention of researchers [112,
169, 170].

Virtanen and coworkers [169, 170] used zeta-potential measurements in a rectangular
cell [174] to study the effect of pH and the concentration of surfactants and calcium ions in
the fountain solution on ink performance. They observed ‘‘charge reversal’’ at higher
concentrations of calcium ions in the ink/fountain solution system. Calcium ions can
migrate from the coated papers (coating contains calcium carbonate) to the acidic foun-
tain solution. They can be subsequently adsorbed on different offset material surfaces
(including ink and plate) and change their surface properties. The authors claim that
the streaming potential technique they used [169, 170] yielded valuable information
about interactions in the ink/plate/fountain solution system.

Brito et al. [112] and Kuehn [175] used electrokinetic measurements (streaming
potential technique in a rectangular cell) to investigate the surface properties of printing
lithographic plates. They found that the zeta-potential measurements could provide a
sensitive measure of the nature of the surface groups on the surface of the printing
plate [112] and a better understanding of the interactions between the printing plate and
fountain solution [175].
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Electrokinetic Investigations of Clay Mineral
Particles

IVAN SONDI and VELIMIR PRAVDIĆ Ruder Bošković Institute, Zagreb, Croatia

I. INTRODUCTION

The term clay (or clays) is used in soil science to describe any naturally occurring inorganic
materials composed primarily of fine-grained minerals of particle size less than 2�m. The
term clay minerals refers to a specific group of layer-type aluminosilicate minerals, which
contain structural hydroxyl groups and belong to the general class of phylosilicates [1].
They are very fine particles or crystals, often colloidal in size, and usually plate-like in
shape, less commonly tabular or scroll shaped. Because of their fineness they have the
surface chemical properties of colloids. Due to their overwhelming diversity, their struc-
tural properties, chemical composition, and related unique surface chemical properties,
clay minerals are fascinating colloid systems, which have been studied extensively from
various aspects and for various purposes.

Some typical properties of clay minerals such as plasticity, swelling (lattice expan-
sion), ion exchange, high specific surface area, and adsorption of organic and inorganic
components, make them suitable for many practical applications. Therefore, they are
widely used in many industrial products and processes [2–4].

Clay minerals are the main components of sediments and suspended matter in nat-
ural waters. Chemical processes in soils and recent sediments are largely determined by
reactions at the surface of their mineral components [5–8]. In terms of adsorption of
organic and inorganic compounds, clay minerals are the most active inorganic constituents
of soils, sediments, and suspended matter. Therefore, they play a significant role in the
chemical–biological transformation, transport, and deposition of contaminants in the
natural environment [9–12].

Furthermore, layer aluminosilicates, such as clay minerals, catalyze numerous
organic reactions [13–16]. Accordingly, the role of clay minerals in prebiotic chemistry
was significant as chemical microreactors in selectively adsorbing and catalyzing reactions
of amino acids [17–19]. Alvarez et al. [20] have shown that the adsorption of DNA on clay
surfaces provides protection against biodegradation, but does not eliminate the ability to
amplify DNA by the polymerase chain reaction. These observations have significant
paleontological, archeological, and anthropological implications for the detection of
ancient DNA. Bishop and Philip [21] have proposed a role for clays in kerogen formation.
According to them, following mineral dissolution of sediments, organic material adsorbed
on clays may give rise to the formation of an insoluble polymer, with many of the char-
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acteristics of amorphous kerogen. All these findings indicate the importance of surface
properties and, indeed, of charge formation at the clay particle surfaces.

The aim of this chapter is to discuss the surface characteristics and colloidal behavior
of clay mineral particles, in view of their electrokinetic phenomenology, physicochemical
processes at clay solid/liquid interfaces, and finally, their role in the adsorption, transfer,
and deposition of organic and inorganic compounds in natural environments. The review
is limited to naturally occurring clays, clay minerals extracted from these, and the factors
that regulate their colloid stability in dilute suspensions. The presentation of electrokinetic
data for model clay minerals in the presence of fulvic acids (FAs) and some artificial
polymers such as poly(acrylic acids) (PAAs) describes the structure and properties of
the clay/aqueous electrolyte solution interface in a natural aquatic environment.

II. CHEMISTRY AND STRUCTURE OF CLAY MINERALS

Clay minerals are hydrous aluminosilicates with magnesium- and iron-substituting alumi-
num in varying degrees, and with exchangeable alkali and alkaline earth elements as
potentially essential constituents. These substitutions in the basic aluminosilicate structure
cause a wide diversity in chemical composition and structural characteristics of clay
minerals. It is almost impossible to find in nature two clay specimens that are absolutely
identical in structure and chemical composition. Structural parameters and chemical com-
positions make distinctions among clay minerals. Basically, the crystalline clay minerals
are composed of continuous two-dimensional layers of silica tetrahedra arranged in a
hexagonal form (siloxane layer), condensed with two-dimensional aluminum or magne-
sium hydroxyl octahedral layers, well known as gibbsite and brucite layers. In most clay
minerals these structural units are superimposed in different ways. For additional infor-
mation and a detailed discussion on the structures and chemistry of crystalline clay miner-
als the reader is referred to specialized literature [22-24]. We will consider only the basic
structures of most common clay minerals, which describe the clay mineral systems that
have been most extensively used as models in colloid chemistry.

Several characteristics are important for the classification of clay minerals: (1) struc-
tural arrangement of layers, (2) chemical composition of the octahedral layer, and (3) type
of chemical bonding between the layers [25]. According to Brown et al. [24] there are six
main structural groups of layer silicate mineral: (1) kaolinite–serpentine, (2) pyrophyllite–
talc, (3) mica, (4) smectite–vermiculite, (5) palygorskite–sepiolite, and (6) the chlorite
group.

According to the structural arrangements and numbers of tetrahedral and octahedral
layers combined, phyllosilicates can be classified into three layer types. In the case when a
tetrahedral siloxane layer is linked to one dioctahedral (gibbsite) or trioctahedral (brucite)
layer, the structure is known as a 1 : 1 layer silicate. The term dioctahedral means that only
two of the three possible positions in the octahedral layer are occupied by trivalent
aluminum ions. In trioctahedral clay minerals, all three possible positions in the octahe-
dral layer are occupied by magnesium in order to achieve the charge balance. The layers
are uncharged and bonded together partly through van der Waals’ forces and partly
through hydrogen bonds from the hydroxyls of the octahedral sheet to the oxygens of
the next silica sheet. The most important species of this kaolinite–serpentine group is
kaolinite, a dioctahedral nonswelling clay mineral. The extent of atom substitution in
the kaolinite lattice is relatively small and the chemical composition of kaolinite can be
expressed by the ideal formula Al4Si4O10ðOHÞ8.
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When two tetrahedral layers are linked to one central octahedral layer, a 2 : 1 layer
structure is formed. The most important groups in this structure are the smectite–vermi-
culite and the mica groups. Smectites are derived structurally from pyrophyllite or talc and
the variety of minerals of this group arises from different types of isomorphous substitu-
tions and of cation vacancies in the octahedral layer. Therefore, the surface charge density
is mainly determined by the substitution of Si4þ by Al3þ in the tetrahedral layer, and by
the amount of divalent and trivalent cations within the octahedral layer. The excess of
negative charge in the structure of smectite is compensated for by interlayer cations
(commonly Naþ, Kþ, Ca2þ, and Mg2þ), located between the 2 : 1 structures, and whose
hydration states vary with humidity. Furthermore, in water the compensating cations can
be easily exchanged by other cations if available in proper concentrations.
Montmorillonite and beidellite are the most important dioctahedral minerals of the smec-
tite group. The commonest trioctahedral smectite is saponite.

The stability of the structure, which is determined by the type of chemical bonding
between layers, is particularly reflected in swelling properties. The significant difference
between the 1 : 1 and the 2 : 1 minerals is that there is no possibility of hydrogen bonding
between triple layers in the structure of 2 : 1 minerals, and oxygen planes can interact with
each other only by van der Waals’ forces. Accordingly, they can be easily cleaved along
this plane, exposing newly formed basal surfaces to the aqueous medium.

The mica structure is essentially the same as that of smectites. The only significant
difference is that the small excess of negative charge between the silicate layers is balanced
by potassium ions. The introduction of potassium stabilizes the structure, and the uptake
of water molecules is prevented, causing formation of a nonswelling structure. Clay micas
are particles with a size less than 2�m and contain less potassium and more water than the
coarser grained mica minerals. Illite is the most widely used group name for hydrous clay
micas present in soil and sediments.

As shown previously [5] and in Table 1, the chemical formula of the unit cell for a
2 : 1 layer type clay mineral can be written as

Mx SiaAl8-a
� �

AlbFeðIIIÞcFEðIIÞc 0Mg4-b-c-c 0
� �

O20ðOHÞ4 ð1Þ

Chlorites belong to the third type of phyllosilicates (2 : 1 þ 1Þ, a group of nonswel-
ling clay minerals, very common in sediments and soils. They are structurally related to the
2 : 1 clays in which the charge-compensating cations between mica-type unit layers are
replaced by a brucite layer (octahedral magnesium hydroxide). Because of some replace-
ment of MG2þ by Al3þ, this layer has a net positive charge and therefore compensates the
net negative charge of the unit layers. Therefore, the presence of the 2 : 1 layer and one
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TABLE 1 Layer Structures and Chemical Formula [Eq. (1)] of Clay Mineral Groups [5]

Group Layer type Layer charge

Chemical formula coefficients

a b c c 0

Kaolinite 1 : 1 < 0:01 – – – –
Mica (illite) 2 : 1 1.4–2.0 6.8 3 cþ c 0 � 0:25

Vermiculite 2 : 1 1.2–1.8 7 3 0.5 –

Smectite 2 : 1 0.5–1.2 8 3.2 cþ c 0 � 0:25

Chlorite 2 : 1 þ 1 Variable 2.4 8.4 0.5 1.5



layer of hydroxide structure are characteristic of chlorite clay minerals. The general unit
cell chemical formula for dioctahedral chlorite can be written [5]:

SiaAl8-a½ � AlbFeðIIIÞcMgc 0
� �

O20ðOHÞ16 ð2Þ

Sometimes natural clays contain clay mineral particles in which unit layers of dif-
ferent types of clay minerals are stacked together in either a regular or irregular manner
(interstratification). They are known as mixed-layer clays or interstratified minerals. These
clays, particularly illite–smectite, are very common minerals and illustrate the transitional
nature of the 2 : 1 layered silicates.

III. THE ORIGIN OF CLAYS

Weathering and related reactions have dominated the formation of clay minerals during
geological time. The weathering of rocks and soils is a complex interaction with the
atmosphere, the hydrosphere, and the biosphere. Generally, clay minerals originate
through several processes: (1) by hydrolysis and hydration of silicate, (2) by dissolution
of a soluble rock containing relatively insoluble clay minerals, (3) by slaking and weath-
ering of clay-rich sedimentary rocks such as shales, (4) by bacterial and other organic
activity, and (5) by diagenetic processes following sedimentation [26–29].

Natural clays are rarely ‘‘pure,’’ and are difficult to work with, while synthetic clay
minerals permit control of the composition and the history of the product. Previously
reported investigations [30–32] have described the synthesis, structure, and properties of
smectite minerals, as well as kaolinite [33]. Syntheses of clay minerals offer a possibility for
obtaining clay minerals with optimized properties for particular applications by regulating
the nature and degree of isomorphous substitution, structural properties, catalytic activity,
etc.

IV. STRUCTURAL ELEMENTS OF SURFACE CHARGING IN CLAY
MINERALS

A. Typology of Surfaces and Surface Reactions

As colloids, clay minerals attract attention because their surfaces are structurally and
chemically heterogeneous. Only by understanding the relationship between structural ele-
ments and surface charging can electrokinetic data be brought to use as a source of
information in colloid science. One of the most instructive examples is the heterogeneity
of the kaolinite mineral surface, originally proposed by van Olphen [34], confirmed and
elaborated further in many subsequent and recent investigations [35–41]. According to van
Olphen, the kaolinite surface exhibits three morphological planes of different structure,
chemical composition, and consequently different surface properties. The kaolinite surface
consists of a siloxane surface (silicon oxide) basal layer, a gibbsite (aluminum hydroxide)
basal layer, and an edge surface.

Generally, the basal (siloxane) surfaces carry a constant negative charge, attributed
to the isomorphous substitution of Si4þ by Al3þ in the tetrahedral layer. At the solid/
aqueous solution interface this negative charge is pH independent. The model is known as
the constant basal surface charge model [37]. In addition, Sposito [5] has described the
structural features on the siloxane layer, the siloxane ditrigonal cavities that have proper-
ties of soft Lewis bases.
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The isomorphic substitution of Al3þ by Fe2þ and/or Mg2þ in the octahedral (gibbsite
layer) results in a net negative surface charge. The charge of the edge surface (‘‘broken
bonds’’) depends on pH and shows amphoteric character. It arises from adsorption and
desorption of potential determining ions, Hþ, and OH�, and can be described by surface
proton (acid–base) equilibria:

S-OH þ Hþ
, S-OH

þ

2 ð3Þ

S-OHðþOH�
Þ , S-O�

ðþH2OÞ ð4Þ

The hydrous oxide groups at the edges are considered to be major reactive sites in clay
surfaces [42, 43]. They can bind metal ions and ligands. The following equations [7, 44] are
examples of surface metal binding, Eqs (5)–(7), of ligand exchange, Eqs (8) and (9), and of
ternary surface complex-formation equilibria, Eqs (10) and (11):

S-OH þ Mzþ
, S-OM

ðz�1Þ
þ Hþ

ð5Þ

2S-OH þ Mzþ
, ðS-OÞ2M

ðz�2Þ
þ 2Hþ

ð6Þ

S-OH þ Mzþ
þ H2O , S-OMOH

ðz�2Þþ
þ 2Hþ

ð7Þ

S-OH þ L�
, S-L þ OH�

ð8Þ

2S-OH þ L�
, S2-L

þ
þ 2OH

�
ð9Þ

S-OH þ L�
þ Mzþ

, 2-L-Mzþ
þ OH�

ð10Þ

S-OH þ L�
þ Mzþ

, S-OM-L
ðz�2Þþ

þ Hþ
ð11Þ

Because the siloxane basal surface is permanently negatively charged, the fraction of
the positively charged edge surfaces in the total surface is determined by the net surface
charge. The area of edge surfaces varies, depending on the type of the clay mineral, and in
turn depends on the degree of physical disintegration of the particular clay mineral crystal
[40, 41, 45].

B. Surface Areas and Cation-exchange Capacities of Clays

Specific surface areas (SSAs, surface areas per unit mass) of clays are largely due to their
size and structural characteristics. In smectite minerals there are two types of surfaces,
external and internal. The definition of external or internal surface depends to a large
extent on the method and the technique of measurement. All of the techniques are based
on adsorption of some nonreactive adsorbate at the accessible surface.

One of the most widely used techniques for measuring the external surface area of
clays is sorption of nonpolar gases at liquid nitrogen temperature. Nitrogen and argon are
used for medium and large SSAs (’ from 1 to several hundred m2 g�1), while krypton is
used for very low SSA solids (< 0:1m2 g�1). The procedure of calculation derives from the
multilayer model of adsorption of the Brunauer, Emmett, and Teller theory [46]. The
method of calculation is based on the statistically determined number of adsorbed mole-
cules in the monolayer coverage, with the independently chosen surface area occupied by a
single molecule (or atom) of the adsorbate. The choice is between the measured cross-
sectional are of the adsorbate gas, and the one calculated from the area of exclusion
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based on repulsion forces. These two numbers differ by more than 20%. The adsorption
has to proceed on a ‘‘clean’’ surface, that is, on one from which any other adsorbates, and,
in particular water molecules, have been removed. The removal of water films from the
surface of clay particles by degassing in vacuum at elevated temperatures often causes
collapse of the expanded clay lattice and a diminution of the surface area. Even the cleaning
of the surface in a helium gas stream with subsequent nitrogen adsorption cannot prevent
these problems. Such experimental treatment of clay minerals, even under the most care-
fully chosen experimental conditions, is the cause of erroneously reported external SSAs.

The interlayer areas are mostly inaccessible to the adsorbate gas molecules. The
cross-section of pores, a low multiple of ionic diameters, can cause capillary condensation
of adsorbate gases, and thus invalidate the adsorption model. Therefore, gas adsorption
methods are inadequate for measuring the internal surface areas of clay minerals.

The use of adsorption of polar molecules from a liquid, mostly from aqueous media,
is experimentally a simple method for measurements of surface areas, and has significantly
improved measurements of internal surface areas of 2 : 1 expanding clay minerals. As polar
adsorbates, ethylene glycol [47], N-cetylpyridinium bromide [48], and glycerol [49] have
been used. While these techniques have helped much in the understanding of the adsorp-
tion properties of clays, they still involve assumptions of the existence of interlayer voids
and of the ability of the adsorbate to penetrate these.

Besides surface area, the density of the charge of the clay mineral surfaces is very
important for their colloid chemical behavior in natural waters. As described previously,
the excess of negative lattice charge, originating from isomorphic replacement in the
interior of the crystal lattice, is compensated for by the adsorption of cations on the
layer surfaces, which are too large to be incorporated in the interior of the clay lattice.
In aqueous solutions these cations can be easily exchanged by other cations, if present. For
more information about cation-exchange equilibria in clays the reader is referred to
Laudelout [50].

The cation-exchange capacity (CEC) of the negative double layer can be defined as
the excess of counterions that can be exchanged for other cations under given conditions
of temperature, pressure, solution composition, and soil–solution mass ratio [5]. It can be
determined analytically by replacement of native exchangeable ions by ‘‘standard’’ cations
and it is conventionally expressed in milliequivalents per gram (meq g�1). Therefore, the
number of exchanged cations (i.e., the CEC) is directly related to the degree of isomor-
phous substitution that has occurred in the clay mineral lattice. Many different methods
can be applied and usually cations such as Naþ and NHþ

4 are used in exchange processes
and in the determination of CEC.

Table 2 shows a compilation of the results in the measurements of CEC by using
ammonia exchange monitored by an ammonia-selective electrode [51] and of external SSA
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TABLE 2 Specific Surface Area and Cation-exchange Capacity of
Some Clay Samples

Sample SSA (m2 g�1) CEC (meq/100 g)

Ripidolite 2.6 1.5

Kaolinite 11.7 12.0
Montmorillonite 71.1 142.3
Beidellite 61.0 107.0

Illite 44.3 24.6



determined by single-point nitrogen adsorption for some typical clay minerals [52]. The
results indicate large external SSA and high CEC for beidellite and ‘‘Otay’’ montmorillo-
nite (smectites), while illite, kaolinite, and ripidolite (chlorite) have considerably lower
values.

C. Electrical Double Layer of Clay Particles

In the case when clay mineral particles are immersed in an electrolyte solution, an electro-
static field created by the charged surface of the particle governs near-surface distribution
of the electrolyte anions and cations, forming an electrical double layer (EDL). The colloid
stability of clay mineral suspensions is influenced by the structure of this layer. In order to
describe the behavior of the EDL, many physicochemical models have been proposed and
discussed. The purpose of this paragraph is to review some basic information about the
models applied. Detailed discussion can be found in several monographs and papers [5, 7,
53–55].

Mostly, the simple Gouy–Chapman model has been considered as sufficient for the
interpretation of electrokinetic data for clay surfaces. Since the physical reality of the EDL
on clay mineral particles cannot be satisfactorily explained with this model, many mod-
ifications have been attempted with more or less success.

The simple model that is commonly used to describe the hard-sphere ion and inner-
potential distribution in the diffuse part of the EDL is the modified Gouy–Chapman
(MGC) theory. This theory is applied to clay minerals when the clay particles are con-
sidered equivalent to a uniformly charged, infinite planar surface [5]. As discussed above,
the clay minerals are thin plate-like particles with negatively charged basal planes and
positively charged edge surfaces. Therefore, the disk model, which can accommodate
spatial differentiation of constant and pH-dependent charge, is closer to reality in descrip-
tion of the EDL and of the surface reactions of clay mineral particles in electrolyte
solutions than the infinite-plane model [56]. The charge at disk-shaped clay mineral par-
ticles originates from the ratio between the negatively charged basal planes and the posi-
tively charged edge surfaces.

Secor and Radke [56] have shown that by using the disk model, the electrostatic field
near the basal planes may ‘‘spill over’’ to dominate the positive edge surface for 2 : 1 clay
mineral particles suspended in an electrolyte solution at concentrations below
5 � 10�3 mol dm�3. Accordingly, the potential can always be negative, including the
edge surface. Furthermore, in order to study the effect of finite particle size on the EDL
of 2 : 1 clay minerals in 1 : 1 electrolyte solutions, Chang and Sposito [57, 58] applied the
MGC theory to the disk model and successfully solved the Poisson–Boltzmann equation
using a self-adaptive finite-element method.

V. CLAY MINERALS IN ENVIRONMENTAL STUDIES

The most important characteristics of clay minerals in the aquatic environment are their
colloid stability and adsorptive properties. Colloid stability and interaction of clay mineral
particles with organic and inorganic compounds and with other mineral particles depend,
besides their mineralogical, chemical, and surface properties, on environmental character-
istics, such a electrolyte concentration, pH [7, 59–62], presence of organic matter [63–66],
and the relationship between the density of particles and the hydrodynamic conditions in
the aquatic environment [67–69].
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Investigation of the clay mineral–solution interactions through electrokinetic proper-
ties is one way to study the complex material exchange processes in natural environments.
Charge formation, charge density, and compensation of charge due to adsorption of
dissolved substances are reflected in electrophoretic mobilities [41, 45, 65].

A. Measurements of Electrophoretic Mobilities of Suspended Particles

Suspended particulate matter, an important component present in all natural waters,
consisting predominantly of clays, is implicated in many of the biogeochemical processes
occurring in natural waters. It presents the most important vehicle in the transport and
deposition of inorganic and organic compounds in natural aquatic environments. This
material is heterogeneous in particle size and chemical composition, containing various
minerals such as aluminosilicates, carbonates, oxides, partially coated with organic matter
and organic macromolecules, biological debris, etc. [70].

Clay minerals are the most important inorganic component of suspended matter in
natural aquatic environments. They surpass carbonates and many metal oxides in their
chemical persistence, colloid stability, and adsorption capacities. Biogeochemical pro-
cesses govern the land/sea interaction and effectively regulate the adsorption and deposi-
tion phenomena in estuaries, in the transition between soft river water and seawater [9].

Hunter and Liss [71] measured surface electrical charge on suspended particles in
estuaries and established that particles were negatively charged. Recently, the influence of
electrokinetic potential on flocculation and sedimentation dynamics of suspended matter
was investigated in detail in the Raša River estuary, Croatia [68]. The small Raša River
and its estuary, represent a relatively simple natural system, which offers a chance of
recognition of basic processes regulating the kinetics of clay mineral transport and deposi-
tion. Stability versus transport of suspended matter was found to coincide with changes in
the magnitude of the negative electrokinetic potential.

Rapid flocculation and sedimentation of fine-grained particles, mostly clay minerals,
characterize the investigated natural environment. In addition, segregation of clay miner-
als was also observed within the estuary. Such mineral segregation in the natural environ-
ment has been previously observed [64, 72] and attributed to different rates of flocculation
[73, 74]. At the Raša River mouth, where a rapid sedimentation of clay minerals was
observed, the concentration of suspended matter is high and a strong salinity gradient
is present. Therefore, flocculation is enhanced. Electrokinetic measurements and particle
size analyses provide a significant indicator for such processes, indeed there is some pre-
dictive potential in these.

Figure 1 shows electrokinetic potentials of suspended particles in original samples of
water in dependence on salinity. The results showed negative �-potential values, decreasing
with increasing salinity� from roughly �25 to �10 mV. The observed negative electroki-
netic potential of particles in the Raša River and its estuary confirms literature data on the
uniquely negative charge of suspended mineral particles in riverine, estuarine, and marine
environment, indeed from ionic strengths of 10�3 to almost 0.56 mol dm�3.
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�In oceanography the measure of salt concentration is expressed as

salinity ¼ 0:03 þ 1:805 � chlorinity

Chlorinity is the mass in grams of ‘‘atomic mass silver’’ just necessary to precipitate all the halogens (chloride,

bromide, iodide, and fluoride) in 0.3285 kg of a seawater sample. For an approximate measure, a salinity of 38%
corresponds to an ionic strength of 0.56 M.



There is experimental evidence that fine-grained suspended inorganic particles, enter-
ing seawater, are unstable as single colloidal particles, and flocculate into aggregates with
settling rates many times faster than those of the constituent grains [67–69, 75]. The sur-
face charge density of the suspended mineral particles has influence on their sedimentation
rates and on the sorption capacity for environmental contaminants. In clays, the most
important factors affecting the charge density are the presence of divalent cations, the pH
of the medium, and the adsorption of organic and inorganic compounds. The observed
decrease in the electrokinetic potential with increasing salinity is significant, causing floc-
culation induced by charge neutralization. In addition, the hydraulics of turbulence and
the resulting mechanical particle collisions also enhance flocculation. This phenomenon is
related to particle concentration [76]. It was found that particles from (the optical) tur-
bidity maximum in the water stream were more flocculated and settled faster than particles
at lower concentration but higher salinity (ionic strength) [67].

B. Model Approach

Natural waters are complex systems of electrolytes, dissolved and particulate organic
matter and inorganic particles, composed of clay minerals, quartz, carbonates, and a
variety of metal oxides and hydroxides (most frequently of Al, Fe, and Mn).

A reductionistic approach to the understanding of processes involving clays (and
other particulate matter) is to identify single processes, critical parameters governing the
kinetics of these, and the consequences, mostly for the stability of colloidal systems.
Laboratory experiments done with heterogeneous particulate matter, or an average clay
of complex composition, mostly fail. This is also true for studies of rivers with a high
concentration of suspended matter of nondescript origin. Electrokinetic measurements of
such dense suspensions give an average potential, which obfuscates the single and impor-
tant surface processes involving charge formation, distribution, and interaction.
Accordingly, the use of model minerals and simple electrolyte solutions in carefully
designed experiments appears to be the way out of these problems. The next step is the
most intriguing one: does the understanding of a single process reveal the mechanisms of
complex phenomena in nature? The answer is that electrokinetics helps us to understand-
ing complex phenomena.
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FIG. 1 Zeta potential of suspended particles of the Raša River estuary in dependence on salinity.



C. Preparation of Clay Minerals for Colloid Chemical Studies and
Electrokinetic Measurements

The sources of clay minerals are natural clays. The main difficulty is the separation of clay
minerals from clays always containing several different minerals such as quartz, carbo-
nates, oxides, hydroxides, allophanes, and many diverse organic impurities. In all colloidal
systems surface properties can be radically influenced and modified by the presence of
small amounts of compounds adsorbed at, or covering the surface. The surface adsorbed
oxyhydroxides may have a significant effect on the electrokinetic potential and on the
isoelectric point (i.e.p.) (or the point of zero charge) of mineral particles [77]. A shift in the
pH of the i.e.p. is towards that of the adsorbate on the clay surface. In addition, these
adsorbates significantly participate in ligand-exchange reactions with anions and organic
compounds present in the aquatic medium. The consequence is a change in surface and
electrokinetic properties of the mineral surface and in collidal stability [77]. Therefore, in
order to obtain results of electrokinetic measurements at a significant fundamental and
reproducible level, it is absolutely necessary to remove all surface impurities. Sometimes,
relatively simple electrokinetic techniques have to be corroborated by sophisticated phy-
sical. spectroscopic, and chemical analytical techniques. With these meticulous require-
ments, it comes as no surprise that reported colloid, surface, and electrokinetic properties
of the same clay minerals obtained form various sources might be different [52].

Experimental procedures, which are necessary to separate the clay minerals from
natural clays and to remove organic and inorganic impurities from the clay mineral
surfaces, are well established. In order to separate clay minerals from natural soils and
sediments it is necessary to employ fractionation techniques used in sedimentology [78].
The clay minerals can be treated with dilute Na acetate-buffered H2O2 (oxidation and
decomposition), to remove residual organic compound from the surface. Other reactants
and procedures can also be used in the decomposition of organic matter [79–82]. The
surface-adsorbed crystalline and amorphous iron oxides and oxyhydroxides can be
removed by citrate–bicarbonate–dithionate solution [79]. Carbonates and amorphous
silica can be decomposed and removed by acids, or by boiling in Na2CO3 solution,
respectively [83–85]. Finally, the monoionic forms of clay minerals can be prepared by
ion exchange, following the method of Karen and Shainberg [86].

D. Clay Mineral Suspensions in Single Electrolyte Solutions

Previous investigations on the electrokinetic properties� of different types of clay minerals
[35, 38-41, 60] indicated differences between various minerals in their pH dependence.

Figure 2 shows �-potential curves versus pH in a 10�3 mol dm�3 NaCl solution for
three smectite clay minerals: ‘‘Otay’’ montmorillonite and beidellite (dioctahedral smecti-
tates), and saponite, as a representative of a trioctahedral smectite. The most important
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� A note on methods and materials

Electrokinetic measurements, on which the figures are based, were made by an automated electrophoresis

instrument (S 3000, Pen-Kem, Bedford Hills). Zeta potentials were calculated from the measured electrophoretic

mobilities (EPMs) by a preprogrammed method. The transformation of EPM into � potential involves many

assumptions [54]. In these studies the � potential was calculated from the measured EPM data according to the

Henry equation [54]:

ue ¼ 2��13�ð Þ � f1ð�aÞ



observation is that these natural minerals do not exhibit i.e.p. values in the pH range 2–11.
In addition, the electrokinetic potentials of saponite and montmorillonite are almost
insensitive to changes in pH, while beidellite shows distinct differences in the values of
negative potential with increasing pH.

Figure 3 shows �-potential curves versus pH in a 10�3 mol dm�3 NaCl solution for
kaolinite (kaolinite group) and ripidolite (trioctahedral chlorite). No i.e.p. values were
observed for these minerals either, but, in contrast to the smectites, they showed a decrease
in � potential, from �50 to �10 mV, with a decrease in pH from 10 to 2. Accordingly,
changes in the magnitude of the � potential with pH for kaolinite and ripidolite are higher
than for smectite clay minerals.

Results indicate that the constant charge of the basal faces of clay minerals signifi-
cantly influences their electrokinetic properties, particularly the EPMs. The pH-dependent
changes are a consequence of the existence of hydroxyl groups at the edge surfaces, the
major reactive sites in clay surfaces. Indeed, the fraction of the edge surfaces and, thus, of
reactive hydroxyl groups, in the total surface area vary, depending on the type of clay
minerals. For kaolinite, the fraction of edge surface is 12% [87] to 14% [88], whereas for
smectite clay minerals it is no more than 1% [47, 89]. It has been also shown that mechan-
ical disintegration of clay mineral particles, e.g., by milling, increases the fraction of edge
surfaces and accordingly changes their electrokinetic properties [39, 40].
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(continued)

where � is the permittivity of the medium (Fm�1), � is viscosity (Nm�2 s�1), � is electrokinetic (zeta) potential, ue

is EPM (m2V�1 s�1), a is particle radius (m), � is the reciprocal double-layer thickness (m�1), and f1 ð�aÞ is a

function dependent on particle size and shape. In these measurements a high ratio between particle radius and the

double-layer thickness was assumed, giving �a > 1 and using the limiting value for f1ð�aÞ of 3/2. Accordingly, the

ratio between � potential and EPM becomes:

� ¼ 12:8 � 108
� ue

For sources and characterizations of minerals and chemicals the reader is referred to literature references [39–41].

FIG. 2 Zeta potential of smectite clay minerals suspended in 1 � 10�3 mol dm�3 NaCl solution as a
function of pH: (*) saponite; (&) beidellite; (&) ‘‘Otay’’ montmorillonite.



Figures 4 and 5 show �-potential curves versus pH in a 10�3 mol dm�3 NaCl solution
for natural and milled ripidolite and beidellite. The most important observation is the
appearance of an i.e.p. for both of the milled minerals, for ripidolite at pH 6 and for
beidellite at pH 3. In addition, changes in the � potential with pH for milled ripidolite are
more pronounced than those for beidellite.

The effects of milling on the SSA and CEC of ripidolite and beidellite clays are
shown in Table 3. For ripidolite the effect of milling causes a 12.3-fold increase in the
SSA and a three-fold increase in CEC. For beidellite, the increase in SSA is a 1.5-fold and
the CEC increases by 20%. Milling, that is, the break up of larger particles, creates new
edges, increasing their contribution to the total surface area (Fig. 6). The reported findings
show that the electrokinetic and surface properties depend also on the degree of physical
‘‘weathering’’ of the source clay minerals, a process responsible for enervation of small
particles in nature. This is an important observation for predicting the interaction of clay
mineral particles with organic and inorganic compounds in natural aquatic environments,
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FIG. 3 Zeta potential of ripidolite (&) and kaolinite (&) suspended in 1 � 10�3 mol dm�3 NaCl
solution as a function of pH.

FIG. 4 Zeta potential of ripidolite suspended in 1 � 10�3 mol dm�3 NaCl solution as function of
pH: (&) natural and (&) milled samples.



allowing the conclusion that the extent of mechanical wear is more decisive for the elec-
trokinetic properties than the type of clay mineral [39–41].

E. Influence of Adsorption of Organic Matter on Electrokinetic Properties
of Clay Minerals

Investigations have shown that adsorbed organic matter masks, to some extent, the phy-
siochemical properties of underlying surfaces and dominates surface interactions of
mineral particles with the aquatic medium [59, 90, 91]. In natural aquatic media, humic
substances are omnipresent, and thus they are the most important contributors to organic
films covering the surfaces of mineral particles, particularly clay minerals [41, 45, 65, 66].
Accordingly, adsorbed humic materials influence dissolution, particle formation, adsorp-
tion, colloid stability, coagulation, and sedimentation of particulate and colloid matter in
natural aquatic environments [65, 66, 92, 93].

Humic substances, mixtures of biomacromolecules generated by degradation of lig-
nine, are mostly acidic due to the presence of phenolic groups. They are present in a range
of molecular mass, and these macromolecules can appear also as charged colloidal parti-
cles. Their charge is due to, entirely or partially, deprotonated carboxylic and phenolic
groups, which are responsible for proton binding of hydrated multivalent cations [7, 94].
Metal-ion binding to humic substances is a significant phenomenon regulating the con-
centration and the mobility of metals in natural waters and in soils [95–97]. Therefore,
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FIG. 5 Zeta potential of beidellite suspended in 1 � 10�3 mol dm�3 NaCl solution as function of
pH: (&) natural and (&) milled samples.

TABLE 3 Effect of Milling on Specific Surface Area and

Cation-exchange Capacity of Clay Samples

Sample

SSA (m2 g�1) CEC (meq/100 g)

Natural Milled Natural Milled

Ripidolite 2.6 32 1.5 4.3

Beidellite 61 92 107 132



interaction between clay mineral particles and these natural organic compounds is the
most important process determining the transport, distribution, and removal of inorganic
and organic pollutants in the natural environment.

The high sensitivity of electrokinetic measurements to solute concentration allows
studies at low concentrations of polymeric materials. Accurate in situ measurements of
small adsorbed amounts require sophisticated techniques, and are exceedingly difficult to
perform and interpret. Thus, the investigation of the clay surface/solution interactions
through electrokinetic properties is, and will possibly remain, an important way to
study the complex exchange processes.

An example of the influence of changing concentration of FAs on the electrokinetic
behavior of natural clay minerals is shown in Figs 7 and 8. In these figures the results of
titration of original and disintegrated (milled) ripidolite and beidellite minerals with a
solution of FA are shown. Both natural clays show no influence of the presence of FA,
while the milled samples show a significant increase in the negative � potential with
increasing concentration of FA. The changes in � potential of milled samples are caused
by adsorption of FA on newly generated edge surfaces.

Zhou et al. [98] claimed that the amount of adsorbed humic substances varies with
clay mineral type, particle size, and the SSA. These results show that natural samples of
ripidolite and beidellite, two minerals with different clay structures, particle size, SSA, and
CEC (Table 3), carefully prepared and free from surface impurities, show the same elec-
trokinetic response, and do not interact with FA. However, mechanical wear (milling) a
process that correspond to natural physical weathering, creates new edge surfaces, which
are responsible for the interaction of clays. Accordingly, neither do particle size, clay
mineral type, or SSA determine the character of adsorption, but the creation of new
amphoteric (edge) surfaces [40, 41].

The adsorption of FA by solids is affected by the type of surfaces and by the pH of
the aqueous media [99]. According to Schnitzer and Khan [94] — COOH is the major
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FIG. 6 Model for the disintegration of clay particles during milling: (a) model of the stack of clay

minerals; (b) cleavage along the basal planes; (c) break up of the particles normal on to the basal
plane.



functional group in FA active in biogeochemical processes. In the adsorption process this
group forms complexes with surface hydroxyls, as shown in the case of goethite [100]. The
same process is operative in the case discussed here. The disintegration of the clay particles
by milling leaves the basic lattice structure intact, but increases the number of oxyhydroxy
sites with interact with — COOH groups. Several authors [45, 65, 101] claimed that
adsorbed organic matter predominantly determines the surface charge density of sus-
pended particles in natural waters.

Oxide minerals, such as goethite [65, 100, 101], hematite [91], manganese oxides [90],
and alumina [99, 102–105] have all been used in experiments with humic materials to
represent mineral surfaces of particulate matter in natural waters. An understanding of
these is best achieved by experiments on these oxides where hydroxyl groups are present
on all exposed crystallographic faces. In all of these papers the common conclusion was
that the adsorption of humic acids modifies the mineral surface toward a charge-average
type. Clay minerals, either in native form or in the form of disintegrated particles, have
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FIG. 7 Zeta potential of ripidolite in dependence on the concentration of fulvic acid (FA) in 1 �

10�3 mol dm�3 NaCl solution, pH 6.5: (&) natural and (&) milled samples.

FIG. 8 Zeta potential of beidellite in dependence on the concentration of FA in 1 � 10�3 mol dm�3

NaCl solution, pH 6.5: (&) natural and (&) milled samples.



been less studied within this context. In order to study the adsorption of substituted
nitrobenzenes and nitrophenols on clays, Haderlein and Schwarzenbach [106] have used
model minerals such as silica, 	-Al2O3 and gibbsite as representatives of major types of
surfaces met in clay minerals. The studies of adsorption and of the influence of FA on the
electrokinetic potential of various types of clay surfaces have produced positive evidence
on the assumed functional importance of surface type [40, 41, 45, 106].

In these investigations, �-potential curves of model minerals versus pH in a 10�3

mol dm�3 NaCl were determined (Fig. 9). Gibbsite and 	-Al2O3 show i.e.p. values at pH
5.0 and 9.5, respectively. Previous investigation [77] shows the existence of an i.e.p. for
silica between pH 0.5 and 2.0. These extreme pH values are of no interest for the present
discussion. Furthermore, these results indicate the validity of Al2O3 and gibbsite surfaces
as models for hydrophilic oxyhydroxy surfaces, and of silica as a model for hydrophobic
siloxane surfaces.

Figure 10 shows the next step in the investigation of the influence of humic sub-
stances on electrokinetic potentials of the same model minerals at a constant pH of 6.5. No
changes were registered for silica in the FA gradient from 0.01 to 10 mg dm�3. For gibb-
site, for the same concentration range of FA, there is an increase in negative potential,
leveling off at approximately �60 mV. For 	-Al2O3 there is a threshold for the influence,
possibly adsorption, of FA at approximately 0.3 mg dm�3, initiating a steep slope from
positive to negative values with a reversal of charge at 3 mg dm�3.

Hydroxylated edge surfaces of clay minerals, which can be represented by the 	-
Al2O3 mineral surface, are the sites of maximum interaction with these polymers. Previous
investigations by Lockhart [107] have also shown that the complexation of humic sub-
stances with kaolinite occurs at the edges, where Lewis acid aluminol groups are exposed.
In solid samples, Lockhart found than the basal plane of kaolinite was free from organic
substances in a humate–clay association, with less than 6% of the organic carbon in the
solid phase.

Is the functional adsorption of FA on hydrophilic sites due to carboxylic ( — COOH)
groups? The answer was sought by using PAAs as models for active carboxylic groups,
which are structurally well defined, and as models for studying the behavior of organic
materials in natural waters [103, 104]. Figure 11 shows the answer to the question of
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FIG. 9 Zeta potential of amorphous SiO2 (*), gibbsite (&), and 	-Al2O3 (&) suspended in 1 �

10�3 mol dm�3 NaCl solution as a function of pH.



interaction of two PAAs, of different molecular masses, with hydroxylated 	-Al2O3. The
trend, showing first a threshold and than a steep change and reversal of electrokinetic
potentials, is similar to the response of the same surface with FA (Fig. 10).

In view of the results discussed above, PAAs show a significant influence on the
electrokinetic potentials of milled ripidolite, a clay mineral in which the incidence of edge
surfaces was significantly increased. Data in Fig. 12 show the similarity of the electro-
kinetic responses of FA and PAA on ripidolite: a monotonic increase in negative potential
with increasing concentration of organic materials. A conclusion is near that the similarity
of the responses indicates that the same functional group, carboxyls, are responsible for
the interaction and, consequently, for the changes in electrokinetic potentials.

High-resolution transmission electron-microscopic analysis of the milled samples
indicates that ripidolite and beidellite particles are randomly oriented, showing both
(hk0) and (00L) planes in the same area (Fig. 13). Edge surfaces, to which much electro-
kinetic influence is associated, are presented with the (hk0) planes with the lattice fringes
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FIG. 10 Zeta potential of amorphous SiO2 (*), gibbsite (&), and 	-Al2O3 (&) as a function of
concentration of FA in 1 � 10�3 mol dm�3 NaCl solution, pH 6:5 � 0:2:

FIG. 11 Zeta potential of 	-Al2O3 suspended in 1 � 10�3 mol dm�3 NaCl solution as a function of

concentration of PAAs: (&) MW 2000, (&) MW 5000, pH 6:5 � 0:2



(basal unit repeat) of 1.4 and 1.1 nm for ripidolite and beidellite, respectively. These planes
represent active hydroxyl sites where Lewis acid metallic groups are exposed. Surfaces with
constant basal surface charge are presented as (00L) planes.

Kumert and Stumm [108] and Ochs et al. [103] claim that co-ordinate adsorption
(ligand exchange) of humic acids on the oxide surfaces is predominant. Stumm [7]
postulated that adsorption of humic substances at the Al2O3 surfaces is dominated by
co-ordinate interaction between acidic functional groups of the humic substances and
the metal centers of the oxide mineral surfaces. Accordingly, exposed metal centers of
the edge surfaces of clay minerals present active sites in interaction with humic sub-
stances, which is dominated by formation of mononuclear bidentate and/or polynuclear
surface complexes [103, 108]. Exposed metallic groups at the clay mineral surface edges
are not always aluminol as encountered in clay minerals such as kaolinite and beidellite.
Structural and chemical characteristics of clay minerals also indicate the possibility that
exposed metallic groups can be represented by magnesium (e.g., in saponite and in clays
from the chlorite group). Figure 14 shows an idealized structure, projection [010], of
chlorite clay minerals. Edge surfaces of clay minerals may contain several metallic
groups (mostly Al, Mg, and Fe), depending on the type of clay and on isomorphous
substitution. All of these modify the surface charge densities and the concentration
dependence of the electrokinetic potentials.

F. Influence of Humic Materials on Electrokinetic Properties of Clay
Minerals in Complex Electrolyte Solution

In natural waters, clay mineral particles are exposed to a variety of organic compounds as
well as to different physicochemical conditions such as temperature, oxygen, pH, and ionic
strength [7, 65, 66, 101]. Investigations have shown that natural organic compounds,
mostly humic acids, are dominant factors determining the colloidal stability of mineral
particles in the natural aquatic environment [41, 65, 66, 109–112]. Accordingly, the pro-
cesses of flocculation and sedimentation of colloid material in a natural aquatic environ-
ment are, besides the other influences, also governed by organic surface modification.
According to Hunter [113] and Hunter et al. [114], the term flocculation is used to describe
the formation of particle aggregates by bridging of polymer molecules from one particle to
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FIG. 12 Zeta potential of milled ripidolite suspended in 1 � 10�3 mol dm�3 NaCl solution as a
function of the concentration of PAA (MW 5000) (&) and FA (&), pH 6:5 � 0:2.
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FIG. 13 High-resolution transmission electron micrographs of milled ripidolite (a) and beidellite
(b) clays.



another as distinct from coagulation in which the particles come into close contact as a
result of changes in the EDL around the particles.

This part describes results of a series of experiments in which the electrokinetic
potential has been used to determine the surface charge behavior of clay particle suspen-
sions in the presence of FA in artificial seawater (ASW) at three different salinities 1, 15,
and 37%), corresponding to an estuarine salinity gradient.

The influence of FA on the � potential of the chlorite clay for salinities 1, 15, and 37
is shown in Fig. 15. At salinity 1, addition of FA from 0.01 to 0.1 mg dm�3 causes an
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FIG. 14 Idealized structure of chlorite clay minerals, projection [010]. (From Ref. 22.)

FIG. 15 Zeta potential of chlorite clay mineral dependence on the concentration of FA in ASW of
different salinities: (&) salinity 1, (*) salinity 15, and (&) salinity 37.



increase in the negative values of the potential, from approximately �10 to �30 mV.
Accordingly, the influence of FA on the electrokinetic potential of chlorite in ASW of
low salinity is similar to one described above for the single 1 : 1 electrolyte system. It is
obvious that the positive edge charge of chlorite clay mineral particles is neutralized by
adsorption of FA, making the excess negative charge higher and accordingly the electro-
kinetic potential more negative. At higher salinities the effect is smaller, most probably due
to the presence of divalent cations, particularly Ca2þ, in the ASW solution.

These results support investigations [65, 101], which have shown that the most
important factor determining the surface charge density of particles in a natural aquatic
environment is the adsorbed layer of natural organic matter, mostly humic substances.
The adsorption of these compounds on colloid particles occurs at its low concentration,
and was found to reach equilibrium in seconds, under conditions similar to those found in
natural waters [101. Tombacz et al. [115] have shown that a relatively small amount of
organic anions, adsorbed on the oxyhydrous surfaces of minerals, significantly increases
their colloidal stability. One may also speculate that an increase in the negative charge,
resulting from FA adsorption on the clay edge surface, might stabilize the suspended clay
particles in the aqueous medium [42]. The adsorption of natural organic compounds such
as FA on the most reactive edge surface smear out the heterogeneity of the surface charge
of clay minerals, and the particles become of uniformly negative charge. Therefore, mutual
interaction of clay particles through the edge–edge or edge–face type cannot initiate the
flocculation process, and the adsorbed layer of FA might provide steric and electrostatic
stabilization for clay minerals.

On the other hand, increase in the concentration of divalent cations, such as Mg2þ

and particularly Ca2þ, with higher salinities significantly influence the electrokinetic poten-
tial of the clay minerals. Day et al. [101] have shown that the adsorption of natural organic
matter on to the surface of goethite can be enhanced in the presence of Ca2þ. Furthermore,
Jarnstrom and Stenius [116] have shown that the adsorption of sodium polyacrylate on
kaolinite is sharply enhanced in the presence of Ca2þ ions. Two mechanisms were pro-
posed. First, the presence of divalent cations might govern the increase in the number of
the active surface sites due to the formation of oxide–cations’ bridges through coulombic
interactions of the cations with the edge surface of the clay mineral and FA functional
groups. Second, the complexation of some functional groups of FA with Ca2þ causes
reduction in the number of contact sites the FA molecules have with clay edge surfaces.
Therefore, by increasing the number of molecules that can bind per unit area an increased
adsorption of FA might result.

According to Day et al. [101] Ca2þ is able to complex negative functional groups of
the adsorbed FA, resulting in a decrease in electrokinetic potential. As the charge density
of the clay minerals is reduced, electrostatic repulsion between the particles also decreases.
If the particles can approach to a shorter distance, van der Waals’ attraction force will
induce their flocculation. It was shown that Ca2þ ions induced aggregation of kaolinite
suspensions due to delocalized binding of the ions to the PAA molecules, reducing the
charge of the PAA [117].

Some authors [65, 112] pointed out that bridging flocculation of the adsorbed
organic compounds, caused by divalent cation complexation, might be one of the most
significant processes in destabilization, flocculation, and deposition of colloidal particles in
hard water and in an estuarine environment. Ruehrwein and Ward [118] have proposed a
bridging mechanisms for flocculation. It has been described as an adsorption of the seg-
ments of individual polymeric molecules on to the surfaces of more than one particle,
causing the formation of aggregates which sediment rapidly. The conformational charac-
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teristics of adsorbed organic polymers depend on ionic strength, pH, and molecular
weight, and directly affect flocculation [44, 113, 119]. Because the loops of the polymer
molecules have to be able to bridge the distance over which the electrostatic repulsion
between particles is operative, it was shown that adsorption of high molecular weight
polymers is the most effective flocculant. In addition, an increase in ionic strength
decreases the thickness of the EDLs and, therefore, lower molecular weight polymers
can act as flocculants.

As a final note on recent investigations of the electrokinetics of clay minerals it has
been recognized that many diverse factors are in play. Electrokinetic investigations give
answers only to bulk structure/surface charge related phenomena. Combined with other
techniques and methodologies of research, electrokinetic techniques significantly contri-
bute to the understanding of the colloidal behavior of clay minerals in aquatic environ-
ments.

VI. A LOOK INTO THE FUTURE OF RESEARCH IN ELECTROKINETICS
OF CLAYS

Electrokinetic investigations have established the interaction of surfaces with single com-
ponents of the aquatic medium. From this essentially reductionistic mode of experimenta-
tion, one is tempted to synthesize the probable behavior of clay particulate matter in the
natural environment.

Another area in which much information is missing is the mutual electrokinetic
influence of particles, a phenomenon known as particle–particle charge interaction. This
process is operative in natural aquatic systems where changes in the hydrodynamic regime
often favor coalescence of particles. The main obstacles to a breakthrough in this field
remain in the limitations imposed by electrokinetic techniques, limited to laboratory con-
ditions. It seems that the technique, such as electrophoresis, in which electric fields are
imposed on particles and the resulting movements are measured, have reached their
experimental limits. More is expected of acoustic or ultrasound (mechanical) perturba-
tions, with the measurement of the generated alternating electric fields. Whether these
techniques will be ‘‘gentle’’ enough for clay surfaces, sensitive enough in measuring
small responses, and allow straightforward interpretation, remains a worthy question.
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794 Sondi and Pravdić
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Electrokinetics of Mineral Particles

KALYAN K. DAS Tata Research Development and Design Centre, Pune, India

I. INTRODUCTION

The electrokinetics of mineral particles is a topic of great interest not only from the
fundamental surface chemistry angle but also from the mineral beneficiation point of
view. Researchers have looked into the myriad of aspects of electrokinetics of mineral
particles. While some of the studies were motivated by the applied chemistry and engineer-
ing perspectives, there were many others which concentrated on the development of theory
and validation thereof. Interfacial phenomena at mineral–water interfaces are usually
controlled by the electrical double layer (EDL) forces. It is, therefore, necessary to under-
stand the behavior of the ions that adsorb as counterions to maintain electroneutrality as
well as those adsorbing specifically on the surface. Excellent literature articles on the
electrokinetics of mineral particles are available [1–7].

II. ELECTRICAL DOUBLE LAYER AT THE MINERAL/WATER INTERFACE

It is well known from classical literature that when a solid is brought into contact with
an aqueous solution, charged species are transferred across the solid/liquid interface
until an equilibrium is established and this condition is characterized by a potential
 0 and a surface charge density �s. The interface between the solid and solution may
be treated as a semipermeable membrane which allows only the charged species common
to both the solid and the solution to pass through. These species are called the potential-
determining ions. As a consequence of the relative motion between the charged dispersed
phase and the bulk liquid (continuum), the EDL is sheared. The potential at this shear
plane is called the electrokinetic or zeta (�) potential. For detailed treatises on EDL
theories, readers may refer to the books by Shaw [8], Adamson [9], Hunter [10], and
Heimenz and Rajagopalan [11].

A. Electrokinetic Phenomena

There are four main kinds of electrokinetic methods, which measure the potential at the
shear plane. These are: (1) electrophoresis, (2) streaming potential, (3) sedimentation
potential, and (4) electro-osmosis. For studies concerning the mineral–solution interface,
the most appropriate electrokinetic technique is electrophoresis. This technique involves
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setting up a potential gradient in a suspension containing charged particles and determin-
ing their velocity. The movement of such colloidal particles under an applied electric field
is known as electrophoresis. Electrophoretic mobility (velocity per unit potential gradient)
is often measured using one of the commercially available instruments, mostly based on
either microscopic (visual) determinations or on electrophoretic light scattering. Since the
internal surfaces of the electrophoresis cell are also charged, there is an electro-osmotic
flow of liquid near the cell walls together with a compensating return flow of liquid with
maximum velocity at the center of the cell. The true electrophoretic velocity is measured at
locations in the cell where the electro-osmotic flow and the return flow of liquid cancel
each other. This location is called the ‘‘stationary level.’’ For a cylindrical cell, this level is
located at 0.146 of the internal diameter from the cell wall. For a flat cell, the stationary
levels are located at fractions of about 0.2 and 0.8 of the total depth, the exact locations
depending on the width/depth ratio of the cell [8].

B. Point of Zero Charge and Isoelectric Point

The single most important parameter that describes the EDL of a mineral in an aqueous
suspension is the point of zero surface charge (p.z.c.). The p.z.c. is expressed as the
condition in the aqueous solution at which the surface charge �0 is zero, and this is
determined by a particular value of the activity of the potential-determining ion
(aþzM,pzc or a�zA,pzc). Assuming that potential differences due to dipoles, etc., remain
constant, the surface potential is also considered to be zero at the p.z.c. The value of the
surface potential at any activity of potential-determining electrolyte, aþz

M is given by

 0 ¼
RT

zF
ln

aMþz

aMþzð Þpzc
ð1Þ

where R is the gas constant, T is the absolute temperature, z is the valence of the potential-
determining cation, and F is the Farady constant.

The importance of the p.z.c. is that the sign of the surface charge has a major effect
on the adsorption of all other ions and, in particular, those ions charged oppositely to the
surface, because these ions function as the counterions to maintain electroneutrality.
Determinations of the p.z.c. are normally carried out by conductometric or potentiometric
titration: some property of the suspension is measured as a function of the concentration
of the potential-determining ions, for different concentrations of an ‘‘indifferent’’ electro-
lyte. If a common intersection of all the curves corresponding to the various electrolyte
concentrations is found, the activity of the potential-determining ion at that intersection
will be the p.z.c. If, alternatively, one measures the zeta potential as a function of the
activity of the potential-determining ions, at different ionic strengths, all the zeta-potential
curves cross at a single point, which is called the point of charge reversal (CR) or ‘‘iso-
electric point’’ (i.e.p.). The i.e.p. would be same as the p.z.c. if the electrophoretic mea-
surements are carried out as a function of the concentration of potential-determining ions
in the presence of an indifferent electrolyte.

C. Conversion of Electrophoretic Mobility into Zeta Potential

The electrophoresis technique has been widely used in studying the mineral/solution inter-
face. The measured electrophoretic mobilities (�e) can be converted into zeta potentials at
the shear plane, using a suitable model. For large particles with radius a (�a � 1, � being
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the reciprocal Debye length) and a thin EDL, Smoluchowski [12] derived an equation
relating the electrophoretic mobility to �:

� ¼
�

��0
�e ð2Þ

where � is the viscosity of the dispersion medium and ��0 is its dielectric permittivity. For
small particles, where �a � 1 (a condition seldom fulfilled by real disperse systems),
Hückel derived the following equation:

� ¼
3�

2��0
�e ð3Þ

For most particulate systems of practical interest in our field, the Smoluchowski
equation has been found to be adequate, at least as a semiquantitative follow-up of the
behavior of the solid/liquid interface for different physicochemical conditions of the dis-
persion medium. The following practical formula can be useful for the conversion of
mobility into � in aqueous systems at 25�C.

� ðmVÞ ¼ 12:83	 �e �ms
�1=Vcm�1

Þ
�

ð4Þ

Without going into further theoretical details (see, e.g., Refs 10–12), we will rather
focus on the advances made in the field of mineral particles. The electrokinetics of mineral
particles has been researched quite well. In discussing the progress made in the field, the
minerals have been classified into four categories, namely, (1) oxide minerals, (2) sulfide
minerals, (3) salt-type minerals, and (4) siliceous and other minerals.

III. OXIDE MINERALS

Oxides are industrially important minerals and are also the starting materials for many
specialized applications. Classical papers by de Bruyn and Agar [2], James and Parks [3],
Fuerstenau [4], and Parfitt [7] have dealt rigorously with the electrokinetics of oxide
minerals. In addition to the potential-determining Hþ and OH� ions, the presence of
metal ions and their hydroxy species in the suspension affect the interfacial electrokinetics
of an oxide mineral and this aspect is delineated below.

A. Adsorption of Hydrolyzable Metal Ions on Oxide Surfaces

The electrokinetics of mineral–solution interfaces is substantially influenced by the local
environment in which the mineral resides in the suspension, as well as by the solubility
characteristics of the mineral itself. Depending on the solution chemistry conditions and
the solubility of the minerals in question, there may be a number of ions present in the
vicinity of the interface. Under favorable thermodynamic conditions, these ions can
adsorb on to the mineral surfaces and control their surface charge characteristics. Some
major features of electrokinetic potential–pH isotherms for surface nucleated hydroxy
species on different types of colloidal mineral particles have been rigorously investigated
by James and Healy [13]. These authors have studied the adsorption of hydrolyzable metal
ions such as Co(II), Fe(III), Cr(III), and Ca(II) on SiO2, and Th(IV) on SiO2 and TiO2. It
has been argued that the hydrolysis products of multivalent cations are adsorbed more
rapidly at the mineral–water interface. James and Healy [13] have identified three char-
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acteristic charge reversals for the adsorption of Co2þ on SiO2. The salient characteristics
of the three charge reversals are:

1. The first point of charge reversal CR1 is the p.z.c. of the mineral, since Hþ and
OH� are potential-determining ions.

2. The third charge reversal CR3 observed in the presence of hydrolyzable metal
ions reflects a partial or complete coating of the metal hydroxide on the colloidal
substrate. If sufficient metal ions are present to coat completely the surface with
adsorbed metal hydroxide, then CR3 will coincide with the p.z.c. of the metal
hydroxide. Due to incomplete coating at lower concentrations of metal ion, CR3
occurs at pH values below the p.z.c. of metal hydroxide.

3. The most interesting point, however, is CR2, the point of zeta-potential reversal
in between the p.z.c. of the substrate and the p.z.c. of the metal hydroxide
coating. It has been suggested that CR2 could indicate specific adsorption or
surface precipitation. CR2 occurs usually at a pH below that of the pH of bulk
precipitation.

James and Healy’s model of the adsorption of hydrolyzable metal ions on the
mineral surface is based on the concept that the electric field at the surface induces pre-
cipitation in the interface, usually 0.5–1.0 pH unit below the bulk precipitation edge. CR2
corresponds to the onset of the surface precipitation. Several researchers have investigated
the adsorption of hydrolyzable metal ions on different mineral substrates; for example,
Pugh and Bergstrom [14] have studied the adsorption of Mg(II) on ultrafine 
-silicon
carbide and 
-alumina. For both systems, strong adsorption of Mg(II) occurred well
below the bulk precipitation threshold on the negatively charged SiC surface and posi-
tively and negatively charged 
-Al2O3 surface. The uptake of Mg(II) on these surfaces
could be conveniently interpreted in terms of James and Healy’s cation hydrolysis/adsorp-
tion model.

The electrokinetic investigations on some of the important oxide minerals are pre-
sented in the following sections.

B. Hematite

One of the widely studied oxide minerals is hematite (
-Fe2O3). The hematite/water inter-
face has been examined by a number of researchers both in the presence and absence of
reagents. Attempts have also been made to explore the possibility of using monodisperse
hematite particles as model colloids. For possible high-technology applications, hematite
has been used in the synthesis of core–shell particle systems as well. Some of the salient
studies involving hematite are delineated in the following paragraphs.

In an important investigation, Delgado and González-Caballaro [15] have examined
the possibility of using hematite (which can be prepared in a controlled and reproducible
manner) as a model colloid. The effects of the size and shape on the electrokinetics were
investigated as a function of NaCl and CaCl2 concentrations for pseudospherical hematite
samples of different diameters. The experiments were conducted at sufficiently alkaline
conditions, i.e., at pH 10 in order to ensure enough surface charge (the p.z.c. of hematite is
at pH 7–8). The authors have compared the electrokinetic behavior with the predictions of
a rigorous theory for the mobility of spheres, assuming that both types of particles have
equal zeta potentials. Interestingly, it was found that smaller particles show a considerable
effect of anomalous (Stern-layer) ionic conduction, which was, however, less appreciable
for particles larger in diameter. In the carefully chosen electrolyte concentration range
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(above 10�3 M), in which this surface contribution is masked by the bulk solution con-
ductivity, a satisfactory agreement is found between measured and predicted mobility
values. The effect of pH and indifferent electrolyte (NaNO3) concentration on the electro-
phoretic mobility of two different size spherical samples has been compared to the pre-
dictions of the models by O’Brien and Ward [16] and Yoon and Kim [17]. For most
experimental conditions involving both spheroidal and nonspheroidal geometries, there
were good agreements with theory. Based on their findings, the authors have suggested the
possibility of using hematite of controlled geometry (not necessarily spherical) as model
colloids.

The possibility of using monodisperse oxide particles as model colloids was also
examined by studying the effects of simple 1–1, 2–1, and 3–1 inorganic electrolytes on
the electrokinetics of hematite particles [18]. Contrary to the expectation, a maximum in
the electrophoretic mobility–electrolyte concentration curve was observed. In addition to
inorganic electrolytes, the effects of five different amino acids (alanine, glycine, lysine,
threonine, and glutamic acid) were investigated on the well-characterized hematite colloids.
It was observed that the suspension pH was one of the most important parameters, which
controlled the adsorption of amino acids on the hematite surface. Interestingly, a maximum
in adsorption was found close to the i.e.p. of each amino acid. Based on the results of
adsorption, the authors have argued that electrostatic interactions alone cannot explain the
adsorption process completely; acid–base interactions may have to be considered.

Preparation of colloidal hematite particles is of significant interest among the
researchers. In one such endeavor, Kandori et al. [19] have examined the zeta potential,
X-ray fluorescence, and surface analysis (by X-ray photoelectron spectroscopy, XPS) of
monodispersed cubic hematite prepared from FeCl3 solution in relation to the number of
washing cycles. No appreciable difference in zeta potentials was observed among four
washing cycles. The i.e.p. of hematite was observed at pH 3, much lower than the reported
literature value of pH 8.5. Since the chloride ions could not be completely eliminated by
washing, it was speculated that trace amounts of chloride ions are accumulated in the
surface layer of cubic hematite, thus inducing high surface acidity.

Owing to promising technological applications, the synthesis and characterization of
core–shell particles have received considerable attention in the recent past. The stability
and physicochemical characteristics of the core–shell composites are predominantly dic-
tated by the shell particles, which are specialized coating materials, and are generally
expensive. Plaza et al. [20] have investigated the chemical and electrokinetic surface char-
acterization of a core–shell system containing hematite. Nearly spherical hematite particles
formed the core coated by a thin layer of yttrium basic carbonate or yttrium oxide as the
shell particles. The morphology and the surface characteristics of the particles could be
controlled by modifying the initial yttrium nitrate concentration. The changes in i.e.p. for
the different synthesis conditions were monitored through interfacial electrokinetics.
Based on measurements in the presence of different NaCl concentrations, pure hematite
showed an i.e.p. at pH 7.4–7.6. Electrophoretic measurements performed on different
YðOHÞCO3- and Y2O3-coated particles showed that the pHiep of all the samples were
above that of pure hematite and approached the values of yttrium carbonate and oxide
(i.e., 
 1–1.5 pH unit above that of pure hematite).

In an investigation on the adsorption of salicylic acid on hematite, Kovacevic et al.
[21] have attempted the interpretation of adsorption and electrokinetic data by introdu-
cing the slipping-plane separation as an adjustable parameter. In the experimental part,
they have measured the adsorption of salicylic acid on hematite and the corresponding
electrophoretic mobilities as a function of pH. Similar values of surface potentials were
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observed at different ionic strengths. The equilibrium in the system was defined by an
adsorption isotherm, which considered the dissociation of the salicylic acid in the bulk of
the solution and the electrostatic interactions between the surface and the adsorbed ions.
The electrostatic interactions were calculated by taking into account the surface potential
(obtained from electrokinetics using the Gouy–Chapman theory). Singly charged anions,
which occupied a surface area of 87� 15 Å2, were concluded to be the absorbable species.
From the hematite surface, the slipping-plane separation was found to be 15 Å.

In addition to the studies mentioned above, a notable investigation was conducted by
Colic et al. [22] who have determined the lyotropic effect of different anions as well as the
surface charge, electrokinetic, and coagulation kinetic measurements on aqueous positively
charged hematite particles. From the surface charge and electrokinetic data, the intrinsic
equilibrium constant for counterion association and inner layer thickness were found.

C. Cassiterite

The i.e.p. of cassiterite (SnO2) has been determined by many investigators. In the case of a
cassiterite sample from Australia, the p.z.c. determined by potentiometric titration and
i.e.p. determined by microelectrophoresis gave similar values, 
 pH4:5 [23]. Although the
natural sample contained some trace elements, mainly iron, the p.z.c./i.e.p. of the natural
sample was similar to that obtained for the synthetic one. The similarity in the i.e.p. and
p.z.c. values has been attributed to a similar kind of adsorption of organic and inorganic
ions via an electrostatic mechanism.

In one of the early investigations [24], the i.e.p. of cassiterite was determined to be at
pH 3. The authors had found that for the cassiterite–anionic collector system, bivalent
cations had a moderate effect on the floatability and zeta potential, presumably due to the
formation of sparingly soluble compounds in the slurry. However, trivalent cations, nota-
bly Fe3þ, strongly improved the floatability in the pH region 3–6.

The effect of collectors on the flotation of cassiterite has been delineated through
interfacial electrokinetics by other researchers also. Kamaruddin and Khangaonkar [25]
have observed that, for the cassiterite–sulfosuccinamate system, the collector substantially
affected the zeta potential, and the i.e.p. was lowered to pH 2.5. The change in zeta
potential in the presence of sulfosuccinamate indicates specific adsorption and/or chemical
interaction. The flotation of cassiterite was optimum at pH 3 and ions like Fe3þ and Al3þ

had significant effects on increasing the zeta potential to the positive side. Invoking the
species distribution diagrams, the authors attributed the increase in zeta potential to the
adsorption of cationic hydroxy complexes at the solid/liquid interface.

For a bimineral system containing cassiterite and quartz, the electrokinetic proper-
ties have been investigated in the presence of cationic, anionic, and nonionic surfactants by
Taha et al. [26, 27]. Considerable variations in surface charge were noticed, depending on
the pH and the solution chemistry conditions. The authors also studied the effect of
different polyvalent electrolytes (FeCl3, AlCl3, LaCl, CeCl, and ThCl4) on the adsorption
of different surfactants (namely, primary amine hydrochloride, sodium oleate, sodium
dodecyl sulfate, and Ph disodium orthophosphate) on cassiterite and quartz particles
and observed significant changes in the zeta potentials and i.e.p. of the oxides.

D. Wolframite

The electrokinetics of wolframite ðFeMnWO4Þ, an important tungsten-bearing mineral,
has been well studied. The p.z.c. was found to be at pH 6.1 [28]. Externally added ions
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such as Fe2þ, Mn2þ and WO2�4 controlled the zeta potential of the system and had an
activating effect on the flotation of wolframite. The origin of the negative charge on the
wolframite surface has been attributed to the selective dissolution of Mn2þ or Fe2þ rather
than WO2�4 . It has also been postulated that the electrokinetic characteristics of wolfra-
mite are closely related to the ratio of Mn to Fe in the mineral [29]. Some researchers [30]
have suggested that ionic species such as Naþ, Cl�, SO2�4 , CO

2�
3 , SiO

2�
3 , and WO

2�
4 are

‘‘surface nonactive’’ to wolframite. Addition of constituent metal ions, namely, Fe2þ and
Mn2þ caused reversal of charge.

Interfacial electrokinetics has been extensively monitored in the flotation of wolfra-
mite with different collectors. In the case of a cationic collector, dodecyl ammonium
acetate, the flotation response of wolframite was observed to be good between pH 5
and 10. Interestingly, Fe2þ (one of the constituent metal ions) was found to be a depres-
sant for amine flotation. The hydrophobic behavior and optimum flotation conditions of
wolframite have also been evaluated by electrokinetic studies in the presence of other
flotation collectors, namely, oxalic acid, aminonitroparaffin, and naphthenehydroxamic
acid [31]. It was found that the concentration of the flotation reagents had little effect on
the electrokinetic potential.

E. Barite

The i.e.p. of barite (BaSO4) has been measured to be at pH 4.2. The zeta potential varied
from þ140mV at pH 1 to �120mV at pH 10 [32]. The potential determining ions for
barite are Ba2þ, SO2�4 , H

þ, and OH� [33]. Sadowski and Smith [34] have investigated the
effects of different metal cations like Ca2þ, Mg2þ, Fe2þ, and Al3þ on the stability and zeta
potential of barite suspension. It was noticed that the i.e.p. shifted to more alkaline pH in
the presence of Fe2þ and Al3þ. However, in the presence of Ca2þ and Mg2þ, the i.e.p.
shifted to more negative values with increase in pH. In a study involving flotation, Taha et
al. [35] have found that sodium oleate and primary amine collectors adsorb on barite and
celestite surfaces. This has been confirmed by the correlation between maximum float-
ability and the zeta-potential values.

IV. SULFIDE MINERALS

The sulfide minerals of economical interest are those of copper (chalcopyrite, CuFeS2),
lead (galena, PbS), and zinc (sphalerite, ZnS). Secondary sulfide minerals of importance
are mainly those of copper, namely, chalcocite (Cu2SÞ and covellite (CuS). An important
iron sulfide mineral is pyrite (FeS2). The electrokinetics of the three base metal sulfides of
copper, lead, and zinc have been extensively investigated. The presence and nature of
adsorbed species in the aqueous sulfide mineral system have been studied by electroki-
netics [1], electrochemical [36, 37], and surface spectroscopic techniques [38]. Two impor-
tant factors affecting the electrokinetics of sulfide minerals are their oxidation
characteristics and adsorption of hydrolyzable metal ions on sulfide surfaces.

A. Oxidation Characteristics of Sulfide Minerals

Sulfides are known to be thermodynamically unstable in the presence of oxygen. As a
consequence, in ore bodies sulfide minerals are oxidized to varying degrees. Mechanisms
of oxidation of sulfides have been studied for a long time and are a subject of immense
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controversy [39–45]. In aqueous medium a sulfide mineral represents an electrochemical
system. The dissolved species from the suspended solid are adsorbed as metal hydroxy
species or metal hydroxides on the surface, depending on the Eh–pH conditions and the
concentration of ions in solution. The electrokinetic behavior of sulfide minerals is more
complicated to interpret than that of oxide minerals. Metal cation(s), S2�, HS�, Hþ, and
OH� anions, and H2S may all be responsible for the charge on the sulfide mineral [2, 46].
According to Luttrell and Yoon [47], under limited oxidation conditions, in addition to
OH� and HS�, a variety of polysulfide species may also contribute to the negative surface
charge in alkaline solution.

Compared to oxides, the sulfide minerals show wide variations in the point of zero
charge (pHpzc) or isoelectric point (pHiepÞ due to their proneness to oxidation. Depending
on the pH values, solid concentration, and aging, the zeta potential–pH characteristics
change dramatically as the nature and quantity of surface species vary. Since the sulfide
ion is readily hydrolyzed in solution, the sulfur-bearing species, HS� and H2S also need to
be considered. The observed low pHiep in the case of most sulfide minerals has been
attributed [48] to a surface coating of elemental sulfur produced by the reaction:

MS!M2þ þ S0 þ 2e ðoxidationÞ ð5Þ

and

1=2O2 þ 2H
2þ

þ 2e! H2O ð6Þ

or

2H2Oþ 2e! H2 þ 2OH
�
ðreductionÞ ð7Þ

The products of oxidation are both elemental sulfur and metal ion(s). Sulfur is
thermodynamically stable up to pH 
 8. However, the oxidation of sulfide to elemental
sulfur (S0) increases as the pH decreases. With increase in pH, S0 and S2� are both
increasingly unstable and oxidize to SxO

n�
y species:

S0 þ 4H2O! SO2�4 þ 8Hþ
þ 6e ð8Þ

Sulfur coating of the mineral surface is known to render self-induced floatability of
many sulfides. Also, depending on the pH conditions, the metal ions may undergo hydro-
lysis and can be precipitate on the surface in the form of metal hydroxide, making the
surface hydrophilic. The level of oxidation (and nature of oxidation products) determines
whether the mineral surface would be hydrophobic or hydrophilic.

B. Adsorption of Hydrolyzable Metal Ions on Sulfide Minerals

As in the case of oxides, sulfide minerals are also influenced by the adsorption of hydro-
lyzable metal ions. Pugh [49] and Pugh and Tjus [50] in their studies on (1) Cu(II) hydroxy-
coated zinc sulfide particles, and (2) uptake of Pb2þ=Zn2þ by PbS/ZnS have corroborated
the findings of James and Healy [13] on oxide minerals. The adsorption of Zn(II) at the
cinnabar ðHgSÞ=H2O interface was studied by James and Parks [3]. It has been observed
that the adsorption of hydrolysis products in the EDL or ion exchange of free aqueous
metal ions for surface protons can describe the uptake of the species. Das et al. [51] have
investigated the role of constituent metal ions, namely, Cu2þ and Fe3þ on the oxidation of
chalcopyrite. It was suggested that the ratio of Cu/Fe on the chalcopyrite surface governs
the interfacial potential and this was reflected by a shift in pHiep values for chalcopyrite
samples oxidized to different extents. The effects of Cu2þ, Ni2þ, and Fe2þ addition on
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covellite, pyrrhotite, and millerite have been investigated by Acar and Somasundaran [52].
They observed a shift in i.e.p. of the metal sulfides in the presence of various concentra-
tions of externally added metal ions. The shift in i.e.p. with the addition of a lower
concentration of metal ions was attributed to the precipitation of metal hydroxide either
in the bulk or on the surface. The authors have explained the change in zeta-potential
values in the presence of metal ions as due to the conversion of the sulfide surfaces into
that of the adsorbing metal sulfide surface. This was found to be true in the case of Cu2þ

adsorption on pyrrhotite (FeS) and millerite (NiS), thus changing the surfaces to those of
covellite (CuS). Similarly, surface conversion of pyrrhotite into millerite was observed in
the presence of Ni(II) ions.

The important electrokinetic investigations on some of the sulfide minerals are
described in the following subsections.

C. Galena

1. Determination of Isoelectric Point

Among the sulfides, the most extensively studied minerals are those of lead and zinc. Wide
variations in the pHiep values, as much as 5 pH units, have been reported for galena and
sphalerite. According to Pugh [49] these variations could be explained by considering the
complicating effects associated with the oxidation of sulfide surfaces. Although potential
determining lattice ions such as M2þ, M3þ, and S2� control the EDL, other Eh–pH
dependent processes, for example oxidation, are also important. This can result in the
formation of sulfoxides, basic thiosulfates, sulfates, basic carbonates, etc., which may
enhance dissolution, leading to the release of significant quantities of soluble species.
For a naturally occurring galena sample, Pugh [49] observed negative charge over pH
2–12 while for a synthetic sample, the pHiep was found to be at pH 
 5. The effect of
externally added Pb(II) (the constituent metal ion) on the galena surface was interesting,
e.g., at low Pb(II) concentration, the galena surface showed a lowering in negative charge
but at higher Pb(II) concentrations, charge reversals occurred; negative to positive at
pH 
 4 and positive to negative at pH 
 9. In contrast to the pHiep observed at pH 
 5
by Pugh [49], Gaudin and Sun [53] determined the i.e.p. of galena to be at pH 3, while
studies by McGlashan et al. [54] have shown lead sulfides to be negatively charged over
most of the pH range. Yarar and Kitchener [55] have measured the zeta potential of galena
as a function of pH, Pb2þ concentration, and S2� concentration and observed the i.e.p. at
pH 3. It was interesting to note that using Pb2þ and S2� as potential-determining ions at
fixed pH, the zeta potential did not become zero at any concentration of the added ions.
Yucesoy and Yarar [56] determined the zeta potential of lead sulfide as a function of pH,
Pb2þ concentration, ethyl xanthate concentration, and NaNO3 concentration. With
respect to Pb2þ, the i.e.p. was observed at pH 4.0 at 10�5 MPb2þ. The negative zeta
potential of Pb increased in magnitude (negative direction) on adsorption of ethylxanthate
ion. Although nitrate ion is known to be indifferent, it appeared to be specifically adsorb-
ing on galena at pH 5.5. Fuerstenau [57] has reported i.e.p. values for galena at pH 2.6
and 8 in the absence and presence of oxygen, respectively. Aplan et al. [58] observed that
various galena samples including synthetic ones, yielded i.e.p. values at pH 
 2:1.

2. Oxidation of Galena

Like most sulfide minerals, galena is also prone to oxidation. Plante and Sutherland [59]
have observed that oxidation of galena produced soluble cation and sulfate in neutral/
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acidic solutions, but polythionate, sulfate, and thiosulfate in alkaline solutions. Lead was
not found to be released. Contrary to this, Pugh and Bergstrom [14] detected significant
amounts of lead ions dissolved from two galena samples during conditioning. The more
highly oxidized sample released almost 10 times more lead ions into water at neutral pH.

An important electrokinetic investigation on the oxidation of galena has been
reported by Fornasiero et al. [60]. The galena samples were conditioned in aqueous solu-
tions at different pH values with different gases for varying amounts of time. To account
for the changes in zeta potential occurring during surface oxidation, the authors proposed
a mechanism involving the dissolution of Pb ions followed by their readsorption as lead
hydroxide. The Gouy–Chapman–Stern double-layer model was invoked to calculate the
zeta potential as a function of pH. It has been argued that the driving force for the
interaction between the solution Pb species and the surface sites are electrical in nature.

3. Effect of Sample Preparation Technique and Conditioning

It is well known that the electrokinetic characteristics of minerals vary, depending on the
method of sample preparation. For example, freshly wet ground galena in distilled water
showed an i.e.p. at pH 6.8 while there was a gradual shift in zeta potential–pH curves to
more negative values, especially in the acidic range [61], depending on whether the sample
was dry ground (i.e.p. at pH 5.2), the dry-ground sample was pretreated in ammonium
chloride solution (i.e.p. at pH 4.2), or the sample was dry ground and stored for about five
months (i.e.p. at pH 2.2). Interestingly, a similarity in the zeta-potential behavior of a
heavily oxidized galena sample with that of elemental sulfur (at acidic pH values) was also
noticed. It is fascinating to note that chalcopyrite as well as sulfur sample obtained from
galena itself showed an i.e.p. at pH 2.2. These results corroborated the findings of earlier
researchers on the influence of sulfur in rendering the minerals hydrophobic. Accordingly,
it has been suggested that the surface reactions are predominantly driven by sulfur. Based
on the observation that the electrokinetic characteristics of heavily oxidized galena sam-
ples showed remarkable similarity to that of elemental sulfur, Kelebek and Smith [61] have
proposed the following reaction in the acidic pH conditions for the formation of sulfur
from galena:

3 PbSþ 4H2SO4 ! 3 PbSO4 þ 4 S
0
þ 4H2O ð9Þ

Like the sample preparation technique, equilibration under different conditions also
influences zeta-potential measurements. Lee and Whang [62] have measured the i.e.p. of
galena in aqueous solution at pH 3.4. Pre-equilibration at pH 3 and 6 shifted the i.e.p. to
the alkaline region (i.e., pH 11.3 and 10.5, respectively) whereas pre-equilibration at pH 10
shifted the i.e.p. to acidic pH. The addition of Na2S was found to have a depressing effect
on the flotation of galena while at the same time it increased the negative charge on galena
over the whole pH range. On the other hand, PbðNO3Þ2 had an activating effect on the
flotation of galena. Neville and Hunter [63] have noticed a relationship between equili-
brating conditions and zeta potential. Depending on the equilibration conditions, the i.e.p.
was found to vary between pH 2 and 4. When the mineral was conditioned at pH 4, two
CRs were observed; negative to positive at pH 6 and positive to negative at pH 10.

4. Effect of Xanthate Collector

The widely used collector for flotation of galena is potassium ethyl xanthate. The inter-
facial electrokinetics of galena–ethyl xanthate system has been studied [56, 64]. As
expected of an adsorption process, the negative zeta potential of galena was found to
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increase with xanthate concentration [56, 62, 64]. Espinosa-Jiménez et al. [64] measured
the p.z.c. of galena at pH 4.8. The observed increase in zeta potential subsequent to the
interaction between xanthate and the galena surface has been ascribed to the adsorption of
xanthate on galena, leading to enhanced hydrophobicity of the mineral surface.

5. Aggregation Studies

In addition to several studies on the electrokinetics of minerals and its effect on flotation,
there are also some reports of aggregation studies on sulfide minerals [65, 66]. It is well
known that for the individual minerals, the pH of maximum settling occurs at their
respective p.z.c. values. It was interesting to note that in the agglomeration study of
galena, pyrite, and their mixtures, the effect of externally added Ca and Pb ions on the
overall settling behavior was minor, but Fe(II) significantly lowered the settling rate of
both galena and pyrite. In the case of mineral mixtures, the changes in zeta potential vis-à-
vis galena alone were attributed to galvanic interactions between the two minerals, result-
ing in oxidation products on the galena surface.

D. Sphalerite

1. Determination of p.z.c. and Effect of Variables

The electrokinetics of sphalerite, the predominant zinc mineral, has been well studied.
Pugh [49] has observed pHiep 
 3 for sphalerite and pHiep 
 9 for synthetic ZnS.
Moignard et al. [48] have investigated the electrokinetics of ZnS in great detail. The effect
of percentage solids, conditioning time, and conditioning pH on the zeta potential of
synthetic and natural zinc sulfides have been studied. Increasing the percentage solids
from 0.1 to 2% resulted in the shift in i.e.p. from pH 4 to 8.5. Similarly, the i.e.p. shifted
from pH 5 to 8.5 as the pH of pre-equilibration was increased from pH 3 to 9.8. These
phenomena were explained as due to the formation of oxidation and hydrolysis products
at the ZnS surface. These authors postulated that, in acid solutions, the ZnS surface is
oxidized by residual oxygen of the system to Zn2þ and S0:

ZnSþ 2Hþ
þO2 ! Zn2þ þ S0 þH2O ð10Þ

At alkaline pH, Zn2þ hydrolyzes in aqueous solution to form a surface coating of insoluble
zinc oxide–hydroxide. Formation of both elemental sulfur and zinc oxide–hydroxide coat-
ings on the ZnS surface was cited as responsible for changes in the double-layer charac-
teristics.

William and Labib [67] have measured the zeta potentials of synthetic ZnS, ZnCdS,
and ZnO in an aqueous solution as a function of pH. In the pH range 3–12, three distinct
regions were observed within each of which the zeta potential exhibited different behavior.
At low pH values, ZnS dissolved symmetrically due to the attack of Hþ ions, probably at
sulfur sites. According to the authors, at high pH values the surface appeared to be
covered with an oxide layer and, for pH > 9, a dissolution reaction took place, adding
to the negative charge on the surface.

2. Electrokinetics of Sphalerite Depression and Activation

In the differential flotation of lead and zinc sulfides from a Pb–Zn ore, sphalerite is
depressed by adding zinc sulfate, and galena is floated first. The depression of sphalerite
with Zn(II) in neutral and alkaline solutions has been discussed in detail by Finkelstein
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and Allison [68]. The depression has been attributed to the adhesion of ZnðOHÞ2 to the
surface of sphalerite. The thick coating of hydroxide encapsulating the particles, together
with the possibility of strong hydrogen bonding with localized water, renders the surface
extremely hydrophilic.

Since sphalerite is sluggish to float, a metal ion (generally Cu2þ) is added to the
flotation pulp to activate the surface. This enables the collector (normally xanthate) to
adsorb on the mineral surface and render it floatable. Zeta-potential studies have been
extensively used to delineate the surface chemical characteristics of this system. Hukki et
al. [69] observed a large change in zeta potential after addition of 25 ppm of CuSO4  5H2O
to the ZnS suspensions. The shift in CR (from pH 3 to 4.2) is explained as due to specific
adsorption of Cu2þ. The other two CRs, negative to positive at 
 pH 6:5 and positive to
negative at 
 pH 9, are attributed to hydroxide formation. According to Laskowski et al.
[70], the activation of sphalerite is believed to be a two-stage process: the overall activation
of sphalerite becomes somewhat obscured by the hydrolysis of Cu2þ and precipitation of
CuðOHÞ2 in the alkaline pH conditions (under which flotation of sphalerite is generally
carried out). The activation products formed on the surface of sphalerite in the near
neutral/alkaline solution in the first rapid activation stage are ‘‘flotation inactive.’’
These unstable layers subsequently transform into a ‘‘flotation-active’’ form in the second
stage. However, in the presence of Pb2þ ions, the surface layers formed due to activation
by Cu2þ are stable but do not improve the flotation rate.

Pugh and Tjus [50] have studied the electrokinetics of Cu(II) hydroxy-coated zinc
sulfide particles. The uptake of hydroxylated metal ions on the mineral surface resulted in
the reversal of zeta potentials and these have been discussed in terms of specific adsorption
of positively charged hydroxy species and the interfacial precipitation of metal hydroxides
[71–73]. Pugh and Tjus [50] also found that the coating of accumulated copper-hydroxy
species on a ZnS surface depleted over a period of time. This was reflected by the reduction
in positive zeta potential which tended to revert to its original negative value. Based on
solubility–pH diagrams, these authors argued that for CuðOHÞ2ðsÞ, the precipitation edge
increases from pH 6.2 to 7.3. The instability of the coating has been attributed to the
diffusion of Cu(II) into the ZnS lattice and subsequent release of Zn(II) and the formation
of a surface film [74].

In an interesting investigation on the effect of Fe-lattice ions on the adsorption,
electrokinetic, calorimetric, and flotation properties of sphalerite, Gigowski et al. [75]
have observed that Fe-rich sphalerites adsorb xanthate with preference. The effect was
noticed particularly in the case of sphalerite activated with Cu. It was observed that the
adsorption led to an increase in negative potential whereas other factors had little effect.
The electrokinetic studies suggested that the i.e.p. values of different sphalerite samples
differed depending on their iron contents. Similarly, depending on the Fe content, the
interaction of isopropylxanthate–sphalerite showed differences in electrokinetic behavior.
From calormetric measurements, the authors have argued that the activation of the
sphalerite surface with Cu ions was more influenced by the Fe content than by the degree
of oxidation.

It is well recognized that reagent chemistry plays an important role in the flotation
recovery of minerals. In the flotation of sulfide minerals with some new collectors, it was
observed that, for 2-mercaptobenzoxazole–chalcocite, 2-mercaptobenzothiazole–galena,
and 2-aminothiophenol–sphalerite systems, the new collectors strongly improved the
mineral recovery in the neutral pH range [76]. In comparison with xanthates, the new
reagents required a lower concentration to achieve a similar flotation performance.
Electrophoresis and sedimentation studies confirm the results obtained from flotation.
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From the electrokinetic measurements, chalcocite was estimated to have an i.e.p. at pH 6–
7. Though according to DLVO theory, this pH range should have been an unstable region,
but in reality no instability of suspension was observed. This led the authors to suggest
that repulsive solvation/hydration forces might be responsible for the observed suspension
stability.

E. Chalcopyrite

Chalcopyrite is a ternary system involving copper, iron, and sulfur. Like most other sulfide
minerals, chalcopyrite is also prone to oxidation. The electrokinetic behavior of the
mineral surface reflects the changes in the EDL brought about as a consequence of the
adsorption of different ions. The oxidation characteristics of chalcopyrite are complicated
due to the presence of two metal atoms, namely, Cu2þ and Fe3þ. One or both of these ions
may be released into the system and subsequently undergo hydrolysis, the end product
being the respective hydroxides. The properties of the chalcopyrite/water interface are
governed by the concentrations of Cu2þ, Fe3þ, S2þ, and Hþ=OH�. The oxidation char-
acteristics of chalcopyrite have been a subject of controversy especially with respect to its
influence on flotation [39–43]. In the past, attempts have been made to identify the species
responsible for flotation with and without collectors, by different electrochemical methods
suitably supplemented by surface spectroscopic techniques such as XPS and Auger elec-
tron spectroscopy [36, 39–45], but there is no broad agreement. However, it is now gen-
erally believed that a certain amount of oxidation (either by chemical or electrochemical
control) assists the flotation of chalcopyrite in the absence of collectors. Heavy oxidation
by strong oxidants like hydrogen peroxide could completely suppress the flotation of
chalcopyrite whereas pretreatment with mild glacial acetic acid increased flotation [77].
Excellent literature articles are available on the above subject [40, 42, 44, 45, 78].

Electrokinetic studies on chalcopyrite are somewhat scarce. Previous studies [54, 79]
on chalcopyrite indicate a low i.e.p. for this mineral (pH 
 3). Kelebek and Smith [61]
reported an i.e.p. of pH 2.2 for chalcopyrite and suggested that the pH dependence of zeta
potential for chalcopyrite is similar to that of sulfur, both having a common i.e.p. at
pH 2.2. McGlashan et al. [54] proposed that various ionic sites involving copper, iron,
and sulfur atoms, created on fracture, would react with oxygen to produce negatively
charged surface species. Freshly ground chalcopyrite samples at low pH values have
zeta potentials similar to that of sulfur [48, 61]. In both cases, it is difficult to interpret
the low i.e.p. and negative zeta-potential values since the specific surface groups capable of
accepting protons or hydroxyl ions are unknown.

Depending on the level of oxidation, either due to geochemical reactions, aging, or
deliberate oxidation, the surface characteristics of chalcopyrite undergo dramatic changes
which are appropriately reflected by interfacial electrokinetics [51]. The authors observed
that chalcopyrite samples from four different geographical locations showed differences in
electrokinetic behavior which could be attributed to the changes in the concentrations of
the constituent metal ions on the mineral surface (from XPS analysis). It has been sug-
gested that the relative preponderance of one metal ion over another (e.g., Cu2þ over Fe3þ)
as well as the solubility of the surface contributing the metal ions in solution (as a result of
the oxidation reaction) control the electrokinetic behavior of chalcopyrite. The oxidation
reaction could be the result of deliberate oxidation carried out in the laboratory (e.g., by
hydrogen peroxide treatment), it could have occurred due to aging, or it could have taken
place over geological periods of time. In essence, the ratio of Cu : Fe controlled the inter-
facial electrokinetics as a result of dissolution, hydrolysis, precipitation, and adsorption of
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the metal ions on the mineral surface. This hypothesis was confirmed by monitoring the
interfacial electrokinetics of the particular metal-deficient chalcopyrite sample in the
presence of externally added metal ions. It was also demonstrated that, depending on
the solid/liquid ratio and ‘‘aging,’’ the chalcopyrite surface can become copper- or
iron-rich as reflected by a shift in pHiep.

1. Chalcopyrite–Collector Interactions

Although chalcopyrite responds well to flotation by xanthate collectors, oxidized samples
show reduced efficiency with xanthate. Electrokinetics has been used to study the effect of
various nonxanthate collectors on chalcopyrite. Mangalam and Khangaonkar [80–82]
have studied the Hallimond tube flotation of chalcopyrite with 8-hydroxyquinoline, cup-
ferron, and sodium diethyldithiocarbamate. In the case of 8-hydroxyquinoline [80], cor-
relation of zeta potential with flotation behavior was found to be poor. The authors have
explained the lowering of floatability with respect to coagulation effects. In the case of
cupferron [81], it was found that the floatability of chalcopyrite decreased with increasing
adsorption as a result of coagulation and dissolution effects. The application of Modi–
Fuerstenau and Stern–Grahame models indicated the predominantly electrostatic nature
of the collector adsorption in the case of both cupferron and sodium diethyldithio-
carbamate.

The importance of reagent chemistry on the flotation behavior of chalcopyrite has
also been demonstrated by Fairthorne et al. [83]. These authors have investigated the
adsorption of a commercially used collector, butyl ethoxycarbonyl thiourea (BECTU)
on chalcopyrite as a function of pH in the presence of oxygen and nitrogen. An increase
in the flotation recovery due to addition of BECTU was observed. The adsorption was
monitored in solution by UV–visible spectroscopy and on the chalcopyrite surface by
XPS, secondary-ion mass spectroscopy (SIMS), zeta potential, and flotation measure-
ments. The chalcopyrite sample showed changes in zeta potential on addition of
BECTU. It was noticed that the zeta potential – pH curves became less negative and
even reversed sign at high BECTU concentrations. The reversal of charge has been attrib-
uted to the release of a proton from the BECTU molecule when forming the surface
cuprous–BECTU complex. SIMS analysis provided strong evidence for the presence of
a 1 : 1 Cu–BECTU surface complex.

F. Chalcocite

Lekki and Laskowski [84] have studied the electrokinetics of the secondary copper sulfide,
chalcocite, to evaluate the effect of flotation reagents. Chalcocite was observed to be
negatively charged from pH 3 to 10. Both ethyl xanthate (collector) and 
-terpineol
(frother) adsorbed at the chalcocite surface and thus increased the magnitude of the
negative zeta potential. The i.e.p. for chalcocite was observed at pH 6.5 in the presence
of 
-terpineol while no shift in i.e.p. was observed in the presence of ethyl xanthate.

The surface oxidation of chalcocite has been studied by Oestreicher and
McGlashan [85] as a function of conditioning time and equilibrium pH. Their results
tend to indicate that copper hydroxide formation takes place when the sulfide is equili-
brated at pH 3.4 where dissolution occurs with the release of high concentrations of
Cu2þ. In the absence of significant oxidation, the chalcocite surface remains essentially
negative over the pH range 4-11.
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G. Covellite

The electrokinetics of another secondary copper sulfide mineral, covellite, was studied by
Acar and Somasundaran [52] to find out the effect of dissolved mineral species. They have
observed two i.e.p. values for covellite, at pH 6.3 and 9.5. Since CuO has an i.e.p. at pH
9.5, the second i.e.p. has been interpreted as that due to the formation of copper oxide on
the surface of covellite. The lower i.e.p. at 6.3 has been explained as due to the formation
of CuðOHÞ2 on the covellite surface.

In an electrokinetic study involving both sulfide and oxide copper minerals like
covellite (CuS), cuprite (Cu2OÞ and tenorite (CuO), Bhaskar Raju and Forsling [86] have
investigated the role of potential-determining ions. In the case of CuS, additional CRs
were noticed in pH conditions other than the regions of metal ion precipitation. The
interaction of protons with the hydrous mineral surface, and the adsorption of desorbed
or excess metal ions with protonated surface sites are explained by an ion-exchange
mechanism.

H. Pyrite

The important electrokinetic studies on iron sulfide mineral, pyrite, are those by
Fuerstenau et al. [87], Fuerstenau and Elgillani [88], and Fornasiero et al. [89]. In the
first study [87], the adsorption of xanthate on pyrite was dealt with. It was observed that
the changes in i.e.p. were dependent on the conditioning period: thus, the pHiep was 6.2
after 5 min conditoning, and 6.9 after 15 min. Gaudin and Sun [53] had observed an i.e.p.
value of pH 6.4. In the flotation of sulfide minerals, cyanides are generally used as depres-
sants for pyrite. Fuerstenau and Elgillani [88] studied the effect of cyanide on the zeta-
potential behavior of pyrite. They proposed that either CN� or FeðCNÞ3�6 decreased the
zeta potential and moved the i.e.p. to acidic values, indicating specific adsorption of an
anion. The depression of pyrite by cyanide was attributed to the formation of a complex
Fe½FeðCNÞ6�y at the surface.

Fornasiero et al. [89] have studied the oxidation of pyrite as a function of pH under
various pretreatment conditions: conditioning in Ar, N, air, and O atmospheres, at several
conditioning pHs, and for several conditioning periods. The zeta potential of ‘‘virgin’’
pyrite was found negative over the pH range 3–10; the i.e.p. of pyrite under Ar was at pH
1:4� 0:4. However, exposure to O reversed the sign of the zeta potential from negative to
positive at low pH values. It was also observed that the CR takes place more rapidly at
lower conditioning pH. The results were explained on the basis of dissolution of Fe from
the surface followed by the electrostatic adsorption of positively charged Fe hydroxide
species on to negatively charged surface sites of pyrite. Good agreement was found
between the experimental and the calculated zeta-potential data by using the EDL theory
of Gouy–Chapman–Stern.

V. SALT-TYPE MINERALS

The electrokinetic investigations on salt-type minerals are varied and interesting. Some of
the important ones are discussed below.
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A. Apatite [(CaF)Ca4(PO4)3 and (CaCl)Ca4(PO4)3]

1. Determination of p.z.c. and Effect of Potential-Determining Ions

Apatite is an important phosphatic mineral. One of the early electrokinetic studies on
apatite was conducted by Somasundaran [90]. The i.e.p. of apatite in aqueous solution was
determined to be at pH 4, but with the passage of time, the i.e.p. shifted towards a final
value of pH 6. In the case of apatite, the potential determining ions are Hþ, OH�, and
ðPO4Þ

3�. Zeta-potential changes due to the addition of calcium and fluoride were found to
be significant. The major effect of Ca was attributed to its specific adsorption character-
istics. The pH-dependent hydrolysis of the surface species was responsible for the charge
development at the apatite surface. Rao et al. [91] determined the i.e.p. of apatite at pH 4.
Similar results were obtained by Smani et al. [92]. However, in the literature the i.e.p. of
apatite has been reported to vary from pH 3.5 to 6.7, depending on the source of the
mineral [93].

2. Apatite–Reagent Interactions

The interaction of oleate (a commonly used flotation collector) on apatite has been inves-
tigated by adsorption density measurements and electrokinetics [91]. It was found that the
adsorption density at monolayer coverage corresponded to a condensed state of surfactant
with a molecular area of 33 Å2. The isotherm at pH 8 showed monolayer coverage fol-
lowed by the precipitation step of Ca oleate. At pH values of 9–11, the isotherms revealed
a bilayered structure of oleate on the surface before the precipitation step of Ca oleate. The
zeta-potential studies on the interaction of oleate with apatite showed that at very low
concentration (e.g., 3:55	 10�7 M oleate), there was no change in zeta potential. With
increase in the oleate concentration, the zeta potentials became more negative and even
showed totally negative surface charges at 2:66	 10�5 M oleate. The zeta-potential values
were found to correlate well with the adsorption of oleate up to the bilayer formation.

In an interesting study of the bacterial adhesion on to apatite minerals, Yellojirao et
al. [94] have examined the role of electrokinetic properties of streptococcus sanguis and
actinomyces naeslundii in determining their adhesion to apatite minerals. The apatite
sample exhibited an i.e.p. at pH 8. It was fascinating to note that bacterial adhesion on
to the apatite surface could take place even when both the surfaces were negatively
charged and the adhered layer was resistant to washing. After exposure to the bacteria,
the mineral fines exhibited zeta-potential values intermediate between those of the mineral
and the bacteria. The authors have argued that in the absence of salivary proteins, the
inorganic species present in saliva (including Ca2þ, Mg2þ, Kþ, and various phosphate
species) alter the magnitude of the surface charge but do not affect the bacterial adhesion
process. On the basis of the observed adsorption of negatively charged bacteria on to
negatively charged minerals, it has been suggested that electrostatic interactions are not
the primary factors responsible for adhesion. The authors have identified surface hetero-
geneity of bacteria as a possible reason for controlling adhesion of similarly charged
particles. It was further argued that the dissolved species from the mineral could alter
the surface charge of the bacteria so as to reduce repulsion and thus promote adhesion.

B. Calcite (CaCO3)

Calcite (calcium carbonate) is one of the most important and cheap industrial minerals.
Calcite exhibits complex behavior in aqueous medium due to its solubility characteristics.
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The salient features of different investigations on the calcite electrokinetics are delineated
below.

1. Determination of i.e.p.

The i.e.p. values of calcite samples have been reported to be widely different. Fuerstenau et
al. [95] have determined the i.e.p. at pH 10.8, while Somasundaran and Agar [96] have
reported a value between pH 8 and 9.5. Smani et al. [92] have found the i.e.p. to be at pH
5.4. It has also been observed that under identical conditions, synthetic and natural calcite
samples show varying zeta-potential values [97]. For example, synthetic calcite in 10�3

mol dm�3 NaCl and at a pH of 8.6 was positively charged (þ22 mV), whereas natural
calcite under the same conditions showed a potential of �18 mV. The synthetic sample
showed an i.e.p. at pH 9.5 whereas no clear i.e.p. was noticed for a natural sample. The
zeta-potential values for synthetic calcite were significantly altered by the addition of
natural seawater or organic solutes. However, no such change was observed for the
natural sample. It has been suggested that the organic coating attached to the surface
of natural calcite prevented calcite from reacting with ions and solutes from the solution.

2. Effect of Solids Concentration

The electrokinetic properties of calcite in water were found to vary, depending on the
operating conditions [98]. The zeta potentials (ranging from negative to positive values)
decreased due to vigorous shaking but were not much affected by atmospheric CO2.
However, the quantity of suspended CaCO3 had a strong effect. In 0.01 M NaCl medium,
the zeta potentials of calcite were measured at different pH values for various concentra-
tions of dispersed calcite. The results showed a maximum in zeta potential at pH 9:1� 0:1.
However, depending on the calcite concentrations; one, two, or no i.e.p. values were
observed. This was ascribed to the concentration change of dehydrated calcium ions in
the inner Helmholtz plane, due to variations in the dissolution rate of the solid. It has been
argued that when the dispersed mass is small, the hydrated calcium ions concentrate
largely in the outer Helmholtz plane while the less hydrated carbonate anions remain in
contact with the surface in the inner Helmholtz plane, thus the zeta potential becomes
negative. However, at a mass greater than 30 mg per 100 cm3, the mineral surface in
contact with water becomes large, thereby allowing certain surface calcium ions to be
mobilized and become hydrated. The surface calcium ions are smaller than the carbonates
and impart a positive charge to the surface.

3. Calcite–Reagent Interactions

Electrokinetic properties of the calcite/water interface have also been studied in the
presence of magnesium and organic matter [99]. The zeta potentials of calcite suspended
in water were negative and only slightly changed in the pH range 8.5–10.5. At constant
Ca2þ concentration, pH did not affect the zeta-potential values. However, the zeta
potential was rather dependent on pCa2þ or pCO2�3 . The authors observed an i.e.p. at
pCa2þ 2.7. The factors which significantly influenced the zeta potential of calcite were
pH, Mg2þ concentration, and aging time. The findings involving various metal ions are
interpreted in terms of the formation of a surface layer of Mg-bearing calcite, Mg2þ,
Ca2þ, and CO2�3 being the potential determining ions. With regard to the influence of
organic matter, it is interesting to note that the adsorption of dodecyl sulfate on calcite
produced more negative surface charge due to electrostatic interactions between Ca and
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dodecyl sulfate anions. In a somewhat similar study, Smallwood [100] has investigated
the adsorption of Ca2þ, Mg2þ, CO2þ3 , and SO

2�
4 on calcite and argonite and has

observed that the ions are more strongly adsorbed by aragonite (orthorhombic calcium
carbonate) than by calcite (rhombohedral structure). The adsorption of several organic
substances (albumin, agar, Na alginate, chondroitin sulfate, and glucose) revealed that,
except for glucose, other organic substances showed CRs indicating adsorption. With
the exception of agar, the adsorbed organic compounds stabilized the mineral suspension
by steric and double-layer repulsion.

Researchers have also investigated the adsorption of surfactants on a calcite surface.
Rao et al. [101] have studied the mechanisms of oleate adsorption on calcite by electro-
kinetics and adsorption density measurements. The zeta potentials were found to corre-
spond to the adsorption of oleate until monolayer coverage. Somasundaran [102] has
reported that the adsorption of oleate on calcite below its p.z.c. occurs due to electrostatic
forces, while above the p.z.c. the adsorption takes place by chemical interactions. The
adsorption of different surfactants, namely, dodecyltrimethylammonium chloride
(DTAC), sodium dodecyl sulfonate (SDS), and Na oleate on calcite was investigated by
Andersen et al. in the alkaline conditions (pH 9.8) [103]. The electrokinetic potential in
DTAC solutions indicated that the adsorption was due to electrostatic attraction between
negatively charged calcite particles and surfactant cations. Adsorption of SDS involved at
least partial chemical interaction. There was a strong calcite–oleate interaction even at low
oleate concentrations.

One of the classical problems in mineral beneficiation is the difficulty in flotation
separation of scheelite from calcite due to the similarities in physicochemical character-
istics of the two minerals. Ozcan and Bulutcu [104] have compared the electrokinetic and
flotation behavior of calcite and scheelite in the presence of oleoyl sarcosine, oxine, alkyl
oxine, and quebracho. Alkyl oxine and oxine are generally used as modifiers for the
scheelite surface in the separation of calcite from scheelite. It was found that alkyl
oxine increased the negative zeta-potential value of scheelite to a less negative value
whereas the zeta potential of calcite did not change, thus suggesting that the reagents
adsorbed chemically on the scheelite surface and not on calcite. From the flotation studies,
the authors found that conditoning of calcite and scheelite minerals individually with alkyl
oxine before quebracho addition increased the efficiency of oleoyl sarcosine in scheelite
flotation, but had no effect on calcite flotation.

In the development of a process for the direct flotation of phosphates, Yaniv et al.
[105] have measured the surface charges of francolite and calcite by microelectrophoresis
at different pH values in the presence of amine collectors. The results suggested that the
collector adsorbed predominantly on the negatively charged surface of francolite at pH 7–
9. There was agreement between flotation recovery and electrokinetic studies; a primary
amine was found to be a very effective collector for francolite.

C. Fluorite

Different i.e.p. values for fluorite (CaF2) are reported in the literature, varying from pH
4.2 to pH 11.3 [106–110]. For fluorite, the potential-determining ions are Hþ, OH�, and
F�. In one study the p.z.c. was determined to be at pH 8.4 [111]. While univalent ions such
as Kþ, Cl�, and NO�

3 were indifferent to the interface, some multivalent ions such as Al
3þ,

Th4þ, SO2�4 , and FeðCNÞ
3�
6 showed special affinity and changed the values of the zeta

potential significantly. Similar observations were made by Morales et al. [112].
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The fluorite–oleate system has been investigated by Rao et al. [113] also. It was
observed that the zeta potential of the interface decreased continuously with increasing
oleate concentration. Zeta-potential measurements on fluorite correlated with the adsorp-
tion of oleate up to the bilayer formation and with formation of calcium oleate on the
mineral surface at high oleate concentrations. From a comparison of the theoretical
chemical equilibrium with experimental data, the authors postulated that the infinite
increase in the slope of the isotherms was due to the precipitation of calcium oleate.

Hu et al. [114] have found that, in a mixture of scheelite and fluorite, the fluorite
surface is converted to that of scheelite (detected by AES). Fluorite in the supernatant of
scheelite exhibited nearly identical electrokinetic properties and flotation behavior as those
of scheelite. Based on their findings, the authors suggested that the selective flotation of
fluorite from scheelite might be achieved by using a selective amphoteric collector for
fluorite at pH < 4 to avoid surface conversion.

D. Magnesite and Dolomite

Electrokinetic investigations on some other salt-type minerals like magnesite (MgCO3),
dolomite ðCaCO3, MgCO3) and smithsonite (ZnCO3) are rather scarce. The zeta potential
and flotation characteristics of magnesite in the presence of sodium lauryl sulfate have
been studied by Mangalam et al. [115]. It was observed that, under neutral pH conditions,
the zeta potential showed a reversal of charge at higher concentrations (0:42 gL�1) of the
collector, whereas at pH 5.5 a reversal in sign was noted even at a very low concentration
(0:03 gL�1) of sodium lauryl sulfate. Better floatability was obtained under weakly acidic
conditions.

In a study on the flotation separation of magnesite and dolomite [116] using sodium
oleate, it was observed that the signs of zeta potential became opposite (positive for
magnesite and negative for dolomite) upon addition of 10�3 molNa2SiF6 to a solution
containing 50mgL�1 sodium oleate. This resulted in a higher floatability for magnesite
and a lower one for dolomite in the pH range 8–9.

VI. KAOLIN/SILICA MINERALS

The electrokinetic investigations on clay and siliceous materials have been quite extensive.
Some aspects of the surface characteristics of the two widely studied systems, kaolinite and
silica, are discussed below.

A. Kaolinite

The electrokinetic properties of minerals are important in determining the effectiveness of
a flotation process. In the kaolin industry, for example, flotation is used extensively to
remove anatase impurities from white kaolinite, generally by using oleate, which is selec-
tive towards anatase. Due to the presence of exchangeable metal ions in the crystal
structure, kaolinite is significantly influenced by the aqueous environment as well as by
the additives. Thus, it is of interest to learn about the interfacial electrokinetics of the
kaolin–aqueous system.
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1. Determination of i.e.p., Effect of Surface Charge, and Sample Preparation
Technique

Several researchers [117–120] have measured the i.e.p. of kaolinite suspension. Smith and
Narimatsu [119] have used a microelectrophoresis technique and observed the i.e.p. of
kaolinite at pH 
 2:2. However, by using the streaming potential method, the authors did
not find any i.e.p. Cases et al. [120] have determined the i.e.p. of kaolinite at pH 3 and
found that the kaolin sample spontaneously flocculated at pH < 3:5 and stabilized well at
pH > 5. The zeta potential versus pH curves did not account for the change in surface
charge of kaolinite near pH 3 – this has been attributed to the electronegative character of
the (001) faces consisting of either OH� ions or O2� ions distributed in the hexagonal
layer. It was, thus, observed that the particles migrated under an applied field even with
zero surface charge. Using a single-particle microelectrophoresis technique, Williams and
Williams [121] have studied the effects of preparation technique and pH and NaCl con-
centration on the electrophoretic mobility of Na kaolinite. Based on an estimation of the
edge zero point of charge (p.z.c.), they developed theories regarding the surface electrical
properties of kaolinite. The Gouy–Stern–Grahame model was found to fit the experimen-
tal data only after rather unrealistic adjustment of some model parameters.

In a study on kaolin clays from five different commercial deposits in Georgia, Yuan
and Pruett [122] have attempted to understand the variations in zeta potential and related
fundamental properties. They observed that i.e.p. values varied from pH 1.5 to pH 3.5 for
different samples. In one case, the kaolinite sample was negatively charged all throughout.
The differences in the zeta-potential values for different kaolinite samples under identical
conditions were attributed to the differences in ionic characteristics of the clay samples.
The authors suggested that higher negative zeta potential in the case of various clays could
be attributed to the exchangeable or soluble calcium ions in the clays.

2. Rheology of Kaolinite Suspensions

Because of the uniqueness of their structure, clay minerals are also important from the
rheology point of view. The rheological properties of kaolinite suspension in the presence
and absence of polymeric reagents have been examined and correlations between the
electrokinetics and rheological properties have been attempted. Nicol and Hunter [123]
have studied the rheological behavior of kaolinite solutions at different pH conditions.
The Bingham yield values of kaolinite suspensions in the presence of adsorbates showed a
pronounced maximum at neutral pH. This was attributed to the presence of extended
chains of particles attached by electrostatic interactions between edges and faces. At high
pH values, the particles supposedly behaved as individuals and the yield value could be
correlated with attractive and repulsive forces between them. It was also noticed that
metal ions under different pH conditions affected the kaolinite rheological properties
differently.

From the measurement of the electroacoustic zeta potential and shear yield stress
(y) properties of nondilute kaolinite suspensions over a wide range of pHs and Al(III)
concentrations, Johnson et al. [124] have observed distinct trends for the different faces
present in the system. At zero or low Al(III) concentration, the zeta-potential values
were dominated by the silica-like kaolinite face, pH-dependent face, and edge inter-
actions. With the increase in Al(III) concentration, the zeta-potential values became
more positive and the i.e.p. values shifted towards higher pH. The zeta-potential data
are supported by shear yield stress results. It was interesting to note that the y versus
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pH properties systematically changed from kaolinite-like to alumina-like behavior with
increase in Al(III) concentration.

The viscosity of mineral suspensions are known to be altered by polymeric additives.
The addition of poly(vinyl alcohol) to a kaolinite suspension resulted in an increase in the
viscosity [125]. The effects of electrolytes (NaCl, CaCl2, and AlCl3) and flocculants (e.g.,
polyacrylamide) on the zeta potential of kaolin have revealed that when the electrolytes
alone were used, the zeta potential decreased. However an electrolyte–polyacrylamide
mixture increased the zeta potential [126]. On the other hand, other researchers [127]
have found that the adsorption of polyacrylamide actually decreases the electrophoretic
mobility due to the shift in the slipping plane towards the bulk solution.

Based on the relationship between viscosity, zeta potential, and dispersant addition,
Gerischer and Sanderson [128, 129] have suggested a quantitative stability criterion for the
clay suspensions in the absence and presence of additives like polyphosphate and poly-
acrylate. The authors have observed that the addition of dispersant alone could not inhibit
the agglomeration of kaolin at high solids concentration. It was also necessary to increase
the pH to a fairly alkaline condition (pH 
 11). Nakaishi and Kuroda [130] have studied
the flocculation of the Na kaolinite/water system as a function of salt concentration at pH
10. It was found that the mobility of particles increased with salt concentration. However,
the experimental results of flocculation did not agree with the theory of diffuse double
layer. In the dispersion state, the relationship between zeta potential and salt concentra-
tion agreed with the Gouy–Chapman theory of a diffuse double layer under constant
surface potential. A surface potential of 56 mV and the position of the slipping plane
(2.3 nm) were obtained from the experimental data. Furthermore, the authors argued that
it is necessary to know the particle size of a clay–water system when measuring the zeta
potential because mobility is heavily dependent on the dispersion – flocculation of a clay–
water system.

3. Decontamination of Clay Minerals

One of the direct applications of electrokinetics is in the decontamination of clays [131,
132]. The efficiency of electro-osmosis in removing heavy metals from contaminated soils
has been examined by applying an electric field to kaolin suspensions. Due to the applica-
tion of the field, an electro-osmotic flow of water is produced, which is superimposed on
the hydraulic flow. Since the electro-osmotic flow is somewhat stronger in smaller pores, as
in the case of clays, it can facilitate the displacement of contaminated solution by fluid
convection. Furthermore, local changes in pH can affect adsorption equilibrium and the
distribution of solutes between the solution and the solid surfaces [131]. In the past,
attempts have been made to separate heavy metals like lead from porous kaolinite. It
may be of interest to note that the electro-osmosis experiments were conducted by apply-
ing either a constant current or a constant voltage across 8 cm inside diameter, 25–30 cm
long specimens of kaolinite clay with graphite electrodes [131]. Samples of the pore fluid
and of the clay were analyzed to determine metal content, pH, and other conditions as
functions of time and position. Results show that removal of heavy metals from soil can be
accomplished effectively by electrokinetic treatment of sufficient duration. Approximately
95% of the lead was removed after 189 days. Other researchers, e.g., Coletta et al. [132]
have used natural solutions containing clay extracts and synthetic solutions with varying
concentrations of Al3þ, Ca2þ, and Naþ as anodic flushing solutions for enhanced in situ
removal of Pb from clay by electrokinetics.
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B. Silicates and Silica

The electrokinetics of silica and silicate minerals have been studied both from the applica-
tion (silica is the impurity in practically every flotation system) as well as fundamental
understanding points of view. The effects of surfactants, polymers, and electrolyte con-
centrations on the electrokinetics of silica have been investigated. Generally, silica and
silicate minerals show negative zeta potential over a wide range of pH.

1. Chrysocolla

For chrysocolla (a copper silicate mineral), Bowdish and Plouf [133] obtained an extra-
polated i.e.p. value at pH 5.5. It was found that at pH 
 6, incipient leaching of Cu begins,
leaving vacant sites on the surface which change the electrical potential of the particles and
thus cause an overall increase in the negative charge. The incipient leaching range of pH is
nearly identical to the pH range in which chrysocolla can be sulfidized and floated. At
pH 
 6, complete flotation of chrysocolla has been obtained by using K octyl hydroxa-
mate as chelating agent. Similarly, a high peak in the recovery of chrysocolla by ethyl
xanthate has been found at a pH near that of the minimum zeta potential.

2. Forces at the Silica–Solution Interface

Scales et al. [134] have studied the silica–solution interface by using a flat plate streaming
potential apparatus. The extrapolated i.e.p. was determined to be at pH2:8� 0:2. The
authors have analyzed the findings on the basis of the GCSG model for the EDL which
could partially account for the experimental results.

Hartley et al. [135] have used atomic force microscopy to investigate the forces
between a silica sphere in the colloidal size range and silica/mica flat surfaces as a function
of distance of separation. It was interesting to note that, at low ionic strength and under
identical conditions, zeta-potential measurements on the spheres and streaming potential
measurements on the flat surfaces show excellent agreement with the diffuse double-layer
potentials derived from the force data using DLVO theory. No short-range repulsion
between the silica surfaces was observed here. However, at higher electrolyte concentra-
tion, the electrokinetically derived potentials were found to deviate from those derived
from the fitted atomic-force microscopy data. A short-range steric type repulsion was
observed between the surfaces, the magnitude of which increased with decreasing pH.

3. Adsorption of Polymers and Surfactants

The adsorption of polymers and surfactants on the silica surface has been studied [136,
137]. In an interesting work, Sidorova et al. have investigated the electrokinetic and
adsorption properties of silica in solutions of weak polyelectrolytes, namely, polyethyle-
neimine, poly(acrylic acid), and an uncharged surfactant (C8H15C6H4OÞ (C2H4OÞm H,
OP7 [137]. Electrokinetic measurements were performed on a plane-parallel fused quartz
capillary while the adsorption measurements were carried out on Aerosil (specific surface
area of 175m2 g�1). It was found that the adsorption of OP7 on silica did not change the
surface charge and specific surface conductivity at neutral pH. The observed decrease in
zeta-potential value in OP7 solution is attributed to the displacement of the slipping plane
into the bulk of the solution. However, in the case of polyelectrolyte solution, specific
interactions between the polycation and the silica surface were reflected by an increase in
negative surface charge, a shifting of the i.e.p. and a decrease in the surface conductance.
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4. Effect of Electrolyte Concentration

In an important article, Dunstan [138] has interpreted the electrokinetic potentials and
surface charge densities of the silica surface from both electrophoretic mobility and elec-
tro-osmosis measurements over a range of KCl concentrations. The interpreted surface
charge densities were found to increase, thereby indicating effective adsorption of the
negatively charged chloride ions on to the negatively charged surface. The silica surface
was, thus, postulated to be nonclassical in nature.

VII. CONCLUSIONS

The electrokinetics of mineral particles is a fascinating field, and has attracted the atten-
tion of researchers for quite a long time. The understanding gained from the excellent
works of several investigators have led to a better insight into the fundamentals of the
interactions in mineral–solution systems. The mineral–aqueous solution system may con-
sist of different kinds of species, both organic and inorganic. Some of the species are
contributed by the mineral itself due to its inherent solubility characteristics. The knowl-
edge gained from such studies has also helped in choosing the appropriate operating
conditions for flotation of mineral particles. In this chapter, an attempt has been made
to acquaint the reader with the progress made in this field, particularly in the last few
decades. It is hoped that further understanding of the electrokinetics of mineral particles
will help us in designing effective strategies to solve some of the challenging problems in
mineral beneficiation.
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Electrokinetics of Gas Bubbles

ALAIN GRACIAA, PATRICE CREUX, and JEAN LACHAISE University of Pau,
Pau, France

I. INTRODUCTION

The surface charge residing at a gas–liquid surface is a factor that acts upon a number of
practical issues such as froth flotation, for example, a process which is commonly used in
domains as different as mineral recovery, the paper-making industry, the farm-product
industry, wastewater treatment, etc. In this separation process, air bubbles collect hydro-
phobic particles selectively and push them up to the surface of the pulp, leaving hydro-
philic particles behind in the pulp. It is well known that among the many factors which
affect the process, electrostatic charges of both the particles and the bubbles play an
important role [1, 2].

Although there is now abundant information on the charges of particles, until recent
years there has been a general lack of information on bubble charges. This lack was due to
the difficulty in measuring the electrophoretic mobility of bubbles, which is often much
lower than their rising mobility in the gravity field. However, for about 20 years, new
methods have been developed to remove this difficulty. This chapter presents a review of
these methods, discusses their advantages and inconveniences, and tries to give a brief
synthesis of the results obtained through their implementation.

II. EXPERIMENTAL METHODS

The difficulties encountered in the measurement of the electrokinetic behavior of a gas
bubble are numerous. Most of them come from the natural adsorption of foreign molecules
at the gas/liquid surface and from the high rising velocity of the bubble in the gravity field.

It is known that the surface of a bubble can easily adsorb alcohol molecules, surfac-
tant molecules, ions, and more generally all sorts of impurities or particles present in the
immersing liquid. This adsorption can drastically modify the electromobility of the bub-
bles. So it is very important to purify carefully the liquid before introducing the bubble, to
obtain valuable information on its intrinsic electric properties.

These surface-active agents are often present in very low concentrations in the liquid.
Their presence at the surface cannot be detected by any diversion of the interfacial tension.
So as a precaution, it is always useful to drain the liquid with masses of oxygen and
hydrogen microbubbles generated directly in the liquid by electrolysis [3, 4]. This drainage
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collects the undesirable molecules at the surface of the liquid; it is then easy to remove
them from the measurement cell. When coarser impurities are present as, for example,
metal hydroxide precipitates, their elimination by ultracentrifugation is also possible [5].

Sometimes the presence of surfactants at the bubble’s surface is highly desirable. As
these molecules come by diffusion from the immersing liquid solution, their adsorption
can require minutes or even hours. In order to reach equilibrium the bubble must be very
stable, which is not easy to achieve.

Finally, since the immersing liquid is most often an aqueous solution, attention must
also be paid to water, which could dissolve CO2 from the atmosphere. As it is known that,
at saturation, the pH can reach 5.6, the presence of a significant amount of carbonates and
bicarbonates could affect the surface potential of bubbles. To avoid such problems, it is
necessary to work under a neutral atmosphere or, at the very least, systematically to drain
the water with nitrogen bubbles.

Bubbles can be produced individually or collectively. They are produced individually
by means of a syringe, or by electrolysis followed by isolation from the other bubbles
generated in the process, before introducing the selected bubble into the measurement cell.
Bubbles can be produced collectively by circulating a gas through a porous glass frit or by
depressurizing a liquid saturated in dissolved gas.

Bubbles generated by syringes have diameters of the order of 1mm. Bubbles gener-
ated by the other processes are smaller; their diameters range from some micrometers to
about 100 mm.

The high rising velocity of the bubbles is due to the large difference between gas and
water densities, and also to the low viscosity of the immersing liquid. It is often much
higher than the electromobility of the bubble. Consequently, it is impossible to measure
the electromobility of a bubble with the ordinary electrophoretic method. Tricks have been
used to overcome this major difficulty and they are at the basis of the differences between
four principal methods which have been developed.

The first method cancels the rising movement of the bubble by trapping it in a
spinning tube; it is the spinning-bubble method (Fig. 1a). On the other hand, the second
method uses exclusively the rising movement of the bubbles, which creates an electric
current and consequently a potential difference between two points; it is the rising-poten-
tial method (Fig. 1b). The third and fourth methods keep the rising movement of the
bubbles, but they try to reduce it by using very small bubbles. They exploit the additional
electrophoretic movement created, horizontally or vertically, by means of, respectively, an
horizontal or a vertical electric field; they are the horizontal electrophoresis (Fig. 1c) and
the vertical electrophoresis methods (Fig. 1d).

A. The Spinning Bubble

There have been numerous attempts to measure electromobility or � potential in the past.
McTaggart [6–8] and Alty [9–11] trapped bubbles in water in the center of horizontal
cylindrical tubes, closed at both ends with metal disks acting as electrodes. By rotating the
tube, the bubble could be held on the axis, and the velocity could be measured under an
applied potential difference. This method was strongly criticized by Bach and Gilman [12,
13] because it failed to take into account the electro-osmotic flow of the water in the closed
tube. Bach and Gilan built a cell in which bubbles could be generated by electrolysis. The
cell was somewhat irregular in shape and the electrodes were rather obtrusive. They went
to some lengths to measure a ‘‘cell constant’’ to correct for electro-osmotic streaming.
Nevertheless, the reliability of the results has been questioned by Samygin et al. [14].
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Cichos [15], Huddleston [16], Huddleston and Smith [17], and Sakai [18] employed
the McTaggart technique but did not address the contribution of electro-osmosis,
although they were aware of the difficulty. McShea and Callaghan neglected the phenom-
enon [19].

In closed systems electro-osmosis creates a flux of the liquid along the naturally
charged surfaces of the tube and a reflux of the liquid towards the center. Thus, the
electrophoretic mobility of the bubble is disrupted by the electro-osmotic movement
of the liquid. The true electrophoretic mobility would be only obtained in ‘‘station-
ary levels’’ where the electro-osmotic flux is just opposed to the electro-osmotic
reflux [20–24]. However, these stationary levels are difficult to locate with
precision.

In open systems the electro-osmotic contribution to bubble mobility can be evalu-
ated in an outer circuit, and then it would be possible to go back to true mobility [25], but
the evaluation of the electro-osmotic contribution is not easy.

Another solution has been proposed more recently [26]. It consists in simultaneously
neutralizing the surface charge and creating a highly viscous zone that impedes motion in
the region near the surface. This is obtained by coating a thin layer of diethylaminoethyl-
dextran, which is further cross-linked through reaction with 1,4-butanediglycidyl ether.
The disappearance of the electro-osmotic flow is noted by observing a linear velocity
profile for latex microspheres.

The electrophoretic mobility of a gas bubble in a rotating fluid has been expressed
relative to the bubble � potential by Sherwood [27]. The required conditions for using this
expression are:
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. A perfectly horizontal rotating tube.

. A laminar fluid flow.

. A sufficiently high rotating speed (generally higher than 90 rad/s) for maintain-
ing the bubble on the axis of the tube.

. A tube very much longer than the Taylor columns which appear both ahead of
and behind the moving bubble [28].

. A bubble radius lower than 0.4 times the inner radius of the tube, to avoid
disruptions from the Stewartson and Ekman layers [29, 30].

This method will be particularly useful for studying the kinetics of the adsorption of
surfactant molecules at the air–water surface or at the oil–water interface [31], research
which has undergone full development [32].

B. The Rising Potential

The rising bubbles create a streaming current in the immersing liquid, which was first
analyzed theoretically by Derjaguin and Dukhin [33–35]. Since then, devices have been
developed to measure the intensity of this current so as to obtain the � potential of the
bubbles [36–40]. In these apparatuses, a high-precision variable resistance is placed in
series with the two measurement electrodes; if the value of this resistance is negligible in
comparison with the resistance of the solution between the electrodes, mainly all the
charge displaced by the bubbles is returned to the lower electrode through the external
circuit. The streaming current may then be calculated from the voltage developed across
the known resistance.

As no electric field is applied, there is no electro-osmosis. Furthermore, as the length
of the vertical tube in which the bubbles rise can be of the order of 50 cm, or even higher,
the duration of the ascent of the bubbles is long enough to provide some information on
the beginning of the adsorption of surfactants. Yet, the bubble streaming current can
produce disruptive convection currents in larger tubes [36].

C. Horizontal Electrophoresis

The configuration of the devices based on this method is the most common [20–24, 40, 41].
The apparatus is generally composed of a parallelepipedic microelectrophoresis cell to
avoid the possibility of convection currents observed in larger cells [42]. As soon as an
electric potential is applied between electrodes located on two vertical and parallel walls of
the cell, electro-osmotic flows are generated on the other walls. In order to avoid the
influence of these disruptive flows the movement of the bubble must take place at a
stationary level, which, here, is a vertical plane.

The bubble is directly formed at this level, following a burst of current which passes
through a solution saturated in gas via two platinum wires judiciously placed in the upper
and lower walls of the cell.

A microscope system is focused on the stationary level. As a bubble rises in the cell,
its horizontal electrophoretic velocity is very much lower than its rising velocity. So it is
necessary to move the cell vertically relative to the microscope objective in order to keep
the bubble in the field of vision during a time sufficient to perform the measurement of the
electrophoretic velocity. This is a difficult operation.
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D. Vertical Electrophoresis

This is a recent method, which derives from the development of laser techniques [3, 4]. It
consists in the use of a double-laser Doppler electrophoresis apparatus to determine
bubble electrophoretic mobilities, by measurement of the difference in the bubble rise
rates, with and without an electric field. This one is applied parallel to the bubble rise
vector, causing either a decrease or an increase in the natural rise rates of the bubbles
according to its direction.

A miniature camera fitted with a microscope lens is used to measure bubble dia-
meters. The cylindrical cell has a diameter about 100 times that of the bubble diameter, so
that effects of electro-osmotically induced flow at the cell walls on bubble velocities at the
cell axis could be ignored.

This device is able to measure electrophoretic mobilities with a high precision.
However, as the duration of a measurement is extremely short, it cannot be used for
studying the kinetics of adsorption at the bubble’s surface.

III. EXPERIMENTAL RESULTS

Each of the methods the principle of which has been described briefly in the preceding
paragraphs presents advantages and disadvantages. They have been used by numerous
researchers under various conditions. As for the methods, our presentation of the results
will not be exhaustive. We shall report only trends and convergences, first on systems
without surfactant, then on systems with surfactant(s).

In the two cases, bubbles were generated from different gases. The gases used were
air [1, 19, 22, 24, 26, 31, 43, 44], oxygen [20, 21], hydrogen [3, 4, 38, 40], nitrogen [2, 23, 36,
41, 45–47], carbon dioxide [38], and chlorine [40]. In general, whatever the nature of the
gas, the observed behaviors are similar, with perhaps an exception for gases which, like
carbon dioxide, can dissolve easily in water [38].

A. Bubbles Without Surfactant

1. Bubbles in Pure Water

The earliest investigators found that air bubbles immersed in pure water presented a
negative electrophoretic mobility [48]. Afterwards, this result was confirmed whatever
the method used [4, 19, 26, 37, 49]. However, the evaluated � potentials are dispersed
from some negative millivolt value [4] to �100mV [37]. These variations could be attrib-
uted to the disparities of the methods of purification and to the difficulties of the measure-
ments. In spite of these differences, the authors are in agreement on the origin of this
electronegativity. It could be assigned to a preferential adsorption of OH� ions, probably
under the influence of an orientation of the water dipoles near the interface with their
positive poles directed towards the solution [4].

The pH of water can be varied by adding hydrogen chloride or sodium hydroxide.
McShea and Callaghan [19] have measured the electrophoretic mobility of air bubbles
versus pH, while Kubota and Jameson [45] have performed the same study on nitrogen
bubbles. They found that the magnitude of the electrophoretic mobilities of their bubbles
decreased at the same time that the pH decreased and became zero for pH values close to 3
(Fig. 2). At very low pH, Kubota and Jameson [45] have claimed that the bubble could be
positive charged, probably because of a preferential accumulation of Hþ.
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2. Bubbles in Solutions of Electrolytes

Generally, whatever the nature of the gas or the type of salt, the magnitudes of electro-
phoretic mobilities are monotonically depressed by increasing the concentration of the
mono- or di-valent salts, without reversing the sign of the mobilities: hydrogen bubbles in
Na2SO4, NaClO4, and NaNO3 [40], and nitrogen bubbles in NaCl and MgSO4 [45]. This
behavior is attributed to the screening of the interactions between the applied electric field
and the charged bubbles, induced by the salts used.

Studies on the influence of pH have been performed for bubbles of different gases
immersed in various saline solutions: nitrogen bubbles in NaCl [17, 41], hydrogen, oxygen,
or chlorine bubbles in Na2SO4 and KCl [40], and oxygen bubbles in NaClO4 [4]. Whatever
the gas or salt, the observed trends are the same (Fig. 2). The � potential (or electrophore-
tic mobility) magnitude decreases as the acidity of the immersing solutions increases. This
decrease is more pronounced the lower the salinity. For all the authors, the isoelectric
point ranges (or would range by extrapolation) from pH 1.5 to 3.

For a monovalent or divalent salts, the influence of the counterions has also been
examined. Thus, Sakai [18] has found that the electrophoretic mobility of nitrogen bubbles
decreases with increasing hydrated anionic radius in the order:

Br�ð3:30 A
�

Þ > NO�
3 ð3:35 A

�

Þ > Cl�ð3:32 A
�

Þ > ClO�
4 ð3:38 A

�

Þ > SO2�
4 ð3:7 A

�

Þ

for cation Mg2þ (3.74 A
�

) in 4.92mM aqueous MgX salt solutions. This classifying is in
agreement with the one which had been previously found by Kelsall et al. [4] for oxygen
bubbles and NO�

3 , ClO
�
4 , and SO2�

4 ions in 10�4 M aqueous NaX salt solutions.
Sakai [18] has also found that the electrophoretic mobility increases with increasing

hydrated cationic radius in the order:

Liþð3:82 A
�

Þ > Naþð3:58 A
�

Þ > Kþ
ð3:31 A

�

Þ > Rbþð3:29 A
�

Þ > Csþð3:29 A
�

Þ

for the anion Cl� (3.32 A
�

) in 4.92mM aqueous XCl salt solution.
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These behaviors seem to show that, at the air/water surface, ionic adsorption would
be dependent on the size of the ions.

In contrast to mono- or di-valent salts, the trivalent salts can reverse the sign of the
mobility at a certain concentration: nitrogen bubbles in AlCl3 [45] or in Al2ðSO4Þ3 [6, 24,
43, 45]. No explanation is provided by the investigators who reported these results.
However, it is likely that the three charges of the aluminum ion must play a prominent
part in this explanation.

Li and Somasundaran have also observed a charge reversal relative to pH for nitro-
gen bubbles in 10�3 and 10�2 MMgCl2 aqueous solutions [41], or in 5� 10�6 M, 10�4 M,
and 10�3 M AlCl3 aqueous solutions [2], using 10

�2 M NaCl as background electrolyte. In
the first case, the observed charge reversal in the pH range 9–11 has been attributed to the
precipitation of Mg(OH)2ðsÞ at the gas–liquid interface, while the reduction in magnitude
of the � potential of the bubble observed in the acidic pH range has been considered to be
due to the specific adsorption of Mg2þ. In the second case, the reversal of bubble charge
has been attributed to specific adsorption of Al3þ and its hydroxo complexes in the low pH
range and to precipitation of aluminum hydroxide in the intermediate pH range.

B. Bubbles with Surfactant(s)

Surfactants are molecules characterized by the presence of hydrophilic and lipophilic
moieties. As a consequence, they readily adsorb at surfaces or interfaces, and they form
micelles above a critical concentration, etc. At the gas/liquid surface, the hydrophilic
groups of the surfactant molecules are directed towards the liquid, and the lipophilic
groups towards the gas. The surface activity of the surfactants causes a decrease in the
surface tension relative to the concentration until a concentration, called the critical
micelle concentration (c.m.c.), is reached. Above this concentration, the surface tension
remains constant, and the surfactant molecules form micelles, which are multimolecular
aggregates in kinetic equilibrium with monomer molecules.

Adsorption of surfactants at the gas/liquid surface can change its electric charge,
especially if they are ionic species. So the study of the influence of surfactants on the
electrical behavior of bubbles is of the greatest importance.

We consider blow the influence of nonionic surfactants, anionic surfactants, cationic
surfactants, and mixtures of surfactants. In most of the works reported, the surfactant
concentration ranges only from very low values to values close to the c.m.c., in order to
avoid the presence of micelles prejudicial to electrokinetic measurements.

1. Nonionic Surfactants

The variation in the � potential of bubbles immersed in aqueous solutions of a nonionic
surfactant according to the surfactant concentration depends on pH and also, but much
less, on the nature of the surfactant. Thus, at neutral pH, in polyoxyethylene dodecyl ether
(6.5 EO) solutions, Usui and Sasaki [37] have found that argon bubbles present a �
potential nearly constant over the concentration range 10�5–5� 10�4 M of the surfactant.
This tendency has also been observed by Okada et al. [1] for air bubbles in polyoxyethy-
lene dodecyl ether (23 EO) solutions at acid pH over the concentration range
10�5�10�2 M, and by Yoon and Yordan [23] for microbubbles in polyoxyethylene methyl
ether solutions at neutral and acid pH over the concentration range 10�4�10�2 M. At
alkaline pH, the latter authors have found that negative � potential values increase in
magnitude with surfactant concentration. A trend which has been observed also by
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Saulnier et al. [31] at neutral pH for air bubbles in polyoxyethylene octylphenol (10 EO)
solutions over the concentration range 10�6�5� 10�3 M. This increase in the electrone-
gativity of bubbles with surfactant concentration could be attributed to the low cationic
character of the surfactant used [50]. Furthermore, when this increase is important
enough, a saturation seems to be observed close to the c.m.c. [31].

Yoon and Yordan [23] and Okada et al. [1] have shown a strong dependence of the �
potential on pH. Clearly negative at alkaline pH, � tends to become positive in a pH zone
between 2 and 3.

2. Anionic Surfactants

The most studied anionic surfactant has been sodium dodecylsulfate [1, 19, 22, 23, 40]. The
others are sodium hexadecylsulfate [37], sodium dodecylbenzenesulfonate [22], and sodium
hexadecylbenzene sulfonate [31, 44]. The trends observed with nonionic surfactants are
found again, but more pronounced. Increase in surfactant concentration raises the elec-
tronegativity of the bubbles whatever their nature. At saturation point, which can be
observed near to the c.m.c. � potential values can decrease at values more negative than
�100mV [22, 31, 37].

Kubota et al. [22] have compared their � potential values obtained with sodium
dodecylsulfate with the ones obtained by Usui and Sasaki [37] with sodium hexadecylsul-
fate. They proposed that the observed discrepancies would be the result of differences in
the adsorptions of the surfactant molecules. It would be interesting to test this idea by
varying systematically the number of methylene groups per hydrocarbon chain in the
molecules, as has been performed for c.m.c. and solubilities by Graciaa et al. [51].

The variation in � potential with pH has been studied for sodium dodecylsulfate and
air bubbles by Yoon and Yordan [23] and Okada et al. [1]. They agree to say that the pH
decreases the magnitude of the � potential in the highly acidic range, the isoelectric point
being reached below pH 2.

3. Cationic Surfactants

The main cationic surfactants studied have been alkyltrimethylammonium bromides: n ¼

10 [45], n ¼ 12 [40, 45], n ¼ 14 [31, 45], and n ¼ 16 [20, 21, 24, 37, 45].
Dodecyltrimethylammonium chloride [19], dodecylamine hydrochloride [1, 23, 45], and
hexadecylpyridinium chloride [22] have been also examined.

The most important trend observed in these systems is that the electrophoretic
mobility and the � potential become positive for a concentration or a pH which depend
on the nature of the surfactant. Thus, at pH 5.6, Kubota and Jameson [45] find that the
zero electrophoretic mobility is obtained for approximately 10�3 M for decyltrimethylam-
monium bromide and for approximately 10�6 M for hexadecyltrimethylammonium bro-
mide. Yoon and Yordan [23] find that for hexadecylcetylpyridinium chloride the �
potential is always positive whatever the pH, while for dedecylamine hydrochloride, the
zero � potential is obtained in alkaline pH (pH 10 for a 2:5� 10�4 M surfactant solution, a
result which was confirmed by Okada et al. [1], pH 11 for 1:0� 10�5 M).

At constant pH and constant surfactant concentration, the zero � potential can be
obtained also by adding electrolytes to the immersing liquid. This effect was observed by
Collins et al. [20], Fukui and Yuu [21], and Okada and Akagi [24] on oxygen bubbles in a
flotation solution composed of hexadecyltrimethylammonium bromide at a concentration
of 5� 10�5 M and ethanol as a frother at 0.5% (v/v). Their corroborating measurements
show that it would be reached for a concentration of the order of 1M in Na2SO4.
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The main trends which should be kept in mind from this brief literature survey are
schematized in Fig. 3.

With a neutral pH, the � potential of gas bubbles in pure water is negative. When
surfactant is added two distinct behaviors are observed, according to the surfactant con-
centration: anionic surfactants and nonionic surfactants increase the magnitude of the
negative � potential (anionics being much more effective than nonionics), while cationic
surfactants can change the sign of the � potential (Fig. 3a). For the three types of surfac-
tants, saturation with the variation in � potential seems to be observed for concentrations
close to the c.m.c.

The � potential of bubbles is very sensitive to the pH of the surfactant solutions. The
two distinct behaviors of anionic surfactants and nonionic surfactants on the one hand
and of cationic surfactant on the other are conserved (Fig. 3b). The pH can give a zero �
potential with nonionic surfactants and anionic surfactants in the highly acidic range (a
little more acidic for anionic than for nonionic); it gives zero � potential for cationic
surfactants in a relatively alkaline range.

4. Mixtures of Surfactants

The case of mixtures of surfactants was first tackled by Usui and Sasaki [37] for ionic/
nonionic surfactant mixtures; the ionic surfactant was hexadecyl sulfate (anionic) or hex-
adecyltrimethylammonium bromide (cationic), and the nonionic surfactant was polyox-
yethylene dodecyl ether (6.5 EO). A more extensive study has been performed by Graciaa
et al. [52] for anionic/nonionic surfactant mixtures, anionic/cationic surfactant mixtures,
and fluorocarbon/hydrocarbon surfactant mixtures. In this study, the nonionic species was
hexaethylene glycol dodecanol, the cationic surfactant was decyltrimethylammonium
chloride, and the anionic surfactants were hexadecylbenzene sodium sulfonate, sodium
decyl sulfonate, and a perfluorononylbenzene sodium sulfonate.
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The main results of these studies are schematized in Fig. 4, where for each type of
mixtures, the variations in the � potential are reported according to the mole fraction of
one of the two surfactants.

For the anionic/nonionic surfactant mixtures, the � potential decreases monotically
from its value for the nonionic surfactant to its value for the anionic surfactant when the
anionic mole fraction varies from 0 to 1 (Fig. 4a). This variation is not linear, which
indicates that the two surfactants do not behave ideally at the bubble’s surface, but
deviation from ideality is low.

For the anionic/cationic surfactant mixtures, the � potential is close to zero, though
not exactly zero, over the wide midrange composition where the c.m.c. corresponds to the
catanionic species [52]. It is also worth noting that the isoelectric point does not take place
exactly at a 50% molar proportion, but at a higher cationic amount, e.g., 60%, in accor-
dance with the value reported in research on detergency [53].

For the fluorocarbon/hydrocarbon surfactant mixtures, the � potential undergoes a
maximum, which is a minimum in absolute value, that indicates a maximum of incompat-
ibility located near the equimolar mixture at which the electrostatic repulsion is enhanced
by the lipophobic character of the fluorocarbon hydrophobic group. Since the � potential
in the equimolar case is almost half the value attained with the pure surfactants, it may be
conjectured that the adsorption density is considerably reduced by the extra repulsion
provided by the lipophobic effect of the fluorocarbon group.

IV. CONCLUSIONS

The trends reported in the variations in the � potentials of gas bubbles are coherent
whatever the parameter considered: pH, salinity, surfactant, etc. However, discrepancies
remain in the absolute values. They range from the variety of the devices used for cir-
cumventing the problem posed by the natural rising velocity of the bubble in the gravity
field, to the difficulties of the tuning of these apparatuses, and sometimes to the use of
different relationships to work out � potentials.

Most of these problems would vanish if experiments could be performed in weight-
lessness within an orbital station. In the absence of any external electric field, bubbles
would then be absolutely motionless and fine electrophoretic studies could be performed
outside any disturbance by submitting them to an induced electric field.
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However, while waiting for this ideal experiment, the reported results on gas/water
surfaces and similar results observed on oil/water interfaces [54] are sufficiently convincing
for initiating a theoretical research which promises to have an exciting future [55].
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30
Electroviscoelasticity of Liquid/Liquid
Interfaces

ALEKSANDAR M. SPASIC Institute for Technology of Nuclear and Other Mineral
Raw Materials, Belgrade, Yugoslavia

I. INTRODUCTION

A. Brief Review of Various Approaches to Liquid/Liquid Interfaces in
Emulsions

Following a classical deterministic approach, the phases that constitute a multiphase
dispersed system are assumed to be a continuum, i.e., without discontinuities inside the
entire phase, which is considered homogeneous and isotropic [1–5]. Therefore, the basic
laws, e.g., conservation of mass, first and second Cauchy laws of motion, and first and
second laws of thermodynamics, are applicable. Also, such concepts as heat, mass, and
momentum transfer phenomena are of common use for the description of the related
events. It is hydrodynamic, electrodynamic, and thermodynamic instabilities that occur
at the interface, and the rheological properties of the interfacial layers that are responsible
for the existence of droplets or droplet-film structures in fine dispersed systems [6, 7].

According to the classical approach, the behavior of liquid–liquid interfaces in fine
dispersed systems is based on an interrelation between three forms of ‘‘instabilities.’’ These
are sedimentation, flocculation, and coalescence. These events, represented schematically
in Fig. 1, can be understood as a kind of interaction between the liquid phases involved [1,
2, 5–25]. Furthermore, the forces responsible for sedimentation and flocculation are grav-
ity and van der Waals’ forces of attraction, respectively, but the forces responsible for
coalescence are not well known [2, 25], although some suggestions have been made
recently [6, 7].

A new, deterministic approach discusses the behavior of liquid–liquid interfaces in
fine dispersed systems as an interrelation between three other forms of ‘‘instabilities’’.
These are rigid, elastic, and plastic [6–11]. Figure 2 shows the events that are understood
as interactions between the internal and external periodical physical fields. Since both
electric/electromagnetic and mechanical physical fields are present in a droplet, they are
considered as internal, whereas ultrasonic, temperature, or any other applied periodical
physical fields are considered as external. Hereafter, the rigid form of instability com-
prises the possibility of two-way disturbance spreading, or dynamic equilibrium. This
form of instability, when all forces involved are in equilibrium, permits a two-way
disturbance sreading (propagation or transfer) or entities either by tunneling (low-energy
dissipation) or by induction (medium- or high-energy dissipation). A classical particle or
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system could not penetrate a region in which its energy would be negative, that is,
barrier regions in which the potential energy is greater than the system energy. In the
real world, however, a wave function of significant amplitude may extend into and
beyond such a region. If the wave function extends into another region of positive
energy, then the barrier is crossed with some probability; this process is termed tunneling
(since the barrier is penetrated rather than climbed). The elastic form of instability
comprises the possibility of reversible disturbance spreading, with or without hysteresis.
Finally, the plastic form of instability comprises the possibility of irreversible distur-
bance spreading with a low or high intensity of influence between two entities. Entity is
the smallest indivisible element of matter that is related to the particular transfer phe-
nomenon. The entity can be either a differential element of mass/demon or a phonon as
quantum of acoustic energy, or an infon as quantum of information, or photon or
electron.

Now, a disperse system consists of two phases, ‘‘continuous’’ and ‘‘dispersed.’’ The
continuous phase is modeled as an infinitely large number of harmonic electromechanical
oscillators with low-strength interactions among them. Furthermore, the dispersed phase
is a macrocollective consisting of a finite number of microcollectives/harmonic electro-
mechanical oscillators (clusters) with strong interactions between them. The cluster can be
defined as the smallest repetitive unit that has a character of integrity. Clusters appear in
micro and nano dispersed systems. The microcollective consists of the following elements:
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FIG. 1 Possible instabilities in liquid–liquid interfaces. Classical approach.

FIG. 2 A new approach: (a) ‘‘instabilities’’; (b) the constructive elements of phases. (From Ref. 6,
with permission from Academic Press.)



rigid elements (atoms or molecules), elastic elements (dipoles or ions that may be recom-
bined), and entities (as the smallest elements) [6, 8, 10].

Validation of these theoretical predictions will be corroborated experimentally by
means of electrical interfacial potential (EIP) measurements, and nuclear magnetic reso-
nance (NMR) spectroscopy [6–11].

B. Electromechanical Analogy: Interfacial Tension-Electrical Interfacial
Potential

A fundamental approach will be used to analyze a special stability and rupture problem
of the droplet-film structure immersed in the droplet homophase continuum. Formation
and rupture processes of the secondary liquid/liquid droplet-film structures will be dis-
cussed, considering mechanical and electrical principles. The analogy interfacial tension–
EIP will be illustrated, considering the physical model of the processes appearing during
the secondary separation of the droplet-film structure submerged in the droplet homo-
phase continuum (double emulsion) on an inclined plate. Figure 3 shows the physical
model of the processes involved: approach, rest, disturbance, rupture, and flow up. The
generator pole is the origin/source of the disturbance, and the rupture pole is the point
where the electrical and mechanical waves change the direction of travel (feed in/feed
back).

The effect of an acting force on the rate of thinning of the film covering the second-
ary drops is to be discussed. Because of the pressure gradient associated with flow in the
film and because a fluid–liquid interface must deform when there is a pressure difference
across it, the film thickness varies with position, giving rise to the well-known dimple [15].
An applied or an acting force changes the distribution of the pressure in the film, and
hence the variation in its thickness with position and time.

The film thickness of a droplet-film structure �0, at rest, is calculated from the
relation given by [3]

�0 ¼ 0:70d
d2��g

�in

 !0:5

ð1Þ

where d is the droplet-film structure diameter, �� is the density difference between the two
liquids, �in is the interfacial tension, and g is the acceleration due to gravity.
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FIG. 3 Physical model of the processes involved in the secondary separation of a double emulsion
on an inclined plate.



Coalescence of the primary liquid drops and gas bubbles with their homophase is
determined by the rate of drainage of the intervening fluid film. For a uniform film of
viscosity �, the variation in film thickness � with time t is given by [15]

�
d�

dt
¼

8�

3n2

�3

�

fc
a2

ð2Þ

where fc is the force pressing on the film of area a, and n is the number of immobile
interfaces bounding the film. Thus, in the case of a double emulsion stopped on an inclined
plate n is equal to 1, since there is one immobile interface.

Coalescence of the secondary droplets from the liquid/liquid droplet-film structures
with their homophase is limited by the rate of rupture of the covering fluid film. When the
droplet-film structure stops on an inclined plate, the film surface is in hydrodynamic
equilibrium and the electric double layers (EDLs) are at rest. Since the droplet-film struc-
tures are very small, it is postulated that the electrical forces become dominant when
compared with the viscous forces on the junction point between the droplet-film structure
and the plate. Based on the hypothesis that the electrical forces are responsible for the
droplet-film rupture, one can adopt Eq. (2) with necessary changes relevant to the nature
of forces involved in the rupture process [10]. Now, the variation in film thickness � with
time t is given by

�
d�

dt
¼

8�

3

�3

Z

fe
a2

ð3Þ

where fe is the electrical force acting on the droplet-film structure surface of area a, and Z
is the complex resistance/ impedance of the equivalent electric circuit. Therefore, the rate
constant in differential equation (3) is given by

Cm ¼
8�

3

1

Z

fe
a2

ð4Þ

Also, the electrical force fe may be introduced using an analogous relation to

fc
a2

¼
2�in

v
ð5Þ

namely

fe
a2

¼
2�ep

v
ð6Þ

where v is the droplet-film structure volume, and �ep is the EIP.

1. Formation Process

The study of the spreading phenomenon and interfacial stability at the surface/interface
boundary of two immiscible liquids has been the subject of few publications, in spite of the
fact that such information has a great importance for the examination of the rupture
mechanism. During the formation of the secondary liquid/liquid structures, viscous and
electrical forces are predominantly involved. Therefore, hydrodynamic and electrody-
namic equilibria have to be reached.

Existence of the secondary liquid/liquid droplet-film structure or its electroviscoe-
lastic behavior is dependent on:

. droplet film particle size
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. curvature of the droplet-film interface

. density difference between the phases

. viscosity ratio of the phases

. impedance ratio of the phases

. interfacial tension

. EIP

. temperature effects

. mechanical effects (vibration)

. third-phase presence

. mutual solubility

. external periodical physical fields (e.g., temperature, electric, magnetic, ultraso-
nic)

. internal periodical physical fields (mechanical, electric, and magnetic).

2. Stability

Figure 4 shows the graphical interpretation of a droplet-film structure stopped on the
inclined plate, and an acting force with its components at the structure–plate junction
point. Figure 5 shows the graphical interpretation of a droplet-film structure approach to
the inclined plate, equilibrium and rupture using mechanical principles. Fx, Fy, and Fz are
the component vectors of Fs, which is the resultant surface force vector in 3N dimensional
configuration space.

According to Newton’s second law, the general equation of fluid dynamics in differ-
ential form is given by

�
D ~uu

Dt
¼
X
i

~FFiðdxdydzÞ þ d ~FFs ð7Þ

When a droplet-film structure rests on the inclined plate, the term on the left-hand side of
Eq. (7) becomes equal to zero; further, the terms on the right-hand side represent the
volume, F i (gravitational Fg, buoyancy Fbo, and electromagnetic/Lorentz F l), and the
surface, Fs forces, respectively. The gravitational force is superimposed on the buoyancy
force; therefore, the volume force term is equal to zero. The surface forces are supposed to
be associated with the interface between the fluid continuum and the droplet, and between
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FIG. 4 Graphical representation of the contact point between a droplet-film structure and a plate.
(From Ref. 10, with permission from Elsevier Science.)



the latter and the plate. They can be calculated for by means of a stress tensor Tn as
follows:

d ~FFs ¼
~TTnd ~AA ð8Þ

where Tn is composed of two tensors given by

~TTn ¼ �p½�ij� þ ½�ij � ð9Þ

In the first, isotropic tensor, the hydrostatic pressure is dominant and the contribution of
the other elements is neglected; further, in the second tension tensor, tangential elements
are due to the interfacial tensions, and the normal elements are presumed to be of adhesive
origin. The force balance at the junction point between the plate and the droplet-film
structure isgiven by (Fig. 4):

d ~FFs � ðd ~FFx þ d ~FFy þ d ~FFzÞ ¼ 0 ð10Þ

The tangential elements � in the second tension tensor of Eq. (9) are presumed to be
identical; therefore, the mechanical equilibrium condition is given by

� ¼
p�

�in

d

� �
2

ð11Þ

Introducing the impedance Z instead of the viscosity � and the electron flux density
	 instead of the velocity u, an electrical analog of the droplet-film rupture mechanism on
the inclined plate can be proposed, as shown in Fig. 6.

At first, the droplet-film structure surface is at rest, and then the structure–plate
junction point becomes the generator pole (source or sink of the incident sinusoidal wave)
and disturbs the EDL, changing the distribution of pressure in the film and, hence, causing
the variation in the film thickness, which ends with the rupture. Now, the electrical
equilibrium condition analogous to Eq. (11) is given by

� ¼
U �

�ep

d

� �
2

ð12Þ

where U is the electrostatic potential and �ep is the EIP.
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FIG. 5 Illustration of the mechanical forces involved in droplet-film structure approach, equili-
brium, and rupture. (From Ref. 10, with permission from Elsevier Science.)



For spherical polydispersions, the relation between the interfacial tension �in and the
internal pressure pin in the droplet-film structure is given by [26]

�in

d
� pin ð13Þ

and the relation between the EIP �ep and the electrical internal potential u is given by

�ep

d
� u ð14Þ

So, a discussion of the formation and hydrodynamic and electrodynamic equilibra as well
as rupture processes is facilitated in terms of the proposed electrical analogy.

3. Rupture Process

The rupture process is to be analyzed for the special case of the droplet-film structure on
an inclined plate. Now, under the assumption that about the same interfacial jump poten-
tial appears during the droplet-film formation and rupture processes, it is postulated that
the generator pole (junction point of the droplet-film structure and the inclined plate) is
the source or sink of the incidental sinusoidal wave. Hence, the impedance of the structure
consists of resistance and reactance terms. The surface of the droplet-film structure resting
on the inclined plate is supposed to achieve initially hydrodynamic and electrodynamic
equilibria.

Therefore, from Eq. (3) the process of the film thinning is given by

� ¼
�

ð1 þ 2�2
0CmtÞ

0:5
ð15Þ

where Cm is given by Eq. (4). When time tends to the rupture time tR the film thickness �
tends to zero, which may be represented by

lim
t!tR

� ¼ �R ! 0 ð16Þ

In general, after the rupture process of the light phase film is completed, the coales-
cence process of the heavy-phase droplet with its homophase occurs. Factors affecting the
secondary coalescence time are [3]:
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FIG. 6 Electrical interpretation of the processes of droplet-film structure rest, disturbance, and
rupture. (From Ref. 10, with permission from Elsevier Science.)



. droplet-film structure size

. distance of fall of droplet to the interface

. curvature of the droplet–side interface

. density difference between phases

. viscosity ratio of the phases

. interfacial tension effects

. temperature effects

. vibration and electrical effects

. presence of the EDLs

. solute transfer effects.

As can be seen in Fig. 3, the phases of the overall process during the secondary
separation of a double emulsion on an inclined plate are: approach, rest, disturbance,
rupture, and flow up. Besides the analysis of the wave propagation or disturbance spread-
ing by the impedance model, the secondary separation process can be represented by
successive time sequences as follows:

tSE ¼ tA þ tRE þ tDIST þ tR þ TFU ð17Þ

Under the assumption that the rest tRE and rupture tR times are infinitely short, and since
the two EDLs are to be destroyed, the disturbance time tDIST is composed of two dis-
turbance and two collapse subsequences, and may be written as

tDIST ¼ tdistII þ tcolII þ tdistI þ tcoII ð18Þ

Hence, for this particular case after the rupture process is completed, the start of
‘‘flow up’’ (lifting of the separated light-phase film) takes place. Again the volume forces
(gravitational, buoyancy, and electromagnetic) enter into the game [10, 21]. The ‘‘flow up’’
occurs when the following condition is satisfied:

~FFbodxdydzþ ~FF1dxdydz 
 ~FFgdxdydz ð19Þ

C. Marangoni Instabilities of First and Second Order and Possible
Electrical Analog

In a number of papers on Marangoni instability or the mechanism of Benard cell forma-
tion, it is supposed that the surface tension is a linear, monotonically decreasing function
of temperature [27, 28]. This behavior is typical for a large class of fluids, e.g., water,
silicone oil, water/benzene solutions, etc. There are exceptions, such as some alloys, molten
salts, and liquid crystals that show a linear growth of surface tension with temperature.
Also, there exists a third class of fluid systems characterized by a surface tension showing
nonlinear dependence with respect to temperature. This behavior is representative of
aqueous long-chain alcohol solutions and some binary metallic alloys [28].

The Marangoni instability of the first order was first elucidated and demonstrated
theoretically by Pearson [29]. It was shown that if there was an adverse temperature
gradient of sufficient magnitude across a thin film with a free surface, such a layer
could become unstable and lead to cellular convection. This instaiblity mechanism is
illustrated in Fig. 7.

A small disturbance is assumed to cause the film of initially uniform thickness to be
heated locally at a point on the surface. This results in a decreased surface tension and a
surface tension gradient that leads to an induced motion tangential to the surface away
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from the point of local heating. From mass conservation, this motion in turn induces a
motion of the bulk phase towards the surface. The liquid coming from the heated region is
warmer than the liquid/gas interface. The motion is thus reinforced, creating cellular
convection patterns and will be maintained if the convection overcomes viscous shear
and heat diffusivity [27]. It is appropriate to introduce the critical parameter termed the
Marangoni number given by

Ma ¼
�T
T�

2

�
ð20Þ

where �T is the surface tension, 
T is the uniform temperature gradient, � is the film
thickness, and � is the viscosity. This number can also be interpreted as a thermal
Peclet number that represents a measure of the ratio between heat transport by convection
due to surface tension gradients, and bulk heat transport by conduction. More detailed
discussion on the derivation of the Marangoni number can be found in the literature, e.g.,
Refs 27, 28, and 30.

Now, it is possible to redefine the parameters with the changes relevant to the nature
of the forces involved, and to obtain the relation for the electrical critical parameter given
by

ADR ¼
�E�T�

2

Z
ð21Þ

where �E is the EIP, �T is the uniform potential gradient, � is the film thickness, and Z is
the impedance [8]. The subscript R indicates a rigid form of ‘‘instability,’’ i.e., the stable
existence of a droplet or droplet-film structures.

Using an analogous approach, where the buoyancy forces are neglected as in, e.g., a
microgravity environment, a nonlinear dependence of the surface tension with respect to
the temperature can give rise to the second-order Marangoni effect, with characteristic
number:

Ma 00
¼

@2�T

@T2

 !
ð�TÞ

2�

�k
ð22Þ

where �T is the temperature drop between the lower and upper boundaries of the layer, �
is the distance between the boundaries of the layer, � is the constant density, k is the heat
diffusivity, and  is the kinematic viscosity [28].

Finally, the nonlinear electrical critical parameter is derived and expressed by
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FIG. 7 Marangoni instability mechanism. (From Ref. 27, reprinted by permission of John Wiley.)



ADE ¼

@2�E

@y2

 !
ð�yÞ2�

Z
ð23Þ

where �y is the potential drop between the lower and upper boundaries of the layer, � is
the distance between the boundaries, and Z is the impedance. The subscript E corresponds
to an elastic form of ‘‘instability,’’ indicating formation, breathing, and destruction of a
droplet or a droplet-film structure. It is suggested that the reader should consult Ref. 22
for other nonlinear interactions.

D. Electroviscosity/Electroviscoelasticity of Liquid/Liquid Interfaces

Electroviscosity and electroviscoelasticity are terms that may be broadly defined as dealing
with fluid-flow effects on physical, chemical, and biochemical processes. The hydrody-
namic and/or electrodynamic motion is considered in the presence of both potential
(elastic forces) and nonpotential fields (resistance forces). The elastic forces are gravita-
tional, buoyancy, and electrostatic/electrodynamic (Lorentz), and the resistance forces are
continuum resistance/viscosity and electrical resistance/impedance.

According to the classical deterministic approach, the phases that constitute the
multiphase dispersed systems are assumed to be a continuum; i.e., without discontinuities
inside the one entire phase, homogeneous, and isotropic. The principles of conservation of
momentum, energy, mass, and charge are used to define the state of a real fluid system
quantitatively. In addition to the conservation equations, which are insufficient to define
the system uniquely, statements on the material behavior are also required. These state-
ments are termed constitutive relations, e.g., Newton’s law, Fourier’s law, Fick’s Law, and
Ohm’s law.

In general, the constitutive equations are defined empirically, although the coeffi-
cients in these equations (e.g., viscosity coefficient, heat conduction coefficient, and com-
plex resistance coefficient/impedance) may be determined at the molecular level. Often,
these coeffficients are determined empirically from related phenomena; therefore, such a
description of the fluid state is termed a phenomenological description or model.

Sometimes, particular modifications are needed when dealing with fine dispersed
systems. An example is Einstein’s modification of the Newtonian viscosity coefficient in
dilute colloidal suspensions [27]. Later on, Smoluchowski’s modification of the Einstein
relation for particles carrying EDLs [30]. Finally, a recent more profound elaboration of
the entropic effects [22].

Now, using the above described stability and electromechanical analogies, an
approach to nonNewtonian behaviors and to electroviscoelasticity is to be introduced.
When Eq. (7) is applied to the droplet when it is stopped, e.g., as a result of an interaction
with some periodical physical field, the term on the left-hand side becomes equal to zero.
Furthermore, if the droplet is in the state of ‘‘forced’’ levitation, and the volume forces
balance each other, then the volume force term is also equal to zero [6–9]. It is assumed
that the surface forces are, for the general case that includes the electroviscoelastic fluids,
composed of interaction terms expressed by

d ~FFs ¼
~TTijd ~AA ð24Þ

where the tensor Tij is given by

Tij
¼ ��0�

ij
þ �1�

ij
þ �2�

ij
þ �3�

i
k�

kj
ð25Þ
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where Tij is composed of four tensors, �ij is the Kronecker symbol, �ij is the tension tensor,
and �k�

kj is the tension coupling tensor. In the first isotropic tensor the potentiostatic
pressure �0 ¼ �0ð�;UÞ is dominant and the contribution of the other elements is neglected.
Here, U represents hydrostatic or electrostatic potential. In the second isotropic tensor,
the resistance �1 ¼ �1ð�;UÞ is dominant and the contribution of the other elements is
neglected. In the third tension tensor, its normal elements �2� are due to the interfacial
tensions and the tangential elements �2� are presumed to be of the same origin as the
dominant physical field involved. In the fourth tension coupling tensor, there are normal,
�3�

i
k, and �3�

kj elements, and tangential �3�
i
k and �3�

kj elements, which are ascribed to the
first two dominant periodical physical fields involved. Now, the general equilibrium con-
dition for the dispersed system with two periodical phyiscal fields involved may be derived
from Eq. (25), and may be expressed by

�d ¼

��0 þ �1 þ �
�

d

� �
þ �3

�

d

� �
2ð�2 þ �3Þ

ð26Þ

where �d are the tangential elements of the same origin as those of the dominant periodical
physical field involved. Figure 8 shows the schematic equilibrium of surface forces at any
point of a stopped droplet-film structure while in interaction with some periodical physical
field [6]. Note that for dispersed systems consisting of, or behaving as Newtonian fluids,
�3 ¼ �3ð�;UÞ is equal to zero.

The processes of formation/destruction of the droplet or droplet-film structure are
nonlinear. Therefore, the viscosity coefficients �iði ¼ 0; 1; 2Þ, where each consists of bulk,
shear, and tensile components, when correlated with the tangential tensions of mechanical
origin �, can be written as

�v ¼ �0

du

dx
þ �1

d2u

dx2
þ �2

du

dx

� �2

ð27Þ

where u is the velocity, and x is one of the space co-ordinates.
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FIG. 8 Balance of surface forces at any point of a stopped droplet-film structure while in interac-
tion with some periodic physical field (a two-dimensional projection). F represents the projection of

the resultant surface forces’ vector in three N dimensional configuration space, � stands for the
tangential, and � for the normal components. (From Ref. 6, with permission from Academic Press.)



Using the electrical analog, the impedance coefficients Ziði ¼ 0; 1; 2Þ, where each
consists of ohmic, capacitive, and inductive components, will be correlated with the tan-
gential tensions of electrical origin �e, as follows:

�e ¼ Z0

d	e

dt
þ Z1

d2	e

dt2
þ Z2

d	e

dt

� �2

ð28Þ

where 	e is the electron flux density, and t is the time co-ordinate.
More detailed discussion about the derivation of these equations can be found in

Refs 6–10.

II. THEORY

A. Previous Work

In normal viscous fluids, only the rate of deformation is of interest. In the absence of
external and body forces, no stresses are developed and there is no means of distin-
guishing between a natural state and a deformed state [31]. It is rather disturbing to
think of the very large overall deformations obtained in the flow of fluids being
associated in any way with substances that have elasticity. The rationalization lies in
realizing that, for the substances considered here, the behavior is essentially that of a
fluid; although much translation and rotation may occur, the ‘‘elastic’’ distortion of the
elementary volumes around any point is generally small. This ‘‘elastic’’ distortion or
material’s strain is nevertheless present and is a feature that cannot be neglected. It is
responsible for the recovery of reverse flow after the removal of applied forces and for
all the other nonNewtonian effects [31]. These distortions or strains are determined by
the stress history of the fluid and cannot be specified kinematically in terms of the
large overall movement of the fluid. Another way of looking at the situation is to say
that the natural state of the fluid changes constantly in flow and tries to catch up with
the instantaneous state or the deformed state. It never does quite succeed in doing so,
and the lag is a measure of the memory or the elasticity. In elastic solids, the natural
state does not change and there is perfect memory [31].

The entropy of elasticity of a droplet is a measure of the increase in the available
volume in configuration space. This increase occurs with a transition from a rigid,
regular structure to an ensemble of states that include many different structures. If
the potential wells in the liquid state were as narrow as those in the solid state, and
if each of those potential wells were equally populated and corresponded to a stable
amorphous structure (and vice versa), then the entropy of elasticity would be a direct
measure of the increase in the number of wells, or a direct measure of the number of
available structures [6, 22].

In the last two centuries a lot of attempts and discussion have been performed for the
elucidation and development of the various constitutive models of liquids. Some of the
theoretical models that can be mentioned here are: Boltzmann, Maxwell (UCM, LCM,
COM, IPM), Voight or Kelvin, Jeffrey’s, Reiner–Rivelin, Newton, Oldroyd, Giesekus,
graded fluids, composite fluids, retarded fluids with a strong backbone and fading mem-
ory, etc. Further and deeper knowledge related to the physical and mathematical conse-
quences of the structural models of liquids and of the elasticity of liquids can be found in
Ref. 32.
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B. Electrified Interfaces: a New Constitutive Model of Liquids

The secondary liquid–liquid droplet or droplet-film structure is considered as a macro-
scopic system with internal structure determined by the way the molecules (ions) are tuned
(structured) into the primary components of a cluster configuration. How the tuning/
structuring occurs depends on the physical fields involved, both potential (elastic forces)
and nonpotential (resistance forces). All these microelements of the primary structure can
be considered as electromechanical oscillators assembled into groups, so that excitation by
an external physical field may cause oscillations at the resonant/characteristic frequency of
the system itself (coupling at the characteristic frequency) [6–8].

Figure 9 shows a series of graphical sequences that are supposed to facilitate the
understanding of the proposed structural model of electroviscoelastic liquids. The elec-
trical analog Fig. 9a consists of passive elements (R, L, and C) and an active element
(emitter coupled oscillator W). Further on, the emitter-coupled oscillator is represented
by the equivalent circuit as shown in Fig. 9b. Figure 9c, shows the electrical (oscillators
j) and mechanical (structural volumes Vj) analogs when they are coupled with each
other, e.g., in the droplet. Now, the droplet consists of a finite number of structural
volumes or spaces/electromechanical oscillators (clusters) Vj, a finite number of excluded
surface volumes or interspaces Vs, and a finite number of excluded bulk volumes or
interspaces Vb. Furthermore, the interoscillator/cluster distance or internal separation Si

represents the equilibrium of all forces involved (electrostatic, solvation, van der Waals,
and steric [33]). The external separation Se, in introduced as a permitted distance when
the droplet is in interaction with any external periodic physical field. The rigidity droplet
boundary R presents a form of droplet instability when all forces involved are in
equilibrium. Nevertheless, two-way disturbance spreading (propagation or transfer) of
entities occur, either by tunneling (low-energy dissipation) or by induction (medium- or
high-energy dissipation). The elasticity droplet boundary E represents a form of droplet
instability when the equilibrium of all forces involved is disturbed by the action of any
external periodic physical field, but the droplet still exists as a dispersed phase. In the
region between the rigidity and elasticity droplet boundaries, a reversible disturbance
spreading occurs. After the elasticity droplet boundary, the plasticity as a form of
droplet instaiblity takes place; the electromechanical oscillators/clusters do not then
exist any more and the beams of entities or atto-clusters appear. Atto-clusters are the
entities that appear in the atto-dispersed systems. In this region, one-way propagation of
entities occurs.

Considering all the arguments and comments presented, the probability density
function (PDF) in general form can be expressed by

FdðVÞ ¼ FdðVjÞ þ ½FdðVsÞ þ FdðVbÞ� ð29Þ

where the first term on the right-hand side of the equation is due to energy effects, and
the second term (consisting of two subterms) is due to enytropic effects; subscript j is
related to the structural volumes or energies, and subscripts s and b are related to the
excluded surface and bulk volumes or energies. Consider an uncertain physical prop-
erty and a corresponding space describing the range of values that the property can
have (e.g., the configuration of a thermally excited N particle system and the corre-
sponding 3N dimensional configuration space). The PDF associated with a property is
defined over the corresponding space; its value at a particular point is the probability
per unit volume that the property has a value in an infinitesimal region around that
point [22].
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An alternative expression of this PDF, considering Fig. 9c, may be written as

�1;2ðVÞ ¼
Xn
i¼3

ðVjÞi þ�1;2

Xn�3

i¼1

ðVbÞi þ
Xn
i¼3

ðVsÞi

" #
ð30Þ

therefore, the number i of clusters Vj remains constant while the droplet passes through
the rigid (e.g., the state related to the subscript 1) and elastic (e.g., the state related to the
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FIG. 9 Graphical interpretation of the structural model: (a) electrical and mechanical analog of the
micro collective/cluster; (b) equivalent circuit for the emitter coupled oscillator; (c) the macro col-

lective: a schematic cross-section of the droplet and its characteristics (Vj – structural volumes/
clusters; Vs – excluded surface volumes/interspaces; Vb – excluded bulk volumes/interspaces; Si –
internal separation; Se – external separation; R – rigidity droplet boundary; E – elasticity droplet

boundary).



subscript 2) form of ‘‘instabilities.’’ The integer summation index ðiÞ takes values in the
interval ½3; n� for the number of clusters Vj and for the number of excluded surface
volumes Vs, and ½1; n� 3� for the number of excluded bulk volumes; while integer n
takes values in the interval ½0;1�. The simplest case, used only as an example, is the
droplet that contains three oscillators Vj ½ðiÞ ¼ 3; n ¼ 0�: then there is one excluded bulk
volume Vb½ðiÞ ¼ 1; n ¼ 3� and three excluded surface volumes Vs½ðiÞ ¼ 3; n ¼ 0�.
Differences �1;2 in volumes or energies Vb and Vs occur only in the entropic part, i.e.,
the internal separation Si (Fig. 9c) changes (increases or decreases) during the transition of
the droplet from rigid to elastic or vice versa. Consequently, the external separation Se

decreases or increases, depending on the direction of transition.

1. Classical Assumptions for Interfacial Tension Structure and for Partition
Function

1. The droplet is considered as a unique thermodynamic system that can be described
by a characteristic free energy function expressed by

�G ¼ ð�i þ T�SÞ ¼ �i � T
d�i
dT

� �
�i

" #
¼ �kT lnZp ð31Þ

where �i correspond to the constant chemical potential, and Zp is the partition function.
2. According to quantum mechanical principles, the droplet possesses vacancies or

‘‘free volumes’’ and the relation for interfacial tension can be writte as

�i ¼
Gs

� Gb

�0
¼

1

�0
ð�s

��b
Þ þNskT ln

Vb
f

V s
f

 !" #
ð32Þ

where �s and �b are the overall energies of N heavy-phase molecules in their ideal
positions, s on the surface and b in the bulk; Ns is the number of molecules on the surface,
V s

f and Vb
f are ‘‘free volumes’’ of the molecules on the surface and in the bulk, and �0 is the

surface of ‘‘free surface’’ [6, 7, 24, 25, 34–67]. This means the droplet is a macro system
with physicochemical properties that may be described with the help of different thermo-
dynamic parameters.

The phenomenological meaning if the given interfacial tension structure is in agree-
ment with the ‘‘free volume’’ fluid model. Hence, a fluid is a system with ideal or
ordered neighbor elements’ distribution and with discontinuities of the package density
(boundaries of the subsystems or microcollectives/clusters as some particular physical
systems) [6, 7].

Furthermore, the partition function indicates how molecules are distributed among
the available energy levels. It is possible to separate various contributions (the sum of the
translational, rotational, vibrational, and electronic energy terms) to the partition function
[59].

3. Using the equivalency of the mean energies W , at the instant of equilibrium, a
characteristic free energy function can be expressed by

�G ¼ �ww ¼ �kT lnZp ð33Þ

where the partition function for this particular system is derived from

W ¼
h!

2�

@ lnZp

@�
ð34Þ
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and

Zp ¼
QN

�3N
¼
X1
j¼0

exp � j þ
1

2

� �
�


 �
¼

1

2
cosh

�

2
ð35Þ

and j is the number of the identical oscillators, where each is given by

� ¼
h!

2�kT
ð36Þ

� is a free path between two collisions expressed by

� ¼
h2

2�mkT
ð37Þ

and QN is a configuration integral.
Further and more detailed discussion and derivation of the partition function can be

found in, e.g., Refs 6, 7, and 59.

2. Postulated Assumptions for an Electrical Analog

1. The droplet is a macrosystem (collective of particles) consisting of structural
elements that may be considered as electromechanical oscillators.

2. Droplets as microcollectives undergo tuning or coupling processes, and so build
the droplet as a macrocollective.

3. The external physical fields (temperature, ultrasonic, electromagnetic, or any
other periodic) cause the excitation of a macrosystem through the excitation
of a microsystem at the resonant/characteristic frequency, where elastic and/or
plastic deformations may occur.

Hence, the study of electromechanical oscillators is based on electromechanical and elec-
trodynamic principles.

A nonhomogeneous nonlinear differential equation of the Van der Pol type repre-
sents the initial electromagnetic oscillation:

C
dU

dt
þ
U

R
� �U þ �U3

þ
1

L

ð
Udt ¼ 0 ð38Þ

where U is the overall potential difference at the junction point of the spherical capacitor
C and the plate, L is the inductance caused by potential difference, and R is the ohmic
resistance (resistance of the energy transformation, electromagnetic into mechanical or
damping resistance); � and � are constants determining the linear and nonlinear parts of
the characteristic current and potential curves. U0, the primary steady-state solution of
this equation, is a sinusoid of frequency close to !0 ¼ 1=ðLCÞ

0:5 and amplitude
A0 ¼ ½ð�� 1Þ=R=3�=4�0:5.

The noise in this system, due to linear amplification of the source noise (the electro-
magnetic force is assumed to be the incident external force, which initiates the mechanical
disturbance), causes the oscillations of the ‘‘continuum’’ particle (molecule surrounding
the droplet or droplet-film structure), which can be represented by the particular integral:

C
dU

dt
þ

1

R
� �

� �
U þ �U3

þ
1

L

ð
Udtþ ¼ �2An cos!t ð39Þ

where ! is the frequency of the incident oscillations.
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Finally, considering the droplet or droplet-film structure formation, ‘‘breathing,’’
and/or destruction processes, and taking into account all the noise frequency components,
which are included in the driving force, the corresponding equation is given by

C
dU

dt
þ

1

R
� �

� �
U þ

1

L

ð
Udtþ �U3

¼ iðtÞ ¼
1

2�

ð1
�1

expði!tÞAnð!Þd! ð40Þ

where iðtÞ is the noise current and Anð!Þ is the spectral distribution of the noise current as a
function of frequency.

In the case of nonlinear oscillators, however, the problem of determining the noise
output is complicated by the fact that the output is fed back into the system, thus mod-
ifying in a complicated manner the effective noise input [6, 31, 41]. The noise output
appears as an induced anisotropic effect.

C. Theory of Electroviscoelasticity

A number of theories that describe the behavior of liquid–liquid interfaces have been
developed and applied to various dispersed systems: Stokes, Reiner–Rivelin, Ericksen,
Einstein, Smoluchowski, Kinch, etc. [6, 7, 26, 42–55]. The reader is suggested to review
some of the following topics for a better understanding of the present theory: potential
energy ssurfaces (PES) (Dirac, Millikan, Feynman, Schwinger, Tomonaga, Born–
Oppenheimer, etc.), quantum electrodynamics (QED) (Schrödinger), molecular mechanics
(MM2-MM3-CSC) (Allinger, Lii, Cambridge Science Computation), and transient state
theories TST (Wigner, etc.) [22, 32, 56–66].

Figure 10 shows a series of graphical sequences that may help in an understanding of
the proposed theory of electroviscoelasticity. This theory describes the behavior of elec-
trified liquid–liquid interfaces in fine dispersed systems, and is based on a new constitutive
model of liquids [6–11]. If an incident periodic physical field (Fig. 10b), e.g., electromag-
netic, is applied to the rigid droplet of Fig. 10a, then the resulting, equivalent electrical
circuit can be represented as shown in Fig. 10c. The equivalent electrical circuit, rear-
ranged under the influence of an applied physical field, is considered as a parallel resonant
circuit coupled with another circuit, such as an antenna output circuit. Thus, in Fig. 10c,
Wd, Cd, Ld, and Rd correspond to the circuit elements; active emitter coupled oscillator
Wd and passive Cd, Ld, and Rd respectively. The subscript d is related to the particular
droplet diameter, i.e., the droplet under consideration. Now again, the initial electromag-
netic oscillation is represneted by the differential equations, Eq. (39) and Eq. (40), and
when the nonlinear terms are omitted and/or cancelled, the following linear equation is
obtained:

C
dU

dt
þ

1

R
� �

� �
U þ

1

L

ð
Udtþ ¼ �2An cos!t ð41Þ

with a particular solution resulting in the following expression for the amplitude:

A ¼
2!CAn

4ð!0 � !Þ
2
þ

1

R
� �

� �2
" #0:5

ð42Þ

and for all the noise frequency components, the linear equation is given by
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C
dU

dt
þ

1

R
� �

� �
U þ

1

L

ð
Udt ¼ iðtÞ ¼

1

2�

ð1
�1

expði!tÞAnð!Þd! ð43Þ

with the particular solution expressed by

Un ¼
i!An expði!tÞ

Cð!2
0 � !

2Þ þ i
1

R
� �

� �
!

�
i!An expð�i!tÞ

Cð!2
0 � !

2Þ þ i
1

R
� �

� �
!

ð44Þ

Furthermore, the electrical energy density ee inside the capacitor is given by

we ¼
1

8�
"E2

ð45Þ

where " is the dielectric constant and E is the electric field, and the magnetic energy density
wm inside the capacitor is given by

wm ¼
1

8�
�eH

2
ð46Þ

where �e is the magnetic permeability constant and H is the magnetic field; hence, the
overall mean energy may be written as

�ww ¼
1

8�
ð"E2

þ �eH
2
Þ ð47Þ
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FIG. 10 Structural model of electroviscoelasticity: (a) rigid droplet; (b) incident physical field; (c)
equivalent electrical circuit. Wd represents the emitter-coupled oscillator, Cd, Ld, and Rd are capa-
citive, inductive, and resistive elements of the equivalent electrical circuit, respectively. Subscript d is
related to the particular diameter of the droplet under consideration.



The electromagnetic oscillation causes the tuning or structuring of the molecules (ions) in
the ‘‘electric double layers.’’ The structuring is realized by complex motions over the
various degrees of freedom, whose energy contributions depend on the positions of the
individual molecules in and around the stopped droplet-film structure under the action of
some periodic physical field.

The hydrodynamic motion is considered to be the motion in the potential (elastic
forces) and nonpotential (resistance forces) fields. There are several possible approaches
for correlating the electromagnetic and mechanical oscillations; for example, this motion
may be represented by the differential equation for the forced oscillation:

d2�

dt2
þ 2


d�

dt
þ !2

0� ¼ A cos!t ð48Þ

with a solution representing the mechanical oscillation of the ordered group of molecules
expressed by

� ¼ �0 expð�
tÞ cosð!tþ �Þ ð49Þ

Now, if the electromagnetic force is assumed to be the incident (external) force which
initiates the mechanical disturbance, then the oscillation of the ‘‘continuum’’ particles
(molecules surrounding the droplet-film structure) is described by the differential equation
(49) where ! is the frequency of the incident oscillations. After a certain time, the oscilla-
tions of the free oscillators !0 (molecules surrounding the droplet-film structure) tune with
the incident oscillator frequency �. This process of tuning between free oscillations of the
environmental oscillators and the incident oscillations of the electromechanical oscillator
can be expressed by

� ¼ ð!2
0 � 2
2

Þ
0:5

ð50Þ

Thereafter, there are two possibilities, depending on the energy appearing during the
tuning process; the first leads towards the constant energy/rigid sphere, and the second
leads towards the increasing energy/elastic sphere. For example, if a wave with high
enough amplitude appears then the rupture of the droplet-film structure occurs [7].

During the interaction of the droplet or droplet-film structure with an incident
periodic physical field at the instant of equilibrium, the mean electric, electromagnetic,
and mechanical energies will be equal:

�ww ¼
1

8�
ð"E2

þ �H2
Þ ¼

1

2
��2

0!
2

ð51Þ

and hence the frequency of the incident wave can be expressed by

! ¼
1

4���2
ð"E2

þ �H2
Þ


 �0:5

ð52Þ

Figure 11 shows the behavior of the circuit depicted in Fig. 10c, using the correlation
impedance–frequency–arbitrary droplet diameter. If the electromagnetic oscillation causes
the tuning or structuring of the molecules (ions) in the EDL, then the structuring is
realized by complex motions over the various degrees of freedom. Since all events occur
at the resonant/characteristic frequency, depending on the amount of coupling, the shape
of the impedance–frequency curve is judged using the factor of merit or Q factor [67]. The
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Q factor primarily determines the sharpness of resonance of a tuned circuit, and may be
represented as the ratio of the reactance to the resistance, as follows:

Q ¼
2�fL

R
¼
!L

R
ð53Þ

Furthermore, the impedance Z can be related to the factor of merit Q as given by the
equations:

Z ¼
ð2�fLÞ2

R
¼

ð!LÞ2

R
ð54Þ

and

Z ¼ !LQ ð55Þ

From these equations and Fig. 11 it can be seen that the impedance of a circuit is directly
proportional to its effective Q at resonance. Also, at the resonant frequency !0, the
impedance Z is equal to the resistance R, Rc/critical, and Rsc/supercritical, respectively.
These resistances and Z�! curves correspond to the various levels of coupling (1 – loose
coupling/high Q; 2 – medium coupling/medium Q; 3 – critical coupling/low Q; 4 – over
coupling/low Q). The !h1 and !h2 represent the hump frequencies that appear during the
overcoupling/curve no. 4. On the right axis of the Fig. 11 the corresponding critical
diameters d1, d2, and d3 are arbitrarily plotted.

The theory presented has been applied to the representative experimental system
described in Section III.A of this chapter. Validation of the theoretical predictions was
corroborated experimentally by means of EIP measurements and NMR spectroscopy.
These methods and aparatus are briefly presented in Sections III.C and III.D. The experi-
mental results obtained were in fair agreement with the postulated theory. Measured,
calculated, and estimated data are presented in Sections I.V.A and IV.B [6, 7].
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FIG. 11 Impedance of the equivalent electric circuit versus its frequency; !0 is the resonant fre-

quency of this circuit, when the impedance is equal to the resistance. On the right axis arbitrary
droplet diameters are plotted. (From Ref. 6, with permission from Academic Press.)



III. EXPERIMENTAL

A. Description of the System

The particular secondary liquid–liquid system which has been used to corroborate the
validity of the theoretical predictions was a heavy-phase droplet/light-phase film structure
immersed in a heavy-phase continuum (double emulsion). This system was the heavy-
phase output from a ‘‘pump-mix’’ mixer–settler battery together with its entrained light
phase. The battery is part of a pilot plant for extraction of uranium from wet phosphoric
acid by the D2EHPA-TOPO process [6–11, 17, 21, 42, 68–83]. The heavy liquid was 5.6 M
phosphoric acid, and the light liquid was a synergistic mixture of 0.5 M di(2-ethylhexyl)
phosphoric acid (D2EHPA) and 0.125 M tri-n-octylphosphine oxide (TOPO) in dearoma-
tized kerosene (DTK) [6–11, 21].

The structural formulas of the constituent liquids are

OH OH R 0

| | |
HO — P ¼ O RO — P ¼ O R 0 — P ¼ O

| | |
OH OR R 0

where R and R 0 are given, respectively, by

R: — CH2 — CH(CH2)3CH3 R 0: — (CH2)7CH3

|
C2H5

Figure 12 shows the measured variations of the physical properties of the liquids (density,
viscosity, and interfacial tension) with temperature.
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FIG. 12 Measured variations of the physical properties of DTK and phosphoric acid solutions
with temperature, �: density, �: viscosity, and �in: interfacial tesion. (From Ref. 10, with permission

from Elsevier Science.)



B. Generation of Physical Model

A polydispersion was generated and the primary separation performed in a laboratory
mixer for the batch studies under the conditions applied in the pilot plant [6, 21]. The
selected hydrodynamic characteristics in the mixer unit were as follows:

. The ratio of the phases in the mixer, light/heavy, was equal to 1.1.

. The number of revolutions of the eight-blade double-shrouded impeller in the
mixer was equal to 15 s�1.

. The mixing criterion, �n3D2, was equal to 13 (� is the density of the heavy phase,
n is the number of revolutions of the impeller, and D is the diameter of the
latter).

Thereafter, the sample of the heavy phase, together with the entrained light phase,
was isolated and observed in situ with an optical microscope. Figure 13 shows in situ
photographs of the examined liquid/liquid droplet-film structure immersed in the droplet
homophase continuum. This isolated system is in hydrodynamic and electrodynamic
equilibrium, i.e., the rigid sphere can be observed.

Further, Fig. 14 shows in situ photographs of the system examined at the junction
point of the droplet-film structure and plate. The glass plate disturbs this system during
observation, i.e., the elastic sphere can be observed. Finally, Fig. 15 shows in situ photo-
graphs where both rigid and elastic spheres may be observed.

C. Measuring Electrical Interfacial Potential

A method and apparatus were developed to monitor voltammetrically the EIP appear-
ing during the formation of the EDL while the two-phase contact occurs [10, 21].
Measurements of the EIP have been performed during the processes of formation
and transition of the electroviscoelastic sphere into the rigid sphere [6]. Figure 16
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FIG. 13 In situ photograph of the liquid/liquid droplet-film structure immersed in the droplet
homophase continuum; R, rigid sphere.



shows the developed liquid/liquid contact cell with its peripheral modulus for EIP
measurements.

Measurements of EIP, during EDL formation at the interface boundary between two
liquids, were performed by introducing the heavy liquid through a syringe, whose needle
constituted one electrode, into a platinum vessel, which constituted the other electrode.
The electrodes were connected via a sensor (high-input impedance instrumental amplifier)
to an oscilloscope with memory. A Faraday cage, to avoid effects of the environment,
surrounded the electrodes and the sensor.

Electroviscoelasticity of Liquid/Liquid Interfaces 859

FIG. 14 Microscope image of the system at the point of contact between the droplet-film structure
and a glass plate; E, elastic sphere, disturbed. (From Ref. 6, with permission from Academic Press.)

FIG. 15 In situ photograph of the system; R, rigid spheres, E, disturbed elastic spheres (‘‘breath-
ing’’ expansion/contraction). (From Ref. 6, with permission from Academic Press.)



During the liquid/liquid contact cell development, two important arguments were
considered: first, concerning very low-energy levels appearing during EDL formation at
the boundary surface of two immiscible liquids, and second, the possible influence of the
cell construction elements on the impedance structure determination.

D. Measuring Resonant Frequency

In order to determine the resonant (characteristic) frequency, a NMR spectrometer was
used as a reactor for the energetic analysis. The impedance Z at the resonant frequency !0

is equal to the resistance R. The resonant frequency of the electromechanical oscillator can
be considered as some characteristic frequency within the vibrorotational spectrum of the
molecular complex that builds the droplet-film structure [6].

All experiments were performed and all spectra acquired on a Bruker MSL 400
spectrometer with a 9.395 T magnet and at a 31P frequency of 161.924 MHz. The trans-
mitter was set at resonance frequency with phosphoric acid standard solution, and a sweep
width of 15 kHz was employed. The swept region corresponded to the range between �10
and 90 ppm.

IV. RESULTS AND DISCUSSION

A. EIP Measurements

Figure 17 shows the measured change in EIP appearing during the introduction of the
heavy-phase droplet into the light-phase continuum [6]. It can be seen in the figure that an
interfacial jump potential peak appears during the formation of the EDL. Thereafter, the
EIP decreases to a constant value. The lowering of the EIP in absolute value during the
flow is due to the participation of cations that form the dense part of the EDL. The anions
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FIG. 16 Liquid/Liquid contact cell with its peripheral modulus: (1) Faraday cage; (2) syringe with
the heavy phase; (3) insulators; (4) platinum vessel; (5) light phase; (6) plastic tube; (7) steel needle;

(8) high-input impedance amplifier; (9) connector with coaxial cable; (10) oscilloscope with memory;
(11) analog-to-digital converter; (12) data acquisition system.



are the counterions in the diffuse part. Redistribution of these anions and cations between
the region close to the surface and the surface layers of the heavy-phase define the kinetics
of the EIP [6, 10].

Figure 18 shows the measured spontaneous oscillations of the EIP during the
‘‘breathing’’ period. After the EIP jump, which is in the millivolt–millisecond scale,
the EIP continues to oscillate in the millivolt–minute range. Its damped oscillatory
mode is (probably) due to the hydrodynamic instability of the interfacial surface, as a
consequence of the local gradients of interfacial tension and density in mutual saturation
processes of liquids [6, 10]. Other relevant interpretations of the EIP spontaneous oscil-
lations may be expressed as follows: the electroviscoelastic sphere undergoes transforma-
tion into the rigid sphere. This transformation process can be understood as memory
storage.
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FIG. 17 Measured variations of EIP with time for the system phosphoric acid/D2EHPA–TOPO–
kerosene at a spherical interface. (From Ref. 6, with permission from Academic Press.)

FIG. 18 Measured spontaneous oscillations of the EIP during the ‘‘breathing’’ period; transforma-
tion of the electroviscoelastic sphere into the rigid sphere. (From Ref. 6, with permission from

Academic Press.)



B. 31P NMR Measurements

Figure 19 shows 31P NMR spectra of the molecular complex that builds the examined
droplet-film structure. The impedance Z at the resonant frequency !0 is equal to the
resistance R. The resonant frequency of the electromechanical oscillator can be considered
as some characteristic frequency within the vibrorotational spectrum of the molecular
complex that forms the droplet-film structure.

V. EXPERIMENTAL IMPLICATIONS

A. Application to Particular Entrainment Problem in Solvent Extraction:
Breaking of Emulsions

This part of the chapter is an attempt to present some of the practical/engineering utility
potentials of the discussed topics. Therefore, some of the electromechanical principles
presented here have been used for elucidation of the secondary liquid–liquid phase separa-
tion problems, methods, equipment, and/or plant conception. The example given is related
to the appearance of droplets/emulsions or droplet-film structures/double emulsions in
solvent-extraction operations. Since these emulsions or double emulsions occur as an
undesirable side effect, both nondestructive and destructive methods for their separation
or elimination can be shown. Table 1 presents the two kinds of methods for secondary
liquid–liquid phase separation [21].

The particular problem considered as the representative one was mechanical entrain-
ment of one liquid phase by the other in the solvent-extraction operation. Experimental
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FIG. 19 31P NMR spectrum of D2EHPA–TOPO–kerosene sample (phosphoric acid standard

solution, sweep width of 15 kHz); the peak at 7 ppm corresponds to D2EHPA and that at 62 ppm
corresponds to TOPO. (From Ref. 6, with permission from Academic Press.)
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TABLE 1 Secondary Liquid–Liquid Phase Separation Methods

Considerations

Methods

Coalesc.
lamellar

Coalesc. densely
packed

Flotation
aero

Flotation air
induced Electrostatic Electrodynamic Centrifugal Dissolution Demulsifier

Process
Eff. (%) 60–70 90 – 70–80 80–95 – – – –

Sens. (%) 0.01 0.002 – 0.005 0.001 – – – –

Operat.
Thro. Large Small Small Large Small – Small – –
Flex. Yes No No Yes No – No Yes Yes

Maint. Easy Diff. Diff. Easy Diff. – Diff. Easy Easy
Specific – STC STC STC – – – – –

– TSP TSP TSP TSP – – – –

– SFC SFC SFC – – – – –

Design
Information
patents

Ins. Ins. Ins. Many Ins. No Ins. Ins. Ins.

Economic

C. costs Low High Medium V. high V. high V. high Low Low Low
Rentability Medium High – Medium Low Low High High

Coalesc. ¼ Coalescence, Eff. ¼ Efficiency, Sens. ¼ Sensitivity, Operat. ¼ Operational, Thro. ¼ Throughput, Flex. ¼ Flexibility, Maint. ¼ Maintenance, Diff. ¼ Difficult,

STC ¼ sensitive to temperature changes, TSP ¼ sensitive to presence of third stable phase, SFC ¼ sensitive to feed content of entrained phase, Ins. ¼ Insufficient,

C ¼ Capital.

Source: From Ref. 21 (reprinted with permission from Elsevier Science).



results obtained in the pilot plant for uranium recovery from wet phosphoric acid were
used as the comparable source [7, 10, 21, 67–79, 84–87]. In this plant, a secondary liquid–
liquid phase separation loop has also been carried out [36–38]. The loop consisted of a
lamellar coalescer and four flotation cells in series. The central equipment in the loop,
relevant to this investigation, is the lamellar coalescer. The phase separation in this equip-
ment is based on the action of external forces of mechanical and/or electrical origin, while
adhesive processes at the inclined filling plates occur [10, 73, 88–92].

A complete evaluation of the details of this solvent-extraction procedure can be
found in Ref. 21.

B. Other Applications

There are indications, experimentally corroborated, that a new constitutive model of
liquids can be generalized for liquid–solid and liquid–gas systems (micro, nano, and
atto). Micro- and nano-dispersed systems can behave either as elastic and/or rigid,
while atto-dispersed systems behave only as plastic. Examples of micro- and nano-dis-
persed systems are suspensions, emulsions, fluosols, and foams. Finally, atto-dispersed
systems are conductors of various kinds, including information streams, beams of pho-
nons, photons, electrons, or ions, and combinations of the latter.

It might be of interest in the future to derive a rigorous mathematical formalism for
the developed theory of electroviscoelasticity. This formalism could begin with the
Hamilton and Onsager–Sedov approaches, which have been applied in the nonlinear
theory of fluid-permeable elastic continua by Grinfeld and Norris [93], and thereafter
more sophisticated mathematical instruments may be needed [20].

Also, further evaluation of the idea that the basic entity can be understood as an
energetic ellipsoid (based on the model of the electron following Maxwell–Dirac iso-
morphism, MDI [94, 95] seems to be sensible. MDI states that the electron is an
entity, at the same time quantum-mechanical (microscopic) and electrodynamic
(macroscopic).

VI. CONCLUSIONS

A brief recapitulation of the theoretical and experimental contents of this chapter could be
shown, using the developed theory of electroviscoelasticity, and its three forms of
‘‘instabilities,’’ namely, rigid, elastic, and plastic. Figure 20 summarizes the correlation
between the EIP and time, related to the formation of the electroviscoelastic sphere and its
transition into the rigid sphere.

A new constitutive model of liquids is supposed to facilitate the understanding of
liquid//liquid interfaces, and in particular the interactions and phenomena which occur at
very developed surfaces, e.g., in emulsions or double emulsions.

The theory of electroviscoelasticity constitutes a new interdisciplinary approach to
colloid and interface science. This theory can be helpful in solving entrainment pro-
blems in solvent extraction, for what this research was initiated fourteen years ago [21].
Furthermore, this knowledge can be used, e.g., in studies of fine dispersed systems
(micro, nano, and atto; suspensions, emulsions, fluosols, foams, and beams/streams
of entities), the physics of liquids, and biological systems (neurophysiology/infon
transfer).
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Finally, using the knowledge and/or some of the ideas presented and discussed, it
will be possible to develop a general knowledge and database organization system related
to the breaking of emulsions. This job can be done for both nondestructive and destructive
methods for secondary liquid–liquid phase separation, as indicated in Table 1.
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31
Surfactant-Stabilized Emulsions from an
Electrokinetic Perspective

O BOEN HO Akzo Nobel Surface Chemistry, Deventer, The Netherlands

I. INTRODUCTION

Many products involve emulsification in the exploitation or manufacturing process. The
applications range from bitumen emulsions and drilling fluids to food products, cleaning
and personal care (including cosmetics), carrier media for pharmaceuticals, and many
more. Industrial interest in emulsions and emulsification and in their physical chemistry
is evident. Industrial research is, however, characterizied by a pragmatic approach and a
strong focus on development and technology. The incentive of product or process devel-
opment renders the industrial approach principally driven by performance. Academic basic
science principally opens up new horizons. It may, therefore, focus on mechanistic details,
theories, and tests. This does not necessarily mean that the two approaches cannot be
mutually reinforcing. Nevertheless, starting points remain different, and one must be
aware of some practical differences. For example, the industrial definition of emulsion
stability or stability in a more general sense differs from the one academics tend to practice.
Industrial product stability focuses on (shelf) lifetime, or product tenability. ‘‘Industrial’’
stability expresses the product status quo rather than some point in a phase diagram.

Industrial incentives and objectives seem to drive industrial emulsion research to
‘‘toolkit approaches.’’ To illustrate this statement we discuss two well known examples:

. To select the appropriate set of surfactant ingredients, people in the field usually
apply the so-called HLB method [1]. The HLB is an abbreviation of hydrophile
lipophile balance. It assumes that all surfactants and surfactant mixtures can be
characterized by an HLB value. The method couples the performance of an
emulsion system with a match between a surfactant system and a substracted
emulsion system. Performance optimization is reduced to two steps. First, the
two (or poly) phase system has to be characterized in terms of an HLB. This is
called the required HLB. Once this HLB is identified, then further optimization
occurs by testing several surfactant types and sets of surfactant mixtures, all
having an HLB equal to the required HLB.

. Within a processing method aimed at obtaining the smallest emulsion droplets
the PIT method [2] is often applied, which involves the identification of a critical
temperature. At this temperature, the dispersed phase and continuous phase
interchange. This temperature is called the PIT (phase inversion temperature).
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The final process contains a trajectory in which the emulsion system is brought
to the PIT, dispersed and brought back to the basic temperature.

We will return to this ‘‘tools’’ aspect later on.
By definition, emulsions consist of at least two immiscible liquids, one dispersed in

the other. However, emulsions consisting of only two components hardly occur. Usually,
they consist of at least three components apportioned into two phases. The third compo-
nent of the emulsion is the dispersing agent. The dispersing state can be maintained
employing several means. We ignore the use of rheological modifiers such as thickeners,
and focus on the surfactant (the majority of emulsions is surfactant based).

The literature shows a bias towards specific types of emulsion systems. The majority
of references are dedicated to the so-called ‘‘oil-in-water’’ (o/w) systems. This is a con-
straint we will have to keep in mind. Therefore, our objective will be to consider the role of
surfactants in aqueous emulsions in the context of electrical phenomena. We will discuss
the electrokinetics of emulsions from two perspectives. First, the interfacial potential is
treated from a phenomenological point of view. The role of the interfacial potential in
emulsions is then considered. As detailed treatments of the basics of electrokinetics have
preceded this contribution, no detailed attention will be given to these topics.

This chapter includes four sections. To begin with, a framework will be outlined.
Aspects such as classes of surfactant, types of emulsions, and emulsification will be treated
in more detail. This will be done in Section II. In this section, measuring techniques are
also briefly discussed. The practical value of commonly employed techniques will be
reviewed. Section III focuses on the origin and nature of the droplet potential. Section
IV provides interpretation and application of electrokinetic data.

II. SURFACTANTS, EMULSIFICATION, AND DETECTING INTERFACIAL
POTENTIALS

A. The Surfactant

There exists a bewildering variety of surface-active agents. At present, approximately
60,000 commercial products are available [3]. Evidently, this large variety clearly necessi-
tates some sort of classification of these agents (usually abbreviated as surfactants). There
are many ways to accomplish that. In most cases, classes are defined on the basis of the
nature of the polar or charged head group. On the basis of the type of charge, four classes
can then be distinguished:

. Anionic, including the carboxylates, sulfates, sulfonates, and the phosphates.

. Nonionic, for the ethoxylates and glycerides.

. Cationic, including the quaternary ammonium salts.

. Amphoteric when anionic and cationic species are combined into more complex
structures.

This is the simplest and most obvious classification and for a long time it was con-
sidered satisfactory. Nowadays, there are also many hybrids, which render the above
classification incomplete or even incorrect. Therefore, other ways of classification may be
preferred. One obvious approach is by taking typical properties of a surfactant, e.g.:

. The number of elements within the molecule: monomers, dimers, up to polymers.

. Its origin: biosurfactant, animal, industrial, etc.

. Its function: foaming agents, demulsifiers, dispersants, etc.
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Obviously, any classification has restraints. In fact, the quintessence of classifying is
to differentiate between molecules based on a particular property or feature. Recalling the
electrical aspect of the objective in mind, employing the difference in charge type evidently
provides sufficient differentiation. In order to differentiate the class of nonionic surfac-
tants, we characterize them in terms of the HLB. This value was calculated by using
Griffin’s expression [1]:

HLB ¼ 20� ðMH=MTÞ ð1Þ

where MH and MT are the molecular weights of the hydrophilic moiety of the surfactant
and the whole surfactant, respectively. To avoid long chemical names, we will identify a
number of surfactants by their trade names. Other surfactants will be denoted by abbre-
viations.

B. Types of Emulsion

There are several types of emulsions. Usually, they are differentiated in terms of the
dispersion structure or the input required in their formation and the related issue of
stability.

When the stability is considered, three types of emulsions are recognized. The so-
called macroemulsion is fundamentally unstable and requires high-energy input. In time,
this emulsion separates into the different liquid phases. To maintain the system in this
state of high (free) energy a stabilizing agent must be added. As such, stability implies the
slowing down of the destabilization process. Unlike macroemulsions, microemulsions are
thermodynamically stable. No external force is needed to obtain such a system: it occurs
spontaneously once all ingredients are present. Spontaneous emulsification is also
observed in miniemulsion systems. Just like macroemulsions, miniemulsions are not ther-
modynamically stable. In time, they deteriorate. The spontaneous formation is a complex
aspect, which is not fully understood. One prerequisite must be the low interfacial tension.
At low interfacial tension, small mechanical perturbations are sufficient to generate small
droplets. Although the droplet size is not the critical factor, miniemulsions differ from
macroemulsions by their droplet size. Microemulsions do not have a specific range in
which they are stable. In our considerations we propose to deal with macroemulsions.

When focusing on the nature of the liquid phases comprising the emulsion, a differ-
ent division can be made. We know many types of liquids. Even under ambient conditions
one can recognize a metallic type (mercury), organic liquids (hydrocarbons, esters, and
ethers), polar liquids (like methanol or water), and a class including silicon and fluorinated
organic substances. In practice, we limit our attention to two types of liquids: ‘‘oil’’ and
‘‘water.’’ Within this limitation, we distinguish two basic types of emulsions. In Section I
we mentioned the o/w type with the oil dispersed in water. The water-in-oil (w/o) emulsion
comprises oil as the continuous phase and water as the dispersed phase. Finally, one may
encounter multiple emulsions. In these emulsions at least two phases are dispersed: the one
in the other.

C. Emulsification

The composition and evolution of an emulsion determine its properties. In Section I we
briefly discussed the HLB concept for choosing ingredients. Another aspect, which needs
some attention, is the emulsification process, i.e., the way the emulsion is made. In parti-
cular the dosing sequence of ingredients has a strong impact on the properties of the
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emulsion. To illustrate this aspect we briefly discuss the observation by Stalidis et al. [4].
Two 0.5% emulsions of methyl cyclohexane in 0.01M aqueous NaCl solution were pre-
pared by mixing in two surfactants: polyoxyethylene (20 EO) sorbitan mono-oleate
(Tween 80, 2.25 �10�3%) and sodium lauryl sulfate (SLS, 1:28� 10�3%). To obtain
these emulsions, two different methods were applied. In method A, both surfactants
were added together and before the sonification step; in method B, Tween 80 and SLS
were added separately. Just as in method A, Tween 80 was added before sonification; SLS
was, however, added afterwards. The properties of the emulsions obtained were different,
as is illustrated by Table 1. The emulsion prepared by applying method A shows a more
negative zeta potential, is more stable, and is more finely divided than the one prepared by
applying method B.

D. Techniques for Determining Potential

To explore interfacial charge structure, electrokinetic or titration techniques are com-
monly employed. This is just a matter of experimental convenience (since the other elec-
trokinetic phenomena essentially yield the same information). In electrophoresis,
determining the ‘‘potential’’ usually implies determining the ‘‘zeta potential’’ (�). Here,
the dispersion is placed between electrodes in an electric field. When charge is present on
the surface of the droplets, they will move in the electric field. The displacement of the
dispersion boundary (per unit of time) is a measure of the zeta potential. Nowadays,
sophisticated methods are available. If the periodicity of the electric field is considered,
two main techniques can be distinguished. One group of techniques, the AC technique,
applies a high-frequency alternating current. Dispersion mobility is derived from the
acoustic which the dispersion generates. In addition to this ‘‘electrosonic amplitude’’
(ESA), option, modern electrophoresis equipment often provides a ‘‘streaming potential’’
option. In this complementary mode the droplets are moved by sound waves, giving rise to
a ‘‘colloid vibration current.’’ The high-frequency AC section then functions as a receiver.
In the alternative technique a stationary current is imposed. This is often referred to as the
DC technique of which classical electrophoresis is an example. The dispersion mobility is
determined by means of optical techniques such as Doppler shifts. Finally, there are
titration techniques. The classical method of titration uses a potential-determining ion
as titrant. In general, this laborious technique is not appropriate to emulsions, as titration
may modify the system. We limit our discussion to a special type of titration technique.

The DC technique is almost synonymous with microelectrophoresis or optical elec-
trophoresis. Two papers are illustrative of the possibilities of current microelectrophoresis
techniques. Hantz et al. [5] applied so-called electrophoretic light scattering to study their
emulsion system. In this technique, light scattering is combined with microelectrophoresis.
In addition to these options it yields an apparent droplet charge. The setup employed by
Pisárčik et al. [6] allows for monitoring of zeta-potential distribution. A drawback of DC
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TABLE 1 Properties of Two Emulsions Made Along Different Routes

Method applied

Zeta potential

(mV)

Flocculation rate

(mm3 s�1
Þ

Number of droplets

(mm�3
Þ

A 83 0.045 28� 105

B 65 0.082 14� 105



electrophoresis is its requirement of dilution. ‘‘Best-guess’’ supernatant serum partly
mimicks continuous phase conditions, but cannot compensate for the effect of dilution.
Besides, the advantage of seeing the subject(s) must be questioned, as one tends to become
subjective and to discriminate certain species of the polydisperse population.

The AC technique is founded on a firm theoretical basis. In a recent paper by
Dukhin et al. [7] an ‘‘electroacoustic’’ theory is presented, covering systems containing
up to 45% (by volume) of dispersed phase. By modulating the frequency with which the
current is generated, droplet size distributions can also be obtained, as shown by Hunter
and O’Brien [8]. Another advantage of the AC technique is its semiquantitative character.
Sometimes results do not need to be quantitative as has been demonstrated by the author
[9] as relative effects can be attributed to differences in surfactant systems. We will discuss
this point in more detail later on. A disadvantage of the AC technique is the need for
rather detailed knowledge of the studied system. Additionally, a density difference
between the dispersed and continuous phase is required in order to produce an acoustic
effect. Also, whereas the DC technique produces a moderate and stationary distortion of
the droplets (but large deformation of the double layer), the (high frequency) AC techni-
que keeps droplets in a permanent transient state. Investigation of this issue has led to the
consensus that there is a negligible level of disturbance.

Users tends to prefer a specific type of equipment. However, the choice depends on
the particular application one has in mind, since each technique focuses on certain proper-
ties and features, disregarding other effects. Table 2 provides a short (and necessarily
incomplete) listing of features characterizing the two techniques.

We end this section with the discussion of a remarkable method for obtaining
interfacial potentials. Grieser and Drummond [10] were able to determine so-called micel-
lar ‘‘electrostatic interfacial potentials.’’ Their method applies the shift in apparent acidity
when indicator molecules experience an electric field. This shift obeys Nernst’s law:

 Nernst ¼ 2:303ðkT=eÞðpK0
a � pKobs

a Þ ð2Þ

where  Nernst is the Nernst potential, and pK0
a and pKobs

a are the intrinsic and the apparent
acidity constants of the indicator, respectively. By ‘‘placing’’ indicator molecules in the
neighborhood of the micelle surface, a shift is thus expected when the nature of the
surfactant is ionic. The interpretation of the Nernst potential depends on the distance
of the micellar interface to the average indicator molecule. A special selection of indicators
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TABLE 2 Advantages of Both the AC and DC Techniques

DC Technique AC Technique

Implies well-controlled experimental conditions
Allows combinations with light scattering

techniques
Selective (no interference by air bubbles)
Droplets can be made visible

Yields information about the ‘‘individual’’
droplets

Zeta potential determined with a minimum of
information

Requires small quantity of sample material

System remains under near-equilibrium
conditions

In situ measurement
Dilution not necessary
Semiquantitative up to high-volume fraction of

dispersed phase
Data allow for direct applications, e.g., in

heteroflocculation and other complex
experiments

Other information (droplet size distribution) can
be acquired



facilitates nearest approach, allowing the reasonable assumption that the potential
obtained is equal to the ‘‘wall’’ potential [11]. Obtaining the potential requires spectro-
scopic means and thus the system to be transparent. Application to emulsions is, therefore,
limited to near-transparent miniemulsion systems.

III. NATURE OF THE DROPLET POTENTIAL

A. Origin of the Droplet Potential

The best-known examples of charged emulsion droplets are no doubt those prepared with
ionic surfactants. These surfactants are, however, not the only source of droplet charge. It
has been known for a long time that one does not need (ionic) surfactant to cause droplets
to move in an external electric field. The following systems will be discussed:

. Droplets of pure oil in water.

. Oil droplets stabilized by nonionic surfactant in water.

. Oil-in-water emulsions containing ionic surfactants or a mixture of ionic and
nonionic surfactants.

A significant negative potential is built up around droplets of pure oil in pure water.
Table 3 gives an impression of the zeta potential on such ‘‘naked’’ droplets. A number of
studies on these ‘‘naked’’ droplet/water systems has been reported. On the origin of the
zeta potential a number of suggestions has been made [12–14]:

. Presence of impurities in one of the two phases.

. Polarization of one of the two phases.

. Preferential adsorption or desorption of electrolyte ions.

. Adsorption of hydroxyl ions or desorption of hydrogen ions.

Carruthers [12] studied the aqueous electrophoretic mobility of droplets of several
types of oil differing in polarity. The poor correlation of oil polarity to the oil droplet
mobility indicates the minor role of the oil phase in creating an interfacial potential. This is
supported by the observation of zeta potentials (in the same order of magnitude) at air
bubbles in water [15]. Marinova et al. [16] ruled out polarization in the aqueous phase.
They did so by comparing the zeta potential of oil droplets in aqueous systems with and
without urea. The zeta potential was the same irrespective of the presence of this chao-
tropic (water-destructuring) agent. As potential buildup is also observed in pure water
systems, preferential adsorption or desorption of electrolyte ions as a main source of
charge can be ruled out as well. In support of this claim, Marinova et al. also observed
pH dependence of the zeta potential. One does not expect such a dependence when pre-
ferential adsorption or desorption of electrolytes dominates the potential. (Although these
sorption processes cannot be neglected, as has been demonstrated by means of surface
tension measurements.) In some of their experiments extra care had to be taken to avoid
contamination. Zeta potentials remained unaltered, pointing to the minor role of contam-
ination. Led by an increasing magnitude of the zeta potential with pH (see Fig. 1), most
authors believe the potential is due to adsorption of hydroxyl ions. Still, this observation
cannot exclude the simultaneous contribution of desorption of hydrogen ions or orienta-
tion (polarization) of the water molecules in the vicinity of the interface.

A considerable number of papers discuss the electrokinetics of emulsions stabilized
with nonionic surfactant [5, 16–25]. These droplets also generate a zeta potential. They
exhibit a close similarity to the ‘‘naked’’ oil droplets, suggesting a similar mechanism of
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interfacial polarization and corroborating the above arguments. However, introducing
nonionic surfactants at the interface adds a new dimension to the problem, as a surface
potential buildup can now also result from adsorption of ions from the bulk solution
through binding to the surfactant. The oil drop/water potential difference may therefore
be considered to be a consequence of:

. Adsorption of hydroxyl ions or desorption of hydrogen ions.

. Preferential adsorption of electrolyte ions through binding to surfactant.

Figure 1 also reproduces zeta potentials versus pH data collected by Tajima et al.
[18]. A progressively more negative zeta potential is observed with increasing pH. As
discussed above, this trend can be understood in terms of hydroxyl adsorption or
desorption of hydrogen ions. Comparison of zeta-potential data collected with both
‘‘naked’’ oil/water systems and in the presence of nonionic surfactant shows these
potentials to be essentially similar (see Table 3). It is therefore tempting to oversimplify
and assume the same mechanism for systems containing nonionic surfactants. However,
it must be kept in mind that the introduction of surfactant molecules at the interface
will shift the plane of shear. Assuming an unchanged charge structure this is expected
to result in a decreasing zeta potential, as was indeed observed by Marinova et al. [16].
Then, in view of the similarity in behavior as is evident from Table 3, the zeta
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TABLE 3 Room-Temperature Zeta Potentials of ‘‘Naked’’ Oil Droplets and of Oil Droplets
Covered by Nonionic Surfactants in Water

Emulsion system � (mV)
Source

(references)

Olive oil/mixture of (ethoxylated) sorbitan esters, HLB ¼ 9=water,
I ¼ 10�6 M,a pH ¼ 6a

�37 19

Ethyl laurate/water,b I ¼ 0.01M, pH ¼ 6 �45 12

Liquid paraffin/ethoxylated oleyl alcohol, HLBc
¼ 8:5/water,

I ¼ 5 10�4 M, pH ¼ 5:4
�49 5

Mineral oil/mixture of (ethoxylated) sorbitan esters, HLB ¼ 9–10/
water, I ¼ 10�6 M,a pH ¼ 6a

�40 to �45 22

Octadecane/water, I ¼ 0.01M, pH ¼ 5.7 �23 12

Chlorobenzene/polyoxyethylene (6) hexadecanol, HLB ¼ 10:5/water,
I ¼ 10�6 M,a pH ¼ 6a

�53 23

n-Octyl bromide/water, I ¼ 0.01M, pH ¼ 6 �10 12

Toluene/sorbitan monolaurate (Span 20), HLB ¼ 8:6/water,
I ¼ 0:01M, pH ¼ 6

�75 25

Xylene/ethoxylated octylphenol, HLB ¼ 13:7/water, I ¼ 0:01M,
pH ¼ 6

�43 20

Xylene/water, I ¼ 10�3M, pH ¼ 6 �61 17

Decalin/water, I ¼ 10�6M,a pH ¼ 6a �71 14

Air �55 to �65 15, 26

a In pure water.
b Data on the ‘‘naked’’ oil system are expressed in italics.
c The nonionic surfactants are also characterized by their HLB.



potential must pass through a maximum as the surfactant concentration is increased.
This indicates a change in the charge structure. The study of Becher and Tahara [22]
shows that the zeta potential depends on the polyxoyethylene nonionic surfactant
composition. In their view the zeta potential is built up by binding of hydroxyl ions
to the ether groups.

The phenomenon of preferential adsorption has been studied by a number of
authors. Yoshihara et al. [17] studied the effect of NaSCN and Ca(SCN)2 on the zeta
potential of a nonionic surfactant based microemulsion. They observed a potential buildup
with increasing SCN� ion concentration. A tendency of the hydrophilic moiety of the
surfactant to bind the anionic SCN� ions more strongly than to the counterions (Naþ and
Ca2þ) was inferred. Rabinovich and Baran [27] studied the effect of chloride ions on the
zeta potential. Figure 2 shows the zeta potential passing through an optimum as a function
of the concentration of KCl (closed squares). Evidently, the buildup of the zeta potential
must be associated with Cl� adsorption.
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FIG. 1 Plots of zeta potential and electrophoretic mobility versus pH: (^) Tajima et al. [18]: liquid
paraffin/water/ethoxylated (3 EO) dodecanol; (&) Tajima et al. [18]: liquid paraffin/water/ethoxy-
lated (6 EO) dodecanol; (~) Marinova et al. [16]: xylene droplets in water; (*) Carruthers [12]:

liquid n-octadecane/0.01 N NaCl:



In the presence of ionic surfactants, zeta potentials are the result of a combination of
dissociation or association and subsequent adsorption of the surface-active species:

. Dissociation, e.g., of SLS:

CH3ðCH2Þ11OSO3Na ! CH3ðCH2Þ11OSO�
3 þNaþ

. The CH3ðCH2Þ11OSO�
3 moiety is surface active and will adsorb on to the dro-

plets.
. Association of, e.g., dodecylamine and acetic acid:

CH3ðCH2Þ11NH2 þH�OOCH3 ! CH3ðCH2Þ11CH
þ
3 þ CH3COO�

. The CH3ðCH2Þ11NHþ
3 moiety is surface active and will determine the sign of the

potential.

A negative zeta potential is found in the presence of anionic surfactants, while cationic
surfactants give rise to positive zeta potentials. As the ‘‘naked’’ oil droplet is negatively
charged, the zeta potential passes through an isoelectric point (i.e.p.) as the concentration
of cationic surfactant is increased. In the case of a decyl trimethylammonium bromide
(DTAB) stabilized xylene emulsion in water, zeta potentials as high as 98mV were
observed [20]. In Table 4 a short list of zeta-potential data, illustrating the typical ranges
observed, is presented.
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FIG. 2 Zeta potential or ESA versus electrolyte concentration: (&) Rabinovich and Baran [27]:

butanol þKCl; (*) Goetz and El-Aasser [30]: SLS þ CA; (*) Goetz and El-Aasser [30]: SLS þ CA/
NaOH; (*) Goetz and El-Aasser [30]: SLS.



According to the classical picture, the surface charge on the droplet is balanced by
electrostatically adsorbed ions, which form the diffuse part of the electrical double layer.
Hypothetically, these ions can bulk in the interface, giving rise to an i.e.p. and subsequent
charge reversal. In the micellar system of bis(dodecyl)-1,4-butane quaternary ammonium
bromide, micelles having a negative zeta potential (� �130mV) were observed [6]. Change
of sign evidently occurs when potential-determining ions (of the opposite sign) are added.
Figure 3 shows the dependence of the zeta potentials on the concentration of specific
electrolytes of DTAB and sodium cholate stabilized emulsions.

The electrokinetics of o/w emulsions stabilized by a combination of nonionic and
ionic surfactants exhibit interesting features. Goetz and El-Aasser [30] studied the effect of
the electrolyte a concentration on the zeta potential in o/w emulsions stabilized by cetyl
alcohol (CA) and SLS. In this system the zeta potential passes through a minimum as
electrolyte is added. They also established the dependence of both position and depth of
the minimum on the nature of the electrolyte, see Fig. 2 (open and closed circles). In the
absence of the nonionic surfactant (Fig. 2, asterisks) the minimum is not formed. In their
discussion they refuted a number of theories including displacement of Hþ ions in the
inner Helmholtz layer by larger cations, ionic conduction, and surface roughness.
Supported by their findings, they concluded that the origin of the optimum must be
coion adsorption (in competition with the compression of the double layer). We have
discussed the formation of the minimum in the context of emulsions stabilized by nonionic
surfactants alone where the same conclusion was reached. Interestingly, in the presence of
the anionic SLS, the position of the optimum shifts to higher electrolyte concentrations
(Fig. 2, squares and circles). This shift must be attributed to the anionic character of SLS.
By the same token, the zeta potential of a SLS-stabilized o/w emulsion does not pass
through a minimum (Fig. 2, asterisks).

The zeta potential of emulsions stabilized by a mixture of nonionic or anionic
surfactants in combination with a cationic surfactant depends on the surfactant ratio.
When the ‘‘cations’’ dominate, the potential is positive. Domination of especially anionic
surfactants provides negative zeta potentials. An i.e.p. is observed at some particular
composition.

B. Dependence of Potential on Amount of Surfactant

The dependence of the zeta potential on the concentration of ionic surfactant shows an
interesting feature. Figure 4 shows typical plots. Neglecting the very low and high con-
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TABLE 4 Illustrating Zeta Potentials (�) of Emulsion Droplets with a
Closed-Packed Arrangement of Ionic Surfactant Molecules

Emulsion System � (mV)
Source

(references)

Xylene/water/DTAB
Bitumen/water/DTAB

Bitumen/water/CTAB
Liquid paraffin/water/CTAB
Liquid paraffin/water/Na dodecyl benzene

sulfonate

98
118

94
93

�93

20
28

28
29
29



centration regimes, for both anionic and cationic surfactants this dependence generally
consists of two regimes. In the ‘‘low’’ concentration regime (left-hand side of the curves in
Fig. 4) proportionality is observed of the zeta potential to the logarithm of the surfactant
concentration. The higher concentration regime is characterized by a zeta potential insen-
sitive to changes in the surfactant concentration. Sometimes, one of the regimes is missing
(Fig. 4, closed circles).

An explanation for the different nature of the two regimes may well be found in
the mechanism of surfactant adsorption. A constant zeta potential, insensitive to
increase in surfactant concentration, indicates saturation. We discuss this saturation
effect in more detail later on. With respect to the nature of the proportionality regime,
Healy et al. [11] collected and analyzed data on micellar surface potential ( 0Þ as a
function of surfactant activity. The main result is the following remarkable
relationship:

dj 0j=d log as ¼ 59:2mV ð3Þ
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FIG. 3 Plots of zeta potential versus electrolyte concentration: (^) KBr; xylene/water/DTAB; (&)
K3[Fe(CNÞ6]; xylene/water/DTAB; (~) KNO3; xylene/water/Na cholate; (*) La(NO3Þ3; xylene/
water/Na cholate. (From Ref. 20.)



where as is the surfactant activity in the bulk solution. They arrived at the conclusion that
the absorbing surfactant can be considered as a potential-determining ion. Our (macro)-
emulsion system slightly differs from the micellar system Healy et al. studied. Once it has
formed, its number of adsorption sites is more or less fixed and the droplets differ in
curvature. However, provided each shift in surfactant concentration is accompanied by
a redispersing step, our treatment of the surface potential data can be made to resemble
the approach of Healy et al. By assuming a constant ratio between the surface potential
and zeta potential, this implies that the observed dependence, as illustrated by Fig. 4 (left-
hand side), is the result of a potential buildup by potential-determining ions. It is inter-
esting to note that such dependence differs from the usual picture of hyperbolic adsorption
on a macroscopic interface [33].

C. Constraint of Potential Buildup

Figure 1 illustrates that the interfacial potential lies between certain limits. For the
‘‘naked’’ oil droplets and the oil droplets covered by nonionic surfactants, the zeta poten-
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FIG. 4 Zeta potential versus surfactant concentration: (&) SLS/heptane/0.01 M NaCl; (&) SLS/

cyclohexane/0.01 M NaCl; (~) CDBAC/cyclohexane/0.01 M NaCl; (~) CDBAC/heptane/0.01 M
NaCl; (*) CTAB/xylene/0.5 M NaCl. (From Refs. 31 and 32.)



tial decreases with pH, levels off, and reaches its minimum at pH 8–9 [12, 18]. At low pH a
sign reversal occurs. The i.e.p. occurs at pH 2–3. Thus, the zeta potential ranges from 70 to
110mV. (This range becomes narrower at higher ionic strengths). Similar maximum levels
are observed for ionic surfacant-stabilized oil droplets (see Table 4).

Basically, the zeta potential depends on the concentration of the so-called potential-
determining ions and ionic strength. The maximum potential depends on the capacity of
the (o/w) interface to adsorb these potential-determining ions. As such, an estimate can be
made of the zeta-potential maximum or minimum (depending on the sign of the potential).
For this purpose a number of methods is available.

Following the approach of Haydon and Phillips [34], a closed-packed adsorption
layer of ionic surfactants can be assumed, using the following equation for the wall
potential  0 (Gouy–Chapman, see e.g., Davies and Rideal [35, Ch. 2]):

 0 
 ðikT=eÞ sinh�1
ð139=Ac1=2Þ ð4Þ

where k is Boltzmann’s constant, T is the absolute temperature, e is the elementary charge,
A is the area per surfactant molecule, and c is the surfactant concentration. For an ‘‘A–B’’
surfactant i ¼ 1 or 2, depending on the electrolyte concentration. To obtain the zeta
potential a correction factor must be introduced for which Davies and Rideal [35, Ch.
3] suggest a value of approximately 0.50.

The ‘‘naked’’ oil droplet system does not allow for such an estimate. Although a
good guess can be made as to the nature of the adsorbing species, viz., the hydroxyl ion,
assuming that close packing of the adsorbed layer is not realistic. For oil droplets covered
by nonionic surfactants similar arguments are valid. For systems containing an ionic
surfactant the data of Haydon and Phillips [34] predict �95mV for SLS in the system
petroleum ether/water. [Data on dodecyl trimethylammonium bromide (DoTAB) in the
same system were also provided. Due to the size of the hydrophilic moiety of this surfac-
tant, calculation of � requires a more complex expression accounting for its dipole
moment.]

In the case of ionic surfactants, micellar data may be used. Micelles may be a suitable
model, because they are densely packed. However, in working out this concept one needs
to exercise some caution. Johnson et al. [36] compared the charge structure of cetyl
trimethylammonium chloride (CTAC) micelles and planar adsorbed CTAC. By employing
a site-binding model and classical electrical double layer theory they arrive at the conclu-
sion that the counterion dissociates stronger from a planar adsorbed layer than from a
strongly curved surface like that of a micelle. We collected micellar zeta potential data (see
Table 5). This table shows these potentials are essentially similar to the ones observed in
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TABLE 5 Listing Room-Temperature Zeta Potentials of Micelles

Micellar System � (mV) Reference

Bis(tridecyl)-1,4-butane quaternary ammonium bromide
Bis(hexadecyl)-1,4-butane quarternary ammonium bromide
Dodecyl trimethylammonium chloride

CTAC
Sodium decyl sulfate
Sodium lauryl sulfate (SLS)

25
40

� 92

90�100
� �74
�77 to –101

6
6
11

36
11

(ch. 3 of
35), 37



emulsion systems (Table 4). Overall, the indications are that in emulsion systems stabilized
by nonionic or monovalent surfactant, zeta potentials occur in the range of �120 to
þ120mV.

IV. ROLE OF POTENTIAL IN STABILITY OF EMULSIONS

Four processes may account for isothermal emulsion breakdown:

. Ostwald ripening

. Sedimentaiton and subsequent creaming or settling

. Flocculation

. Coalescence.

Ostwald ripening drives the larger droplets to grow at the expense of the smaller ones. It is
associated with the difference in chemical potential for droplets of different size. Size
differences thus become ever more pronounced, until one (large) drop is left.
Sedimentation is driven by gravity and occurs when the droplets and surrounding medium
differ in density. Flocculation (or coagulation) is the formation of aggregates. It occurs
when attractive forces dominate. The identity of the individual droplets is retained until
coalescence occurs. Droplets flocculate either into a deep, primary energy minimum or in a
relatively shallow secondary minimum. Flocculation velocities are often evaluated by
applying the well known von Smoluchowski equation:

1=NðtÞ ¼ 1=Nðt ¼ 0Þ þ KFt ð5Þ

where NðtÞ is the number of droplets (per unit of volume) at time t, and KF is the so-called
flocculation rate constant. Entry into the deep primary minimum is generally followed by
coalescence. In this process, smaller droplets merge into larger ones as droplet surfaces
touch. This breakdown process is easily identified by a characteristic droplet number decay
time. Coalescence studies apply the exponential expression according to Van den Tempel:

NðtÞ ¼ Nðt ¼ 0Þ expð�KctÞ ð6Þ

where KC is the coalescence rate constant. Just as with KF, a ‘‘high’’ KC implies that
coalescence occurs rapidly.

In general, the different destabilization processes occur simultaneously, although
within certain periods one process may be found to prevail. Needless to say, coalescence
is preceded by flocculation or sedimentation.

A. Emulsion Stabilization and Electrostatic Repulsion

In the struggle for the extension of emulsion shelf-life most approaches are directed to the
inhibition of the above-mentioned destabilization processes. Adding surfactants is one
approach. As is shown in previous sections, part of the input of the ‘‘surfactant’’ compo-
nent is the buildup of the interfacial (or wall) potential. According to the well known
DLVO theory, lyophobic colloidal systems derive stability from the electrostatic repulsion
between droplets. Interestingly, as argued by Elworthy and Florence [38], another effect of
the added surfactants is the increase in the attractive forces which accompanies the for-
mation of the adsorbed film.

In the overall picture of stabilization, attractive and repulsive forces determine the
interaction between emulsion droplets. A potential V can be defined which is a resultant of
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the attraction ðVAÞ and the repulsion ðVRÞ. On mutual approach, VA and VR change
differently with interdroplet distance. When a net positive result occurs, certain stabiliza-
tion is imparted to the emulsion. The DLVO theory predicts a repulsive interaction
between two identical diffuse double layers. The repulsive potential of mean force is
approximately given by the expression:

VR ¼ 1
2 ""0R 

2
0 ln½1þ expð��HÞ� ð7Þ

where ""0 represent the dielectric constant of the medium, R is the droplet radius, � is the
reciprocal Debye length, and H is the distance between droplet surfaces.

It is well known that adding sufficient amounts of electrolyte destabilizes emulsions.
Destabilization proceeds more rapidly when the emulsion is exposed to electrolyte con-
taining counterions of high valency. If the DLVO theory is valid (or the result of Van der
Waals’ attraction and electrostatic repulsion dictates stabilization), the Schulze–Hardy
rule applies. A good example is found in the emulsion of xylene in water stabilized by
sodium cholate or DTAB [20]. In the case of the cholate-stabilized emulsion, coagulation
was initiated by adding nitrate salts of Pb2þ, La3þ and Th4þ. The DTAB-stabilized emul-
sion was coagulated with potassium salts of Fe(CN)3�6 and Fe(CN)4�6 . In Table 6 the
critical coagulation concentration (c.c.c.) as well as the concentrations predicted by the
Schulze–Hardy rule (in parentheses) are listed. This table shows good agreement between
theoretical prediction and experiment (last rows). Similar efficacy gains are achieved when
added counterions adsorb preferentially. As expected, near the i.e.p. destabilization occurs
[20, 21, 25, 39, 40].

However, dissonant observations were also reported. As is also shown by Table 6, in
many cases the Schulze–Hardy rule strongly underestimates experimental values of c.c.c.
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TABLE 6 List of Emulsion Systems and Their Properties with Respect to Coagulation: Zeta
Potentials at Which Coagulation Occurs and c.c.c. for the Different Electrolytes Added

System (and source) Electrolyte � (mV) c.c.c. (mM)

n-Decane/water [33] NaNO3

Ba(NO3Þ2
La(NO3Þ3

�33
�24
�25

13 (111)a

3.5 (1.7)
0.65 (0.15)

Kerosene/butanol/water [27] KCl

CaCl2
AlCl3

�16

�5
�4

50 (286)

20 (4.5)
0.5 (0.39)

Chlorobenzene/polyoxyethylene (6)
cetylalcohol/water [23]

NaNO3

Ca(NO3Þ2
Al(NO3Þ3

�20
�17

�44

6.2 (10.6)
0.72 (0.17)

0.0057 (0.015)

Xylene/Ca soap/water [21] Pb(NO3Þ2
Cr(NO3Þ3
Zr(NO3Þ4

< 0
i.e.p.
i.e.p.

—
0.30 (0.14)
0.012 (0.025)

Xylene/Na cholate/water [20] Pb(NO3Þ2
La(NO3Þ3
Th(NO3Þ4

i.e.p.

i.e.p.
i.e.p.

3.4 (3.1)

0.32 (0.27)
0.036 (0.048)

DTAB [20] K3FeðCNÞ6
K4FeðCNÞ6

i.e.p.
i.e.p.

0.067 (0.07)
0.013 (0.012)

a The c.c.c. values predicted by the Schulze–Hardy rule are given in parentheses.



for the higher valency electrolytes. Violation of this rule may be due to two aspects
influencing the efficacy of the electrolytes. One aspect is hydrolysis to which higher valency
ions are particularly prone. Due to this process the actual electrolyte concentration is
reduced. Also, as shown by Table 6, the zeta potential tends to break down more quickly
with higher electrolyte valency. Such behavior must be associated with specific adsorption.

The other aspect is the correlation between emulsion stability and the zeta potential.
DLVO theory predicts a second-order relationship [see Eq. (7)]. The studies of Elworthy et
al. [23] showed an emulsion breakdown to occur (long) before the zeta potential had
reached the zero level (see Fig. 5). In another study [41] they examined the effect of n-
hexadecanol on the stability of the same emulsion system. Coalescence rates dropped by
almost a factor of 5 when the concentration of n-hexadecanol was increased from 0 to 5%.
Strikingly, during this procedure the zeta potential hardly changed. Becher and Tahara
[22] and Becher et al. [42] studied the effect of electrolyte on the properties of cottonseed
and mineral oil emulsions in water. These nonionic surfactant-stabilized emulsions show a
critical electrolyte concentration behond which the zeta potential is rapidly broken down
to almost zero. Also, this concentration is reached with less electrolyte when higher
valency electrolyte is used, just as is predicted by the Schulze–Hardy rule. Surprisingly,
emulsion stability is not affected by addition of electrolyte. The following conclusion may
be drawn: the stability of (o/w) emulsions is not exclusively attributable to electrostatic
repulsion. We believe that more effects should be taken into account. Table 7 compiles
literature data on emulsion systems and the nature of the stability. Evidently, emulsions
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FIG. 5 Emulsion coalescence rate and zeta potential versus concentration of electrolyte (log scale):

(&) NaNO3; (~) Ca(NO3Þ2; (*) Al(NO3Þ3; (&) NaNO3; (~) Ca(NO3Þ2; (*) Al(NO3Þ3. (From
Ref. 23.)



stabilized by ionic surfactant are stable because of electrostatic repulsion. The input of
nonionic surfactants is a combination of electrostatic and steric components. Sometimes,
the electrostatic component is outweighed. A third component of the stability is the
interfacial viscosity (and elasticity). The role of this component is difficult to assess,
because evaluation is not easy. Few studies have included viscosity measurements and
stated their role. In mixed ionic–nonionic surfactant systems a balance is reached between
the individual contributions. Overall, the predictive value of zeta potentials depends on the
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TABLE 7 Overview of Features of Emulsions Prepared from Data Found in Literature: Oil
Type, Type of Surfactant, and Suggested Nature of the Stabilitya

Oil type (and source) Surfactant and class Nature of the stability

Chlorobenzene [41] n-Hexadecanol þ polyoxyethylene (6)
cetylalcohol (nonionic, HLBb

¼ 6:4)
Interfacial viscosity þ

steric hindrance

Light mineral oil [42] Sorbitan mono-oleate (Span 80) þ Tween 80
(nonionic, HLB ¼ 5�11:5)

Steric hindrance

Light paraffin [5] Polyoxyethylene (2þ 10) oleyl alcohol

(nonionic, HLB ¼ 8:5)
Steric hindrance þ

electrostatic repulsion

Toluene [25] Span 20 (nonionic, HLB ¼ 8:6) Electrostatic repulsion

Dodecyl benzene [43] Polyoxyethylene (6.5) nonylphenols þ (2)
tetradecanol (1:1) (or higher, HLB > 8:6)

Interfacial viscosity

Liquid paraffin [18] Polyoxyethylene dodecanols (1–3) (nonionic,
HLB < 9.7)

Electrostatic repulsion

Liquid paraffin [18] Polyoxyethylene nonylphenols (2–4) (nonionic,

HLB<9.7)

Electrostatic repulsion

Chlorobenzene [23] Polyoxyethylene (6) cetyl alcohol (nonionic,
HLB ¼ 9:7)

Steric hindrance

Liquid paraffin [18] Polyoxyethylene dodecanols (4–8) (nonionic,
HLB>9.7)

Steric hindranceþ
electrostatic repulsion

Liquid paraffin [18] Polyoxyethylene nonylphenols (5–12)

(nonionic, HLB>9.7)

Steric hindrance þ

electrostatic repulsion

Xylene [20] Polyoxyethylene (9.5) octylphenol (Triton X-
100, nonionic, HLB ¼ 13:2Þ

Steric hindrance þ

electrostatic repulsion

Methyl cyclohexane [4] Tween 80 (nonionic, HLB ¼ 15Þ Electrostatic repulsion

n-Decane [33] SLS (anionic) Electrostatic repulsion

Methyl cyclohexane [4] SLS (anionic) Electrostatic repulsion

Xylene [20] Na cholate (anionic) Electrostatic repulsion

Xylene [20] DTAB (cationic) Electrostatic repulsion

Xylene [39] Cationic þ anionic Electrostatic repulsion

Xylene [21] Ca soap (anionic) Electrostatic repulsion

Xylene [31] CTAB (cationic) þ cetyl alcohol (nonionic) Interfacial viscosity þ

electrostatic repulsion

Xylene [40] Dodecyl benzene sulfonate (anionic) Electrostatic repulsion

a The list is compiled on the basis of type of surfactant.
b When the surfactant is nonionic the HLB is used as a guide.



class of surfactant involved. Zeta potentials predict ionic surfactant-based emulsion sta-
bility well. Nonionic surfactant-stabilized emulsions require a different approach.

B. Surfactant Composition and Zeta Potential

It is common knowledge that a well-balanced composition and amount of surfactants are
a prerequisite for optimal emulsion stability. Therefore, as the next item we evaluate the
role of surfactant composition on emulsion stability.

Pithayanukul and Pilpel [43] studied the emulsion system dodecyl benzene/water,
stabilized by a mixture of polyoxyethylene (6.5) nonylphenols (HLB ¼ 11:3) and polyox-
yethylene (2) tetradecanol (HLB ¼ 5:9Þ. These authors examined the effect of concentra-
tion and ratio of these nonionic surfactants on the stability of the emulsion. Three regions
of surfactant concentration could be distinguished. At very low concentrations (< 0:25%
on oil phase) emulsions separated immediately. At high concentration (> 10% on oil
phase) the emulsions were stable. In the intermediate concentration range the emulsions
initially showed improved stability towards coalescence and in a second stage also towards
flocculation. The occurrence of the transition between these stages was determined by the
ratio between the two types of nonionic surfactants applied. When the polyoxyethylene (2)
tetradecanol dominated, more surfactant was needed to obtain a certain stability level.
However, the shift in ratio could not always be compensated for. Below a ‘‘critical’’ ratio,
emulsions always coalesced when they flocculated. We tested these findings in a wider
context by collecting references on destabilization experiments in the concentration range
Pithayanukul and Pilpel found to be crucial (� 2�8% surfactant on oil phase). The diver-
sity in types of nonionic surfactant was tackled by characterizing these surfactants in terms
of the HLB value. In Table 8 the results of this exercise are shown. In principle the same
trends are found. Nonionic surfactants characterized by an HLB  9:7 or ionic surfac-
tants are favorable with respect to coalescence. Use of nonionic surfactant characterized
by a low HLB (� 8:6) gives an emulsion that coalesces when it flocculates. In an inter-
mediate HLB zone there is a transition region. This zone is not as narrow as the one
observed by Pithayanukul and Pilpel [43], most probably due to the number of oil types
involved in our collection. This reminds us of the HLB concept we discussed in Section I.
The impact of the required HLB seems to appear.

The belief in a ‘‘critical’’ surfactant mix (linked to an oil type) is supported by earlier
studies by Becher and Tahara [22] and Becher et al. [42]. These authors studied the effect
of surfactant composition on emulsion properties. They prepared aqueous emulsions of
light mineral oil and of cottonseed oil. The surfactant system was a mixture of nonionic
surfactants [sorbitan monostearate (Span 60), Span 80, polyoxyethylene (20) sorbitan
monostearate (Tween 60), and Tween 80] in different ratios, spanning a range of
HLB ¼ 5�12. They identified oil systems, which inclined to certain combinations of non-
ionic surfactants. At certain combinations, emulsion stability was found to pass through a
maximum. When expressed in terms of an HLB value, maximum stability occurred at
specific HLB values (HLB ¼ 9�10 for light mineral oil and HLB ¼ 6�7 for cottonseed
oil), independent of surfactant types composing the mixture. This is clearly in support of
the notion of a ‘‘required’’ HLB. They also determined the zeta potentials of the emul-
sions. Strikingly, the zeta potential passed through a minimum when the HLB passed the
required values (see Fig. 6). The conclusion must be drawn that zeta potentials do express
balanced conditions with respect to the nonionic surfactant mix.

In a recent study this conclusion is combined with the predictive value of zeta
potentials in the case of ionic surfactants. The present author [9] studied the electrophore-

886 O Boen Ho



tic mobility of hexane emulsions in water stabilized by ionic surfactants. Surprisingly,
when related to the molecular structure of the included surfactants, the electrophoretic
mobility could be split into contributions corresponding to well-defined molecular seg-
ments. This shows strong similarities with the approach taken by Davies in designing his
incremental HLB concept [44]. Therefore, as a next step, the identified increments were
recalculated using the HLB increments of anionic surfactants (salts of the fatty acids,
sulfates, and sulfonates) listed by Davies. A list of HLB increments is obtained in this
way which also includes many cationic segments. In Table 9 a number of segments and
their HLB increments are shown. This table shows that increments due to ionic segments
are limited to 20–25 HLB units. This is much less than the figure often quoted by many
authors for the sulfate group, i.e., 39 HLB units. One may have doubts about the HLB
system in general [38]. However, experience has provided numerous good examples. As
support, the reliability of Table 9 is illustrated. In Table 10, predictions of optimal emul-
sion stability are compared with experimental data. The table clearly shows the excellent
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TABLE 8 List of Features of Emulsions (Oil and Surfactant Type) and Corresponding Breaking
Process

Oil phase (and source) Surfactant Breakdown process

n-decane [33] None Flocculation þ coalescence

Kerosene [27] Butanol (HLB 
 0Þ Flocculation þ coalescence

Soybean oil [24] Glycerides (HLB<4.1) Flocculation þ coalescence

Light paraffin oil [5] Polyoxyethylene (2) oleyl alcohol
(HLB ¼ 8:5Þ

Flocculation þ coalescence

Dodecyl benzene [43] Polyoxyethylene (6.5) nonylphenols þ
idem (2) tetradecanol (HLB<8.5)

Flocculation þ coalescence

Toluene [25] Span 20 (HLB ¼ 8:6Þ Flocculation

Dodecyl benzene [43] Polyoxyethylene (6.5) nonylphenols þ
idem (2) tetradecanol (HLB>8.5)

Flocculation

Liquid paraffin [18] Polyoxyethylene (1–3) dodecanols
(HLB<9.7)

Flocculation þ coalescence

Liquid paraffin [18] Polyoxyethylene (2, 4) nonylphenols
(HLB< 9.6)

Flocculation þ coalescence

Chlorobenzene [23] Polyoxyethylene (6) cetylalcohol
(HLB ¼ 9:7Þ

Flocculation þ coalescence

Xylene [27] Triton X-100 (HLB ¼ 13:2Þ Flocculation

Methyl cyclohexane [32]Tween 80 (HLB ¼ 15Þ Flocculation

n-Decane [33] SLS Flocculation

Xylene [27] Na cholate Flocculation

Xylene [27] DTAB Flocculation

Xylene [39] Na dioctyl sulfosuccinate Flocculation

Xylene [39] CTAB Flocculation

Xylene [21] Ca soap Flocculation

Xylene [40] Na dodecyl benzene sulfonate Flocculation



agreement between prediction and experiment. Note that such a table cannot be used in
predicting optimal conditions in the case where anionic and cationic surfactants are com-
bined. However, there is no advantage of combining anionic and cationic surfactants. The
net effect of combining them is a reduction in the (zeta) potential, thus nullifying the
stabilizing effect of the individual surfactants [39, 45].
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FIG. 6 Zeta potential versus HLB. Mineral oil: (*) Span 80/Tween 80; (~) Span 60/Tween 60;
(&) Span 80/Tween 60. Cottonseed oil: (*) Span 80/Tween 80; (~) Span 60/Tween 60; (&) Span

80/Tween 60. (From Ref. 22.)

TABLE 9 HLB Increments of a Number of
Molecular Segments

Molecular segments HLB increment

—COOH
—OH
—O—

CH3 — , —CH2 — ,—CH——

Benzyl—
—OSO�

3 Naþ

—SO�
3 Naþ

—COO�Naþ

—N(CH3Þ
þ
3 Cl

�

——N(CH3Þ
þ
2 Cl

�

—N(C2H4OHÞ2CH
þ
3 Cl

�

—NHþ
3 Cl

�

2:1
1:9
1:3

�0:475
�1:66
20:8
20:7
19:1
22:0
22:5
24:9
20:0



C. Miscellaneous Aspects of Surfactants

Surfactants are also known to promote Ostwald ripening, especially at high concentrations
[47, 48]. In the presence of surfactant micelles, oil molecules are solubilized and also
transported by micelle diffusion [43]. In addition, they change the rheology of the con-
tinuous phase and the density of the participating phases, which in turn affect the sedi-
mentation velocity. These aspects of surfactants fall outside the scope of this review, and
will be ignored.

One important aspect should be mentioned, however. It concerns the effect of dro-
plet potential on the sedimentation velocity. The higher this potential, the longer it takes
before an emulsion settles. The following equation describes the retardation of the settling
velocity ðvÞ as a result of zeta potential:

v=v0 ¼ 1� ð""0�=4	aÞ
2=ð
�Þ ð8Þ

where 
 and � are, respectively, the viscosity and specific conductance of the continuous
phase; a is the droplet radius, and v0 is the settling velocity at zero zeta potential. Use of
this equation is limited to the case of thin double layers (�a � 1Þ [35, 49, 50].

V. CONCLUSION

We have overviewed the electrokinetics of o/w emulsion stabilized by surfactants. The
droplets of virtually every o/w emulsion are charged, irrespective of the type of surfactant
used. Therefore, electrophoresis is a powerful tool in exploring and developing emulsion
systems. However, the predictive value of zeta potentials depends on the class of surfactant
involved. In emulsion systems containing nonionic surfactants, DLVO theory does not
apply. In this case, zeta potentials indicate when stability is maximal as a function of the
surfactant mix. Electrokinetics is, then, a tool to explore emulsion systems and to deter-
mine required HLB values. Emulsions stabilized by only ionic surfactants obey the
Schulze–Hardy rule; then, zeta potentials predict the stability well. Electrokinetics can
be used to develop and identify stable emulsions. Evidently, the correct application of
electrokinetics requires information about the type of surfactant involved.

We conclude with some suggestions for further research. We believe that the possi-
bilities of acoustophoresis must be better exploited, as this technique enables us to examine
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TABLE 10 Comparison of Calculated HLB values for a Number of Ionic
Surfactants and Determined Valuesa

Surfactant

HLB value

Calculated Determined

CTAB
Tetradecyl trimethylammonium bromide
DoTAB

Decylamine, acidified to pH 3 by adding HCl
Cetyl ethyl morpholinium ethylsulfate
SLS

Sodium decanoate

24.2
25.8
27.2

22.3
25.8
22.1

21.8

24 [46]
27 [46]
26 [19]

23 [46]
25–35 [1]
21 [46]

22 [46]

a The calculations apply Table 9; the determinations make use of the optimal emulsion stability

concept.



many systems and processes. A system, which becomes accessible, is the w/o system [51,
52]. Interesting processes to study comprise the uptake of ‘‘slow’’ ions by oil droplets or
vesicles in water. The link to drug research makes these kinds of studies even more excit-
ing.
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SURFACTANT INDEX

Abbreviation or

trade name Chemical formulas

CDBAC Cetyldimethylbenzylammonium chloride

CTAB Cetyl trimethylammonium bromide
CTAC Cetyl trimethylammonium chloride
DoTAB Dodecyl trimethylammonium bromide

DTAB Decyl trimethylammonium bromide
SLS Sodium lauryl sulfate
Span 20 Sorbitan monolaurate
Span 60 Sorbitan monostearate

Span 80 Sorbitan mono-oleate
Tween 60 Polyoxyethylene (20) sorbitan monostearate
Tween 80 Polyoxyethylene (20) sorbitan mono-oleate

Triton X-100 Polyoxyethylene (9.5) octylphenol
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32
Electrokinetics of n-Alkane Oil-in-Water
Emulsions
EMIL CHIBOWSKI and AGNIESZKA WIĄCEK Maria-Curie Sklodowska University,
Lublin, Poland

I. INTRODUCTION

Emulsion systems still attract many researchers. This is because of their tremendous
practical application in many fields of human activity and occurrence as natural systems
[1].

Nevertheless, many aspects of emulsion properties (stability/instability) are not well
known yet. Mostly emulsions are required to be stable, and their stability is dependent on
their concentration and is also a function of the oil droplet size. The smaller the diameter
the more stable the emulsion is [2]. Considering an oil-in-water (o/w) type emulsion, the
Laplace pressure �P inside small oil droplets (say, below 1 mm) is sufficiently high to
prevent their deformation in most practical conditions, so the droplets behave like rigid
spheres:

�P ¼
2�

r
ð1Þ

where � is the interfacial oil/water tension and r is the droplet radius. It should be stressed
that because thermodynamically the o/w system is unstable, as long as there are no factors
that hinder decrease in the total surface of the droplets, it will tend to coalesce very fast.
Emulsion instability can occur via creaming (sedimentation), aggregation, and coalescence
[2, 3], and in the case of a pure oil phase dispersed in water these processes will cause
separation of the phases. Therefore, to prolong the life of the dispersed state of the oil
phase a third component is added, which is called an emulsifier. It collects at the oil/water
interface, thus forming an adsorbed film on the oil droplet surface. This causes a decrease
in the interfacial tension, and usually some changes in the electric potential (charge) take
place at the interface. Applying the DLVO theory, the balance of attractive dispersion and
repulsive electric interactions between the oil droplet–oil droplet and the water phase can
be evaluated. However, at present it is known that the classical DLVO theory in many
systems is not sufficient, so the extended theory is needed to describe the interactions
correctly [4, 5].

This chapter deals with some electrical aspects of oil/water interface, mostly with the
electrokinetic potential, i.e., zeta potential, of the oil droplets suspended in the water
phase. n-Alkanes were used as the oil phase. In some of the emulsion systems discussed,
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metal cations, alcohol, and/or protein were present. The authors wish to stress that this is
not a review article on the electrokinetics of emulsions in general, but rather a summary of
the results obtained with n-alkane emulsions during the last years. Some results of other
authors will also be recalled.

II. OIL/WATER INTERFACE

A. Galvani Potential Across the Interface

As was mentioned above, the oil submicro-size droplets suspended in the water phase
behave as hard spheres, and the system may be considered interesting for studies of
electrical properties at the oil/water interface. However, if such a system has reached
thermodynamic equilibrium, actually no electric potential difference should appear
between two reversible and identical electrodes dipped in the two phases; nevertheless, a
partition between the phases takes place if some ionic species are present in the system.
However, in most practical emulsion systems a potential difference between the oil surface
and the bulk of the continuous phase (aqueous solution) will apear due to nonequilibrium
(metastable) states of the system.

First, let us consider, after Kruyt [6] an oil/water system containing a 1:1 electrolyte.
At equilibrium the distribution of ions in the oil (o) and water (w) phases is determined by
their electrochemical potentials, ���þ and ����, in both phases, respectively:

���þðoÞ ¼ ���þðwÞ and ����ðoÞ ¼ ����ðwÞ ð2Þ

Hence,

���þðoÞ ¼ �o
þðoÞ þ kT ln aþðoÞ þ e’ðoÞ ¼ �o

þðwÞ þ kT ln aþðwÞ þ e’ðwÞ ¼ ���þðwÞ ð3Þ

and

����ðoÞ ¼ �o
�ðoÞ þ kT ln a�ðoÞ � e’ðoÞ ¼ �o

þðwÞ þ kT ln a�ðwÞ � e’ðwÞ ¼ ����ðwÞ ð4Þ

where �o
þ, �

o
� are the standard chemical potentials of the cation and anion, respectively, k

is Boltzman’s constant, aþ and a� are the activities of the cation or anion in oil (o) or
water (w) phase, e is the elemental charge, and ’ðoÞ and ’ðwÞ are the Galvani potentials in
bulk oil and water phases, respectively. In the bulk phases the condition of electroneu-
trality has to be fulfilled, and the difference in Galvani potential between the oil and water
phase reads [6]:

�� ¼ ’ðoÞ � ’ðwÞ ¼
1
2 e½ð�

o
þðwÞ � �

o
þðwÞÞ � ð�o

þðoÞ � �
o
�ðoÞÞ� ð5Þ

Here, the Galvani potential difference does not depend on the electrolyte concentration
but only on the specificity of the electrolyte. If the solution contains several electrolytes,
�� will depend on the relative amounts of the ions, but not on their concentration [6].
However, as is well known, there is no means to determine the Galvani potential differ-
ence, ��, across the interface. Formally, it consists of a potential jump � (surface poten-
tial), which is due to the orientation of permanent dipoles at the interface, and a double-
layer potential  o resulting from an excess of ionic charge at the interface. Because of the
different electric permittivities of the oil "ðoÞ and water "ðwÞ at the interface the  potential
will show a discontinuity as a function of distance x. Therefore, a relationship holds:

"ðoÞ
d 

dx

� �
ðoÞ

¼ "ðwÞ
d 

dx

� �
ðwÞ

ð6Þ
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Considering now a double diffuse electrical layer model at the oil/water interface, it results
that for small values of the double-layer potential  o (say, below 50mV) its partition is
governed by the ratio of products of the electric permittivity and ion concentration in both
phases [6]. Taking the Gouy–Chapman relationship for d =dx, from Eq. (6) it results that:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðwÞ"ðwÞ

p
sinh

ze ðwÞ

2kT
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðoÞ"ðoÞ

p
sinh

ze ðoÞ

2kT
ð7Þ

Also

�o
¼  ðoÞ þ  ðwÞ; nðoÞ"ðoÞ=nðwÞ"ðwÞ ¼ 
 and 


p
¼  ðwÞ= ðoÞ ð8Þ

Taking, for example, the n-dodecane/water interface at 208C, "ðoÞ 	 2 and "ðwÞ 	 80, thus
"ðwÞ ¼ 40"ðoÞ. Accordingly, although the number of ions will be much smaller in the oil
phase, the greater drop in the double diffuse-layer potential will occur in the oil phase.
Because the energy of hydration for small anions is less than for cations, there should be
an excess of the former in the oil phase, thus giving a negative potential drop in the oil
phase in a 1:1 electrolyte.

The double-layer structure in the water phase is weak; therefore, pure hydrocarbon
emulsion in pure water is unstable [6]. Figure 1 shows an example of the double-layer
potential partition (150mV is assumed) between the oil (dodecane) and water phases for
different values of 
 [Eq. (8)]. From this figure it can be found that for equal partition of
the double-layer potentials to occur,  ðoÞ ¼  ðwÞ ¼ 75mV; i.e., log 
 ¼ 0, the ion distribu-
tion should be nðoÞ ¼ 40nðwÞ, which is simply impossible. On the other hand, for log 
 ¼ 3,
nðwÞ ¼ 25nðoÞ (which is a more reasonable partition of the ions) the potential distribution
would be  ðoÞ ¼ 145mV in dodecane phase and only  ðwÞ ¼ 5mV in water. So, if this
model works, one can expect that in a ‘‘pure emulsion’’ system in 1:1 electrolyte, the
double diffuse double-layer potential is practically situated in the oil phase. However, it
appears that in real emulsion systems in pure water the measured zeta potentials may
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FIG. 1 Distribution of the total potential drop (150mV assumed) between n-dodecane and water
phases, as a function of the parameter 
[Eq. (8)].



amount to 50mV or more. This might be an effect of water dipoles structuring at the
interface (� potentials) as well as unequal numbers of cations and anions ‘‘dissolving’’ in
such a layer (see below). Also, if an ionic surface-active substance is present in the system,
it will concentrate at the interface, and the potential drop in the water phase will now be
much greater.

B. Zeta Potential and Charge Origin at Hydrocarbon/Water Interface

Stachurski and Michalek [7] have determined electrophoretically zeta potentials for a
series of n-alkane emulsions in 10�3 M NaCl. The emulsions were obtained by mechanical
dispersing of the oil phase (0.5v/v%) in a mixer at 15,000 r.p.m. without any addition of
emulsifier. They found a strong pH dependence of the negative zeta potentials for the
alkanes having C9�C16 atoms in the chain, while for C6�C8 n-alkanes the zeta potential
changed much less and the isoelectric point (i.e.p.) had not been reached up to pH 3 (Fig.
2). Considering the classical diffuse double-layer theory, these results show that OH� ions
are potential determining ones and are preferentially ‘‘adsorbed’’ relative to Hþ ones. The
authors [7] have not obtained positive values of zeta potentials in the pH range tested, and
the extrapolated i.e.p. appears at pH 2.8 (Fig. 2). Parreira and Schulman [8], over 40 years
ago, obtained a positive 10-mV zeta potential for solid paraffin in strongly acidic solution
by applying the streaming potential method. A question arises why n-hexane to n-octane
alkanes behave in a different way from higher chain-length n-alkanes and why their
negative zeta potentials are about half those of the rest of the n-alkanes in the pH
range 6–11. Moreover, below pH 6 for n-tridecane, Stachurski and Michalek [7] have
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FIG. 2 Zeta potential of n-alkanes ðC6�C16Þ droplets as a function of pH at constant ionic strength
ðI ¼ 10�3 mol of NaCl) of aqueous solutions. (From Ref. 7.)



found a straight-line correlation between zeta potential and emulsion stability. They
observed that the faster the emulsion decomposition the lower was the zeta potential
(Fig. 3). The same trend has been observed for hexane and octane. Very similar changes
in zeta potential for n-tetradecane in 1mM NaCl and pure water were obtained by the
present authors, which will be discussed later.

It is interesting to learn whether the measured negative zeta potentials are really due
to an excess adsorption of OH� ions at the oil surface and what kind of force would be
responsible for their adsorption. Then, if so, where are they located at the oil/water inter-
face during the droplet movement in the electric field? Marinova et al. [9] conducted very
careful studies on the mechanism of the oil/water charging. Using water very well purified
from surface-active substances, as well as hexadecane and xylene, they investigated,
besides OH� adsorption, several possible mechanisms by which the droplets could gain
their negative charge, such as adsorption of Cl� and/or HCO�

3 ions, negative adsorption
of positive ions (e.g., H3O

þ), orientation of water dipoles at the interface, and adsorption
of some surface-active contamination being present in the water or oil phase. Conducting
measurements in 2:28
 10�3 M NaCl or 10�3 M Na2CO3, and at the same pH (9.8), they
found that the zeta potential of xylene droplets was practically the same (�120 to �122
mV). Moreover, at pH 6 in 10�3 M NaCl they found that the zeta potential of xylene,
dodecane, hexadecane, and perfluoromethyldecalin was also about the same
(’ �55� 9mV). Hence, they concluded that the negative charge of the droplets could
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FIG. 3 Changes in zeta potential of C13H28 droplets with the pH of aqueous solutions at different
times. (From Ref. 7.)



not be explained by specific adsorption of these negative ions. Their results on the elec-
trophoretic mobility and zeta potentials for xylene as a function of pH and NaCl con-
centration are shown in Figs 4 and 5. Also, no positive values of the mobility were
obtained here (even at pH 3.5) and a maximum appeared on the mobility curve as a
function of NaCl concentration, which seems to be a characteristic feature (see later).
Eliminating the above-mentioned reasons, Marinova et al. [9] arrived at the conclusion
that the negative surface charge at the oil/water interface results from specific adsorption
of OH� ions. As the most probable mechanism for this specific adsorption the authors
picked out formation of hydrogen bonding between the OH� ions and water molecules in
the boundary layers. Finally, they generalized the statement that the negative potential is
due to the adsorption of hydroxyl ions and it is an inherent property of the oil–water
interface. Though that is the case, the problem is still open as to the shear-plane location at
the interface while the droplet is moving in an electric field. Despite the general statement
that the oil/water interface shows a negative electrophoretic mobility (zeta potential), the
general agreement that it is solely due to OH� ions true adsorption at this interface is a
debatable issue.

In a series of papers by Dunstan [10, 11] and Dunstan and Saville [12, 13] the authors
postulate that there is a redistribution of ions close to a hydrophobic surface. Although
both types of ions (cation and anion) are repelled from the adjacent layer of the solution,
yet, for example, in the case of KCl as the supporting electrolyte Cl� ions are preferentially
‘‘soluble’’ in this region, giving rise to the observed negative mobility of the particles. This
difference in ‘‘solubility’’ results from different values of the solubilization entropy of Kþ

and Cl� ions. In consequence the water structure is also modified in this region and its
entropy is increased. Moreover, the authors [10–13] also conclude that HCO�

3 and OH�

ions are also preferentially solubilized in comparison with Hþ ions. They conducted
experiments on docosane (C22H46 n-alkane) particles (0.5 mm average radius) in different
electrolyte solutions, applying various ‘‘cleaning’’ procedures for the water, docosane, and
the reagents used prior to the measurements [10–13].

Figure 6 presents the results for zeta potential as calculated from the measured
mobility, using the O’Brien and White theory [12]. In the presence of Al3þ cations, at
10�5 M and higher concentrations, the zeta potentials are positive, while in HCl solutions
above 2
 10�3 M and up to 3
 10�2 M (the largest concentration used, pH 	 2) the
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FIG. 4 Measured electrophoretic mobility, UE, and zeta potential of xylene droplets as a function
of pH at fixed ionic strength, I ¼ 10�3 M. (From Ref. 9.)



Electrokinetics of n-Alkane O/W Emulsions 899

FIG. 5 Measured electrophoretic mobility, UE, and zeta potential of xylene droplets as a function

of NaCl concentration at pH 6. (From Ref. 9.)

FIG. 6 (a) Zeta potential and (b) electrokinetic charges, �, for docosane particles versus electrolyte
concentration using the theory of O’Brien and White; the electrolytes are as indicated in the figures.
(From Ref. 12.)



reversal of negative zeta potential sign could not be obtained, although it was close to zero.
According to the classical double-layer theory such a behavior as that observed in Fig. 6
can point to a specific (excess) adsorption of ions; the authors [10–13] explain it by pre-
ferential solubility of the ions in the vicinity of the hydrophobic surface, as was discussed
above. The specific adsorption of an ion on a solid surface is considered to require at least
partial dehydration of the ion, a process which is not spontaneous in the case of hydro-
phobic surfaces like that of paraffin. A proof that no ‘‘true’’ charging (specific ion adsorp-
tion) of the alkane (hydrophobic) surface takes place is direct measurement of the forces
with the apparatus for surface force measurements, as well as measuring the so-called
negative adsorption of ions [14, 15]. No electrostatic repulsion, but a long-range attraction
was measured between two hydrocarbon surfaces as a function of the concentration of the
electrolyte solutions [14, 15]. These facts prompted the authors’ conclusion about the
‘‘preferential solubility’’ mechanism of the observed negative electrophoretic mobility of
the hydrophobic particles in an electrolyte solution. This mechanism in fact depends on
negative adsorption in the interfacial layer. This ‘‘excess’’ solubility is due to differences in
the entropy of solubilization of such ions as Hþ, Kþ, Caþ2, Alþ3, and Cl�. The authors
assumed that the solubilization enthalphies of ions are constant throughout the suspension
because the degree of hydration is probably the same in the bulk and vicinal water [10, 11].

However, there is a weak point in their approach because the entropy of Cl� and Kþ

ions is practically the same, while at all studied KCl concentrations (10�6�10�1 M) the zeta
potential was negative and the absolute values were higher than in CaCl2 and HCl solu-
tions (Fig. 6). The entropies �Shydr for the ions [relative values to �Shydr (H

þ
Þ ¼ 0], in J/

Kmol were [16]: Kþ
�93, Caþ2 �271, Alþ3 �557, Cl� �94, and OH�

�180. The authors
[10,11] have not considered any role for OH� ions in the negative charge creation at the
interface. However, accepting this approach and looking at the entropy for OH� ions,
which is equal to �180 J/Kmol, it may be concluded that the ions play an essential role in
the negative charge creation at the alkane/water interface. Dunstan [10] has found that
removing dissolved CO2 from docosane suspension in water (pH ¼ 5:8; 1:5
 10�6 M
H2CO3) caused a mobility increase from �2:9 to �4:0 mmcm/sV, with pH increasing to
7. It means that OH� concentrations increased from 6:31
 10�9 to 10�7 M. The entropy
�Shydr for HCO�

3 is 156 J/Kmol, and it is lower than �Shydr ðOH
�
Þ ¼ 180 J/Kmol.

Applying the approach of Dunstan and Saville [10–13] the increase in negative mobility
may result from preferential solubility of OH� ions in the interfacial region.

The observed extreme on the mobility/concentration curves may result from com-
bined effects, increasing charge with increasing electrolyte concentration and retardation
effect as a result of ‘‘very mobile’’ electrokinetic surface charge in such a system [10–13].
The retardation effect can dominate at a higher concentration of the electrolyte because
the thickness of the restructured vicinal water decreases. However, if the charge is very
mobile, one would expect the electrophoretic mobility to change with changing potential
gradient across the measuring cell. However, this appears not to be the case, as Dunstan
and Saville [12, 13] found that ‘‘no observed variation in the electrophoretic mobility’’ in
water and in 10�3 M KCl took place, while the field strength was changed from 80 to
400V/cm. It indicates that the charge is rather ‘‘fixed’’ to the solid particle of docosane.
What is surprising, as the authors stated, was that the suspension was very stable [10, 13]
up to 6 months. Marinova et al. [9] found that the xylene droplet size increased from the
initial 100–200 nm to ‘‘micrometer values after 5–10min,’’ and the emulsion did not break
out during 20 min. The content of the oil phase was below 0.5v/v%. A very similar size
(average diameter 0.8–1 mm) was that of the docosane suspension at a very low volume
fraction [11]. What is common for both suspensions is the way in which they are prepared.
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Marinova et al. [9] and Dunstan [11] heated the mixtures up to a temperature of 608C for
1 h (xylene) [9] and 508C (docosane, melting temp. 448C), then sonicated during cooling
( 5min) [11]. Such a procedure could cause some chemical processes (e.g., surface oxida-
tion) or water molecule inclusion because of London dispersion interactions. The surface
free energy of xylene (28.4–30.1mJ/m2) and docosane (about the same as that of xylene)
totally originates from the dispersion interaction (if no oxidation takes place) and it
provides work of adhesion with water, Wa ¼ 2 ð

p
30
 21:8Þ ¼ 51mJ=m2, which is not

so much lower than the cohesion work of xylene or docosane molecules ( 60mJ=m2),
but obviously much less than the water cohesion work (145.6mJ/m2). If some water
molecules were occluded in the oil phase during the cooling process, it could give rise to
a hydrogen-bonding interaction with OH� ions and water molecules.

However, similarly to the findings of Dunstan [10] and Dunstan and Saville [13] that
no specific adsorption of the charge takes place on the docosane surface, Jabloński et al.
[17] found no adsorption of OH�/Hþ by applying the potentiometric titration technique to
a suspension of octadecane, which was also obtained by melting the alkane in water at
808C and stirring mechanically, then ultrasonicating for 10min before cooling to room
temperature. The resulting suspension (5 g/200mL of water) possessed particles of average
0.7 mm diameter, which gave 10.5m2/g for specific surface area. The particles showed
negative electrophoretic mobilities, both pH and NaCl concentration dependent. These
results are shown in Fig. 7. Again, up to pH 2.8 no positive values of the mobility
appeared, and a maximum of the negative values as a function of pH occurred at the
highest NaCl concentration, i.e., 0.1M. However, maybe more interesting is the maximum
in the electrophoretic mobility as a function of NaCl concentration appearing at 10�3 M.
As was discussed above, according to Dunstan and Saville [10–13] the reason for the
presence of an increase in the mobility versus electrolyte concentration curve is due to
simultaneously occurring preferential solubility of the ions in the restructured region and
retardation effect. The most important result of this study [17] is a direct finding that
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FIG. 7 Electrophoretic mobility of octadecane particles as a function of pH and NaCl concentra-

tion. (With permission of the authors: Ref. 17.)



neither Hþ nor OH� ions adsorb (specifically) on to the octadecane surface. The blank and
the suspension titration curves totally overlapped [17], while from the observed mobilities
the surface charge should be  1 mC=cm2. Hence, taking into account the specific surface
value (10.5m2/g) of the octadecane particles in the suspension, the consumption of 0.1 M
NaOH should be about 0.2mL, which is not the case. The authors [17] also postulate an
indirect charging mechanism by the effect of Hþ and OH�, as well as of electrolyte ions,
on the vicinal water structure.

In the light of the above discussed results, the conclusion must be that Hþ=OH� are
not charge-creating ions on the paraffin surface, although OH� ions are mobility (zeta
potential) determining ions. Furthermore, the structure of the electrical double layer
cannot be well understood on the basis of the classical double-layer theories.
Moreoever, the distance at which the slipping plane is located is still an open problem.
However, because both from the electrophoresis and electro-osmosis [13] methods nega-
tive zeta potentials are obtained for hydrocarbon/water (electrolyte solution), it is strongly
suggested that the negative charge must be in some way relatively strongly fixed to the
hydrocarbon surface. Moreover, over 20 years ago, Chibowski and coworkers [18–23]
measured the zeta potential of thick n-alkane films (from hexane to hexadecane) deposited
on the surface of sulfur and other solids by the streaming potential method. While the zeta
potential of the bare sulfur surface was �25:6� 0:5mV, the zeta potentials of the film-
covered surface oscillated between  �98 and �122mV. These zeta-potential changes are
shown in Fig. 8, while Fig. 9 presents the zeta-potential changes of sulfur as a function of
statistical monolayers of n-heptane deposited on sulfur. Comparing the results from Figs.
8 and 9, it may be concluded that the thickness of n-alkane films from Fig. 8 corresponds
to about 15 statistical monolayers, assuming vertical orientation of the molecules on the
surface [18]. However, the maximum thickness of such films on Teflon was found to be
about four statistical monolayers [19]. If the orientation of the n-alkane molecules were
not vertical, there should be no difference between zeta potentials for odd- and even-
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FIG. 8 Relationship between zeta-potential values of sulfur in doubly distilled water and number
of carbon atoms in the n-alkane deposited on the sulfur surface. (From Ref. 18.)



numbered n-alkane chains (see also Ref. 24). The observed individual changes of zeta
potentials for ‘‘odd’’ and ‘‘even’’ alkanes are probably connected with different solid-
state structure of the molecules [23]. Figure 10 shows schematically such a difference
[25]. Among other things, the difference in the structure demonstrates also in the changes
of the alkanes melting temperatures, which go in a similar way as the zeta potential
changes presented in Fig. 8. Moreover, Stachurski and Michalek [7] found that at pH >
6:5 in 10�3 M NaCl, the zeta potential of n-alkane droplets also changed in a different way
for ‘‘even’’ and ‘‘odd’’ alkanes (Fig. 2). Based on these results it may be concluded that the
structure of the outermost layer of n-alkane droplets differs slightly for these two groups.
The present authors obtained larger effective diameters of odd-alkane droplets than those
of even alkanes in 1M n-propanol emulsion (natural pH 6.8) for two independent series of
the emulsion. The emulsions were prepared by dissolving the alkane in propanol, then
adding water (to obtain 1M solution) and homogenizing in an ultrasonic bath for 15min.
These results are shown in Figs 11a and 11b (effective diameters and zeta potentials,
respectively) for 5-min-old emulsion, and in Fig. 12 for 2-h-old emulsion [26]. However,
no clearly visible changes were observed for zeta potential, although in the first series
(5min old emulsion) this tendency could be observed.

Returning to the problem the origin of zeta potential in the systems discussed,
Chibowski and Waksmundzki [19] postulated in 1978 that ‘‘essential contribution of the
water dipoles in the double layer structure may be expected’’ (see also Refs 20–23). The
results recently published in our papers [26–30], as well as those discussed above seem to
support the idea, which actually is not in contradiction with the mechanism proposed by
Dunstan and Saville [10–12] or by Marinova et al. [9]. Assuming that water dipoles are
immobilized and ordered at the oil surface, the slipping plane might be located next to
them. The role of OH� and other ions may be structure making or breaking and possibly
they may be fixed to the dipole layer (hydrated). This model is consistent with the sugges-
tion of Israelachvili and Wennerström that ‘‘the non-slip plane is located no further than
one water layer from these surfaces,’’ which concerned a silica or mica surface [15].
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FIG. 9 Zeta potential of sulfur in water as a function of n-heptane volume used for wetting the

sulfur surface. Vertical dashes denote the number of statistical monolayers; vertical orientation is
assumed. (From Ref. 18.)



Because in a broad pH range of water the zeta potential at the oil surface is negative, the
dipoles should be oriented with their negative pole O towards the water phase. The
zeta potential of n-alkane emulsions in different n-alcohol solutions (0.1–1.0M), which will
be discussed next, led us to conclude about the essential role of water and/or alcohol
dipoles in the zeta-potential generation at the oil/water (solution) interface.

III. n-ALKANE/ALCOHOL SOLUTION EMULSION

A. Zeta Potential of Droplets of n-Alkanes in Alcohol Solutions

Many investigations of zeta potential and droplet size of n-alkane emulsions (0.1 v/v%) in
methanol, ethanol, and propanol solutions have been conducted by the present authors
[26–30]. The results in Figs 11 and 12 show that not only in-water but also in 1M propanol
the zeta potential of n-alkane droplets is negative. The multimodal size distribution of
droplets in the n-alkane emulsions is shown in Fig. 13a (for 5-min-old emulsions) and in
Fig. 13b (2-h-old emulsions). The most stable and reproducible emulsions in this study
were obtained for decane and tetradecane [26]. Figure 14a presents the effective diameter
and Fig. 14b the zeta potential for two series of tetradecane emulsion in 1M propanol
(natural pH 6.8). The values were determined with the ZetaPlus instrument of
Brookhaven, which applies dynamic light scattering. Emulsion samples were poured
into polyacrylic measuring cells and were left without any shaking. The particular values
of the diameter and zeta potential concern the same sample. The effective diameter, which
can also be called ‘equivalent sphere diameter,’’ is that which a sphere would have in order
to diffuse at the same rate as the particle being measured [30, 31]. In a polydisperse system
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FIG. 10 Schematic representation of ‘‘odd’’ and ‘‘even’’ n-alkane successive monolayers in the solid
state. (From Ref. 23.)
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FIG. 11 (a) Effective diameter and (b) zeta potential of n-alkane/water/n-propanol (1M) emulsion
versus n-alkane chain length 5 min after emulsion preparation (two series). (From Ref. 26.)
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FIG. 12 (a) Effective diameter and (b) zeta potential of n-alkane/water/n-propanol (1M) emulsion
versus n-alkane chain length 120 min affer emulsion preparation (two series). (From Ref. 26.)



907

FIG. 13 Multimodal size distribution of n-alkane/water/n-propanol (1M): (a) 5 min after emulsion
preparation; (b) 120 min after emulsion preparation. (From Ref. 26.)
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FIG. 14 (a) Effective diameter and (b) zeta potential of n-tetradecane/water/n-propanol (1M)
emulsion versus time (two series). (From Ref. 26.)



the effective diameter is an average value obtained by the averaged intensity of the light
scattered by each particle (here, alkane droplets). As is seen from Fig. 13, in most cases
only one principal population of droplets is present in the emulsions. If a decrease in
effective diameter as a function of time is detected by dynamic light scattering in the
sample, which has not been mixed in the meantime, it means that sedimentation (floating
to the emulsion surface) of larger droplets took place. On the other hand, an increase in
the effective diameter most probably results from coalescence of small droplets in the
emulsion, the droplets still being in the emulsion phase. Obviously, both processes may
occur simultaneously. The coalescence process, for example, took place in octane emulsion
during 2 h (Fig. 13a). In the case of n-tetradecane in propanol at natural pH 6.8, the
effective diameter ( 400 nm) of the droplets was well reproducible and stable during
2 h (Fig. 14a, two series), while the negative zeta potentials were different, being higher
by  15�20mV in the second series (Fig.14b). It is likely that in these diluted emulsions 0.1
v
v%) 20mv of zeta potential is enough to keep the emulsions stable. This will be discussed
later in detail. It is worth noticing that on the time scale the zeta potential is more or less
contant in each series, but is is not a general feature of all n-alkane emulsions.

The pH effect on the effective diameter and zeta potentials of tetradecane emulsion
in propanol is depicted in Fig. 15a and 15b, respectively. Although the absolute values
of zeta potentials at pH 4 are less in comparison with those at pH 6.8 (natural) and 11,
they are still negative and decrease slightly (from �35 to �20mV) during the first hour
(Fig. 15b). This decreasing trend is also seen at natural pH, but being only about 5mV.
The highest negative zeta potentials (average �45mV) of tetradecane droplets were
obtained at pH 11. In general, these zeta potentials in alcohol solutions are much
lower than those obtained by Stachurski and Michalek [7] (Fig. 2,  �100mV) in
10�3 M NaCl, as well as those of dodecane and hexadecane in 10�3 M NaCl at pH 6,
as determined by Marinova et al. [9] and others for analogous systems [10–13, 17].
However, at pH 4 the zeta potentials in Fig. 15b are comparable to those in the
literature [7, 9, 10–13, 17]. Such a behavior leads to the conclusion that the alcohol
dipoles adsorbed on the alkane surface play a role here. Because the dipole moment of
n-propanol is 1.69D (1D ¼ 3:336
 10�30 Cm), while that for water is 1.84D, water
replacement by propanol dipoles should decrease the zeta potential, if the immobilized
and oriented dipoles are really responsible for zeta-potential creation [15]. This case is
believed to be true. A support for this idea is the zeta potential of n-hexadecane emul-
sion in a 1M solution of methanol, ethanol, propanol, and 2-butanol shown in Fig. 16.
The average values of zeta potential in alcohol solutions behave practically the same way
as their dipole moments. Zeta-potential fluctuations in the case of methanol probably
result from low stability of the emulsion. This is shown in Fig. 17 for dodecane emulsion
in 1M methanol, where the emulsion breaks after 1 h and it is accompanied by large
zeta-potential fluctuations, as it was in the case of hexadecane. In ethanol and propanol
solutions the emulsion is stable during one day.

The role of OH� ions in zeta potential setting may depend on hydrogen bonding
formation with the dipoles immobilized at the alkane surface. More hydrogen bonds may
occur in the case of water than propanol dipoles. This could explain the smaller negative
zeta potentials in the presence of alcohol than in pure water. It is to be noted that the zeta
potentials of the alkanes deposited on a sulfur surface in water were also over �100mV
[18].

Zeta potentials of decane droplets in propanol solution were also determined in the
presence of NaCl, CaCl2, or LaCl3 salts in the 10�5 to 10�2 M concentration range [26].
In general, the presence of the cations increased the effective diameter of the emulsion
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FIG. 15 (a) Effective diameter and (b) zeta potential of n-tetradecane/water/n-propanol (1M)
emulsion versus pH. (From Ref. 26.)



droplets, especially at the higher concentrations and in La3þ solution. An example is given
in Fig. 18 for LA3þ. The effect of the presence of cations on the zeta potentials of decane
droplets in 1M propanol is shown in Figs 19–21, for Naþ, Ca2þ, and La3þ, together with
zeta potentials in the reference emulsion, i.e., without those cations. The zeta potentials
freshly prepared emulsions vary much in the presence of the cations (Figs 19–21) and
generally the absolute zeta potential values are reduced in 10�2 M solutions relative to
those in water. It looks as if the valency of the cations plays an essential role. While in the
presence of mono- and bi-valent cations (Naþ, Ca2þ) at their higher concentrations (10�3

and 10�2 M) the zeta potentials remain negative, so in the presence of trivalent La3þ they
are close to zero or even reverse the sign to positive in 1- and 2-day-old emulsions
(10�2 M). Also, a positive zeta potential appeared in a very fresh emulsion (Fig. 21).
The observed zeta-potential fluctuations, especially in the presence of cations, mean that
the structure of the water and alcohol dipoles changes on the droplet surface due to
‘‘adsorption–desorption’’ (hydration) processes of cations. However, there is no strong
relationship between the effective diameter (stability) and zeta potential of the emulsion,
although in many systems for small absolute zeta potential values the breaking of the
emulsion occurred faster. Figure 22a presents the changes in zeta potentials for decane
emulsions in 1M propanol and in solutions of the discussed cations (10�5�10�2 M), and
Fig. 22b shows the corresponding effective diameters for 15-min-old emulsions. In solu-
tions of Naþ and La3þ cations with increasing concentration, decreasing zeta potentials
are accompanied by increasing diameters of the droplets. However, just a reverse relation-
ship can be seen for Ca2þ. The reasons for such behavior may be manifold and more
experimental evidence (using other cations) would be needed to draw a conclusion. It can
only be stated that in a diluted emulsion any linear relationship between the magnitude of
zeta potential and the effective diameter of the droplets actually does not exist, at least if
the absolute value of zeta potential is higher than, say, 20mV. The reason for this will be
discussed later in terms of the extended DLVO theory [4], which considers the acid–base
interactions.
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FIG. 16 Zeta potential of n-hexadecane/water/alcohol (1M) emulsion versus alcohol chain length.
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FIG. 17 (a) Effective diameters and (b) zeta potentials of n-dodecane droplets in emulsions pre-
pared in 1M methanol, ethanol, or propanol for different times after preparation of the emulsion.
(From Ref. 28.)
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FIG. 18 Effective diameter of n-decane/electrolyte/n-propanol (1M) emulsion versus LaCl3 con-
centration. (From Ref. 26.)

FIG. 19 Zeta potential of n-decane/electrolyte/n-propanol (1M) emulsion versus NaCl concentra-
tion.



B. Stability of n-Alkane/Alcohol Solution Emulsion in Terms of Extended
DLVO Theory

It is well known that the classical DLVO theory, balancing attractive London dispersion
and repulsive electrostatic forces only, may be applied to a limited number of dispersed
systems to calculate the total interactions between two particles suspended in a liquid
medium. Derjaguin and Churajev [32] suggested that it can be applied to moderately
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FIG. 20 Zeta potential of n-decane/electrolyte/n-propanol (1M) emulsion versus CaCl2 concentra-
tion.

FIG. 21 Zeta potential of n-decane/electrolyte/n-propanol (1M) emulsion versus LaCl3 concentra-
tion.



hydrophobic/hydrophilic surfaces characterized by contact angles of water in the 158�648
range. If the contact angle is higher than 648, hydrophobic forces [33] contribute signifi-
cantly, and if it is less than 158, hydration forces operate across the interface. Van Oss [4,
34–36] were among the first who proposed a quantitative evaluation of the hydration
forces, which in their approach are due to Lewis’ acid–base electron-donor and elec-
tron-acceptor interactions. In most systems the forces are simply hydrogen bonding.
The total interaction �GTOT

131 in the extended DLVO theory can be written:

�GTOT
131 ¼ �GLW

131 þ�GAB
131 þ�GEL

131 ð9Þ

where �GLW
131 is the apolar Lifshitz–van der Waals’ interaction, �GAB

131 is the acid–base
(electron donor and electron acceptor) interaction, and �GEL

131 is the electrostatic interac-
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FIG. 22 (a) Zeta potential and (b) effective diameter of n-decane/electrolyte/n-propanol (1M)
versus electrolyte concentration 15 min after emulsion preparation.



tion between the same two material particles (droplets) (1) dispersed in a liquid (water) (3)
[4, 34–36]. Obvioulsy, if �GTOT

131 is negative, an attraction between the particles will occur,
and the surface of the particles is hydrophobic if they are dispersed in water [37].

In the case of two identical flat surfaces and at a minimum equilibrium distance do
(0:158� 0:008 nm) the free energy �GLW

131 of apolar interaction reads [34]:

�GLW
131 ¼ �2�LW13 ð10Þ

For the case of interest here, two identical spheres (the oil droplets) having radius R, and if
R � d, the suitable equation for the interaction as a function of the interparticle distance
d is

�GLW
131 ¼ �

A131R

12d
ð11Þ

where A131 is the Hamaker constant, which can be determined from �GLW
131 value at do

distance:

��GLW
131;do ¼

A131

12�d2o
ð12Þ

From Eqs (11) and (12) it results that the apolar Lifshitz–van der Waals’ interaction
can be determined if the droplet radius is known and interfacial tension is determined for
the oil/water interface. If any third substance is present (e.g., an alcohol) the situation is
more complicated because adsorption of the alcohol molecules takes place on the oil
surface and polar interaction appears. An attempt to evaluate the interactions in such a
system will be discussed below.

The second term in Eq. (9) deals with polar acid–base interactions, which for two flat
parallel surfaces at the equilibrium distance do can be expressed as [36]

�GAB
131 ¼ �4½ð�þ1 �

�
1 Þ

1=2
þ ð�þ3 �

�
3 Þ � ð�þ1 �

�
3 Þ

1=2
� ð��1 �

þ
3 Þ

1=2
� ð13Þ

where subscripts 1 and 3 mean oil and water (solution), respectively, and the sign ‘‘+’’ is
for electron acceptor, and ‘‘�’’ is for electron donor interactions.

In the case of two spheres having radius R and interacting at a distance d, the acid–
base free energy of interaction reads [4]:

�GAB
131 ¼ ��R�GAB

131;do exp½ðdo � dÞ=�� ð14Þ

where �GAB
131;do is the same as in Eq. (13) and � is the decay length [38, 39], which for the

discussed systems may be assumed to be equal to 1 nm [4]. From Eq. (13) it is clear that to
calculate the �GAB

131 energy the surface free-energy components �
�
i and �þi for the n-alkane

droplet and water (alcohols solution) should be known. Note that for a ‘‘bare surface’’ of
the alkane droplet in water no polar interactions appear. Nevertheless, the acid–base free
energy of the interaction for oil–water–oil will be negative and equal to
�4ð25:5
 25:5Þ1=2 ¼ �102mJ/m2, because the second term in Eq. (13) describes water
acid–base interaction. In consequence, the two oil droplets attract each other and the
emulsion breaks, if the repulsive electrostatic interaction does not exceed the acid–base
one, which is not the case in a pure oil–water–oil system. However, in the presence of an
alcohol solution its polar molecules are adsorbed on alkane droplets and no term in Eq.
(13) is zero. This system will be discussed later.

First, let us describe the electrostatic term in Eq. (9). In order to evaluate the
electrostatic repulsion energy the electric potential �o at the droplet surface should be
known. Because it is hardly possible to determine this potential experimentally, usually the
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zeta potential is taken for the calculations. In the case of these emulsions this seems quite
justified. Among many equations describing electrostatic repulsion between surfaces of
plates and spheres for different magnitudes of the electrical potential �o and �R parameter
(Debye–Hückel reciprocal length times the sphere radius) [40], an approximate simple
equation for two identical spheres having radius R and zeta potential, say up to 50mV,
reads [41]:

�GEL
131 ¼ 0:5"R�2 ln½1þ expð��dÞ� ð15Þ

where " is the dielectric constant of the liquid medium, and d is the distance between the
spheres.

Thus, the evaluation of the total interaction using the extended DLVO theory needs
solution of Eqs (11)–(15). This is possible if one knows the surface free-energy components
of the droplet and the liquid (solution) as well as the droplet zeta potentials. Such evalua-
tion has been conducted for n-dodecane emulsion in 1M solutions of methanol, ethanol,
and propanol [28], the zeta potentials of which are shown in Fig. 17. The problem was with
determination of the free-energy components of alkane droplets with the adsorbed alcohol
molecules to evaluate �GLW

131 and �GAB
131 free energies. The interfacial free energy (inter-

facial tensions) were taken from Jańczuk et al.’s paper [42]. They used the ring and sessile
drop methods and determined the total dispersion (Lifshitz–van der Waals) and polar
(acid–base) components of the surface tension. The polar components were 6.49, 3.32, and
2.79 mJ/m2 for methanol, ethanol, and propanol, respectively. Although from these data
individual values of the electron donor, ��i , and the electron acceptor, �þi , parameters
cannot be obtained, the true value of the acid–base interaction with the solution can be
calculated [28]. This is possible because ��i and �þi are interrelated through the relationship
�ABi ¼ 2ð�þ1 �

�
1 Þ

1=2. The problem was how to evaluate the acid–base interaction for dode-
cane droplets in the alcohol solutions. Two variants were considered [28]. The first, a
closed-packed monolayer of the alcohol molecules on the alkane droplet surface, because
the emulsions were produced by adding water to the alkane solution in the alcohol. The
second, the amount of alcohol molecules on the alkane droplet surface was calculated
from the zeta-potential value, assuming that it totally resulted from the oriented alcohol
dipoles present on the surface in this electrolyte-free system.

The details of the calculations can be found in our paper [28]. In Table 1 there are
listed the calculated free energy of interactions in the alcohol solutions at the minimum
equilibrium distance do as calculated from both variants. Also, the zeta potentials, effec-
tive diameters, and maximum distance between the droplets are shown. Because the Debye
parameter �R was in the range 0.28–3.31, the measured zeta potentials (Fig. 17b), which
were determined with the zetameter from the Smoluchowski equation, were recalculated
using Henry’s equation, and these values are presented in Table 1. Next, because in
ethanol and propanol solutions the changes in zeta potential and effective diameter during
the first two hours were relatively small, they were averaged for the calculations. In the
case of methanol the free energy of interaction was calculated for 5 and 30min and 1 and
2 h-old emulsions.

As seen in Table 1, the extended DLVO gives a dominant interaction for the acid-
base type independently of the variant used for the calculations. The assumption of a
close-packed layer of the alcohol dipoles on the alkane droplet surface (variant 1) gives
 2:5 times higher acid–base interaction than that calculated from the zeta potential
(variant 2). To compare the free energy of interaction for a droplet–solution–droplet in
different alcohol solutions, normalized values of the interactions were calculated (�G131

divided by radius R, Table 1). It can be easily found that the total energy of interaction at
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TABLE 1 Interfacial Parameters for n-Dodecane (0.1 v/v%) in Alcohol Solution (1M) Emulsion at Natural pH

Parameter

Dispersing phase

Propanol Ethanol

Methanol

5 min 30 min 1 h 2 h

pH 6.8 7.0 6.3

Zeta potential (mV) �46.2 �47.1 �60.8 �35.0 �23.8 �1.3

Xmax ð�mÞ 3.9 5.9 6.7 15.6 8.8 26.1

�GLW
131 (kT) �9.6 �10.3 �12.0 �27.9 �15.7 �46.0

�GEL
131 (kT) 340 540 1020 780 74 190

V.1a �GAB
131 (kT) �5160 �17,000 �23,000 �54,000 �30,400 �87,900

V.2 �GAB
131 (kT) �1700 �7800 �8600 �19,900 �11,200 �32,800

�GLW
131 =R (kT/nm) �0.04 �0.03 �0.03 �0.03 �0.03 �0.03

�GEL
131 (kT/nm) 1.63 1.57 2.71 0.90 0.15 0.13

V.1 �GAB
131=R (kT/nm) �23.9 �51.5 �61.5 �62.1 �62.2 �61.4

a V ¼ variant.



minimum equilibrium distance do is negative, because of high negative values of �GAB
131.

Nevertheless, the emulsions were stable for 2 h, except for that in methanol solution (Fig.
17b). This is mainly caused by a large droplet-to-droplet distance (Xmax, Table 1).
Obviously, the larger the droplets (from the same total volume of the alkane) the larger
the maximum distance and the lower is the emulsion stability [28]. The lowest attractive
interactions (apolar Lifshitz–van der Waals and polar acid–base) appear in propanol
solution, and in accordance with the experimental results, this emulsion is the most stable,
even during 1 day (Fig. 17). Note that although in methanol solution the droplet effective
diameter varies much during the first 2 h (Table 1), the normalized apolar �GLW

131 and polar
acid–base �GAB

131 interactions are constant during 2 h.
The changes in total interaction free energy �GTOT

131 in the discussed emulsions as a
function of multiples of do are shown in Fig. 23 for 5min-old emulsions. The calculation
showed [28] that at a distance 50do the total interaction energy is positive: 149, 283, and
214 kT for propanol, ethanol, and methanol, respectively, and the same is true at 100do
(Fig. 23). However, in methanol solution this energy drops down fast and after 1 h it is
only 38.6 kT. The appearance of the positive total interaction energy at a distance less than
the maximum drop–drop distance explains why these diluted emulsions are relatively
stable, even if the assumed models may be considered as debatable.

C. Zeta Potential of n-Alkane Droplets in Alcohol (Protein) Solution

Application of natural or natural origin emulsifiers and/or stabilizers, like proteins, is of
great interest because of the practical use of emulsion systems in many agricultural,
pharmaceutical, and cosmetic products. Many papers have been published on protein
adsorption and behavior at different interfaces, too many to quote all of them here, but
some examples of those more recently published should be mentioned [2, 43–57]. However,
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FIG. 23 Changes in total free energies of interaction as a function of distance expressed in multi-
ples of equilibrium distance do ¼ 0:158 nm. (From Ref. 28.)



many aspects of protein behavior in the adsorbed state are still far from well understood.
In this chapter some results will be presented for n-alkane emulsions in alcohol solution in
which lysozyme or lysine hydrochloride were present. Lysine is an amino acid having the
chemical formula H2NCH2ðCH2Þ3CHðNH2ÞCOOH, for which the pKa of 1-COOH, 1-
NHþ

3 , and 5-NH2 are 2.2, 9.2, and 10.8, respectively [43]. Its i.e.p. occurs at pH 9.72, while
that for lysozyme molecules lies at pH 10.7–11.1 [43, 54]. Lysozyme is one of the best
charactereized proteins. It is a small globular protein (MW 14,603) with 18 amino acid
(cationic) and 12 carboxyl (anionic) residues [57]. Proteins adsorb at various interfaces,
including oil/water, thus stabilizing, for example, food emulsions [52]. The hydrophobic
parts of the molecules tend to the oil phase while at least some polar -NHþ

3 and -COO�

groups are directed toward the water phase. Protein adsorption is considered to be irre-
versible, but small surfactant molecules may desorb them [2, 52]. Obviously, temperature,
pH, and ionic strength may affect the adsorotpion [2]. In the case of globular proteins
(e.g., lysozyme) the adsorbed molecules may possess some transition forms between native
and denaturated [52, 54], among them the so-called ‘‘molten globule’’ which can also exist
in the solution phase [52]. The hen’s egg-white lysozyme has dimensions 4:6 nm
 3:0 nm

3:0 nm and 59% of its surface is apolar [54]. During its adsorption process some struc-
tural rearrangements always take place [54]. Computer images show a tight packing of the
atoms with an average density of 75%, which is much larger than that for water (44%) at
258C and 1013 hPa [54]. The polar and apolar residues are nearly evenly distributed on the
globular compact surface of the protein. From the changes in free energy �G of the
denaturation process as a function of temperature it results that the whole globular protein
molecule could unfold if disruption of an essential part of the molecule took place. At
258C lysozyme exists in solution as a monomer, but dimers and/or higher numbers of
oligomers may also appear [54]. It is a rigid and stable molecule over a broad range of
temperatures (from ambient up to 758C) and pH (2–11) [58]. The adsorption plateau is
reached at 3–4mg/m2 [2, 54] and it is higher at a pH close to its i.e.p. [2]. According to
Haynes and Norde [54] adsorption of globular protein to an apolar surface (polystyrene)
must cause removal or neutralization of the electrical charge between the molecule and the
surface. This may be achieved by ion-pair formation (protein molecule–surface), proto-
nation/deprotonation of the ionizable residual groups, and coadsorption of small ions in
the contact layer. Lateral interactions between the adsorbed molecules may obviously be
attractive or repuslive, depending on the kind and magnitude of the electric charge of the
residues.

Figure 24 shows zeta potentials of n-tetradecane droplets in 1M ethanol as a func-
tion of pH, for the emulsions in which 10�3 M lysine hydrochloride, 4mg/100mL
Lysozyme, or 10�3 M KCl was present. For comparison there are also shown zeta poten-
tials of emulsion in 1M ethanol alone and in pure water [29]. Emulsions in 1M ethanol
were prepared by dissolving 0.1mL of tetradecane in an appropriate volume of ethanol,
then water was added to yield 100-mL mixtures which were next homogenzied in an
ultrasonic bath for 15min. In the case of emulsions prepared in pure water or 10�3M
KCl, they were obtained by mechanical stirring (10,000 r.p.m. for 3min). The emulsion pH
was achieved by adding a suitable volume of concentrated HCl or KOH solution. As is
seen in Fig. 24 the i.e.p. of the droplets (freshly prepared emulsion) in the presence of
lysozyme occurs at pH ’ 9:4. It is shifted by about 1.5 pH unit toward neutral pH value in
comparison with the i.e.p. of the native molecule. The conclusion might be that more
residual -COO� groups are directed toward the water phase in the adsorbed state of the
molecule, as a result of conformational changes upon the adsorption process. In the
absence of lysozyme, the zeta potentials of the tetradecane droplets in 1M ethanol are
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negative up to pH 4.5 and are practically constant within 24 h (Fig. 24, points 3, 4, and 5).
The values deal with the same emulsion sample the pH of which was decreased by sub-
sequent addition of HCl to the already prepared emulsion. Moreover, as will be discussed
later, if the emulsion was prepared by adding water (with dissolved lyzosyme 4mg/100-mL
and the solution obtained by dilution of a stock, more concentrated lysozyme solution,
20mg/100mL) whose pH had been already regulated to 4, negative zeta potentials of the
droplets in 1M ethanol appeared up to 24 h and in the next 24 h the zeta potentials
changed the sign to positive. However, this is not the case in 0.5M ethanol or 0.5 and
1M propanol solutions [27, 30].

In pure water or KCl solutions the potentials are also negative up to pH 3 (Fig. 24,
points 6 and 7), and the changes are parallel to those in alcohol solution. In the pH range
4–9, no effect of KCl on zeta potential appears relative to the values in pure water. Only at
pH 3 and 9.7 are the negative zeta potentials about 20mV lower and higher, respectively.
It is hardly possible to explain this behavior based on these results, except for an essential
increase in the ionic strength at both pH values because of the presence of KCl. Maybe
more interesting is the i.e.p. occurrence in water at about 1.5 pH unit lower than it happens
in the alcohol solution, pH 3 and 4.5, respectively. Assuming water and the alcohol dipoles
to be primarily responsible for the zeta potentials of the droplets, the observed i.e.p. shift
suggests a weaker negative charge originating from the adsorbed and oriented alcohol
dipoles on the droplet surface, and this seems reasonable. Also, in 10�3 M lysine hydro-
chloride the zeta potentials are practically constant, ’ �40� 5mV in the pH range 4–9.5,
and they fall into the values obtained in water and KCl (Fig. 24). This might suggest that
lysine has no effect on the droplet zeta potentials. If the molecules would affect the zeta
potential of the tetradecane droplets, one might expect the i.e.p. occurrence at a pH
somewhere close to 9.72 (lysine i.e.p.). Some effect of the presence of lysine on the zeta
potential was observed, but only in 0.5M ethanol [30]. Finally, it should be noted that the
values presented in Fig. 24 were obtained from the Smoluchowski equation, and in some
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FIG. 24 Zeta potential of n-tetradecane droplets in emulsions (0.1% v/v) as a function of pH: (1) in
1M ethanol þ lysozyme (4mg 100ml�1); (2) in 1M ethanol þ 1mM lysine hydrochloride; (3) in

1M ethanol (5 min after preparation); (4) as (3) after 1 h; (5) as (3) after 24 h; (6) in pure water; (7) in
1mM KCl. (From Ref. 29.)



cases they should be corrected by using Henry’s equation. It would cause an increase in the
values by a factor of 1.005–1.175, depending on the pH and the salt present. The details
can be found in Ref. 29.

Zeta potentials of the emulsion prepared in 1M ethanol, using water whose pH was
regulated to 4 or 11 and at which the lysozyme solution was added (4mg/100-mL) from its
stock solution (20mg/100mL), are shown Fig. 25a. In this figure there are also plotted zeta
potentials in analogous emulsions, but lysozyme free. As is seen, even at pH 4 the zeta
potentials are negative during the first 24 h, although they are reduced in relation to those
without lysozyme. Also, at pH 11 the negative zeta potentials in solutions with lysozyme
are lower than those in lysozyme-free solutions. Figure 25b shows effective diameters of
the discussed emulsions. The presence of lysozyme at pH 4 permits much more stable
droplets than in the alcohol alone and the droplets are on average 120 nm smaller, whereas
at natural pH 6.8 and 11 lysozyme rather destabilizies the emulsion (Fig. 25b). The results
in Fig. 25 show again that the magnitude of the zeta potential is not a principal factor in
the stability of these emulsions. It is worth paying attention to the positive zeta potential at
pH 4 in 48-h-old emulsion. It indicates that the structure formation process of the
adsorbed lysozyme is slow. If first the emulsion was prepared and next its pH was regu-
lated, positive zeta potentials were obtained up to pH 9 for freshly prepared emulsion (Fig.
24). In investigations of the emulsion properties it should be remembered that protein
adsorption and conformational processes occurring at the oil/alcohol solution interface
are very slow. It may happen that emulsions prepared in similar conditions display dif-
ferent zeta potentials. Burns et al. [56] investigated the adsorption of lysozyme on plasma-
polymerized 1,2-diaminocylcohexane on polystyrene. The surface changed its acid-to-base
properties with time, probably as a result of the reaction between the surface amino groups
and CO2 from the atmosphere, resulting in formation of carbamic acid [56]. After 64 days
the surface was almost neutral with an acid/base ratio of 1.02. They found decreasing
adsorption of lysozyme both at pH 5 and 11 with duration of the experiment. Although at
pH 5 both the surface and lyzosyme were positively charged, the adsorption was higher at
this pH than at pH 11, where the surface was negatively charged and the molecule was
close to the i.e.p. The authors [56] concluded that lysozyme was ‘‘pH insensitive’’ and had
a strong tendency to adsorb on positively charged surfaces. They quoted the reuslts of
similar behavior on different surfaces as obtained by other authors. This of course does
not explain the mechanism of such a behavior. In our opinion this may be due to hydro-
gen-bonding formation between the residual molecules and the surface groups, which are
stronger than the electrostatic repulsion between not too many charged groups on the
surface and protein molecules. On the other hand, a typically electrostatic mechanism of
protein adsorption (serum albumin and others) was suggested by Kato et al. [55] on ionic
surfaces.

The results in Fig. 25a indicate that positively charged lysozyme molecules in a
solution probably adsorb very slowly on an apolar oil surface, especially if alcohol mole-
cules are already present on it. It took 2 days to reverse the zeta-potential sign, probably
by removing the ethanol dipoles or creating hydrogen bonds with them (the net effect is
the same). Dickinson and Matsumura [52] recorded changes in the interfacial tension in n-
tetradecane/water (from 52 to ’ 28mN/m) during up to 2 h in the presence of 
-lactalbu-
min (10�4 wt%) at pH 7.5 and 408C. This throws some light on the possibility of differ-
ently charged n-alkane droplets at the same pH in freshly prepared emulsion, depending
on the method of preparation (Figs 24 and 25a); however, this needs further investigation.
According to these authors [52] molecular mechanisms contributing to the free energy of
the adsorption process are as follows: dehydration of the hydrophobic parts of the mole-
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FIG. 25 (a) Zeta potentials and (b) effective diameter of n-tetradecane droplets in 1M etha-

nol þ 4mg/100mL lysozyme solution in pH 4, 6.8 (natural), and 11 for different times after emul-
sion preparation. (From Ref. 30.)



cule, its unfolding at the surface, charge redistribution, changes in pK on adsorption, and
restructuring of van der Waals’ interactions. The principal driving force for protein
adsorption is removal of its hydrophobic amino acid chains from polar environment,
i.e., bulk water phase [52]. Dilution of the water phase does not cause desorption of
protein (irreversible adsorption). However, there are always small areas among protein
train segments (which occupy only about one-third of the surface area) which are acces-
sible to small surfactant molecules, such as alcohols [51, 52]. Ethanol already acts as a
denaturating agent at 208C [51, 59]. Note, however, that 1M ethanol is only ’ 5wt%
solution. Obviously, pH and temperature are also factors affecting the native state of the
protein, causing a transition to ‘‘molten globule’’ structure. In general, ‘‘protein adsorp-
tion is characterized by time dependence in protein conformational structure’’ [52]. From
the above cited conclusions and statements it results that much is unclear and debatable as
regards protein behavior at the oil/water (alcohol) interface. Also, our results lead to the
same conclusion. It should be mentioned here that in other series of experiments, positive
zeta potentials (not presented here) of tetradecane emulsion at natural pH and at pH 4
were obtained in 1M ethanol, despite the fact that they were prepared in the same way as
those which exhibited the negative values. More careful investigations are being conducted
to clarify this point.

The effect of ethanol concentration on lyzosyme adsorption on a tetradecane
droplet surface as characterized by zeta potential is shown in Fig. 26, where the zeta
potentials are presented for the emulsion prepared in 0.5M ethanol, while Fig. 25a
shows the potentials in 1M ethanol. At this lower concentration, at pH 4, the zeta
potentials oscillate around zero (�3mV) on the time scale (up to 2 days). Similar
oscillations appear at pH 6.8; however, within a larger range (�10mV). These emulsions
were unstable, while in the absence of lysozyme they were stable, especially at pH 4 [30].
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FIG. 26 Zeta potentials of n-tetradecane droplets in 0.5M ethanol þ 4mg/100mL lysozyme solu-
tion in pH 4, 6.8 (natural), and 11 for different times after the emulsion preparation. (From Ref. 30.)



Using n-propanol instead of ethanol, stable emulsions were obtained [27]. Even in 0.1M
propanol solution the emulsion was stable during 2 days at pH 4, 6.8, and 11, having
practically the same average diameter of 290 nm. Without lysozyme, however, the emul-
sion was stable only at pH 4. These results are presented in Fig. 27a, and Fig. 27b shows
the corresponding zeta potentials. As can be seen, the zeta potentials in propanol were
positive at pH 4 and 6.8. At pH 11 the potentials were negative and very stable during 2
days. If lysozyme was not present in the emulsion, its zeta potential was negative at the
pH values discussed and in 0.1, 0.5, and 1M propanol solution, similarly to what it was
in 0.5 and 1M ethanol solutions (Fig. 25a). As an example, Fig. 28a and 28b show the
effective diameters and zeta potentials, respectively, for tetradecane emulsion at natural
pH and in 0.1, 0,5 and 1M propanol. These diluted emulsions (0.1 v/v%) were stable
during 2 days (without any shaking). The effective diameter increased with increasing
propanol concentration, especially in 1M solution (Fig. 28a) and it was accompanied by
decreasing zeta potentials (Fig. 28b). The emulsion was still stable (Fig. 28a), although
in 1M solution the zeta potential dropped very soon to 10–12mV after preparation. It
may be concluded that the droplets are being stabilized by other than electrostatic
repulsive forces. Hydrogen bonding interactions between the residues of the adsorbed
protein molecules and water (alcohol) molecules in the bulk phase may play here an
essential role [26–30]. Actually, the importance of hydrogen bonds was discussed above
for emulsions in the alcohol situations alone (Table 1).

The zeta-potential changes point to a competitive adsorption taking place between
the alcohol dipoles and protein molecules. Alcohol concentration and its polar interaction
(Lewis acid–base interaction) [42] seem to determine protein adsorption, followed by
restructuring of the molecule, and in consequence the zeta potential of the alkane droplet.
Similar competition between ethanol (0.5 and 1M) and lysine (10�3 M) molecules was
observed via the zeta-potential changes in tetradecane droplets [30]. Relatively strong
acidic -COOH groups (pKa ¼ 2:2) caused a clearly visible decrease in the negative zeta
potentials of the emulsion only in 0.5M ethanol (Fig. 29), while in 1M ethanol the effect
was not so clearly visible (see Fig. 24). The 10�3 M lysine solution in most investigated
systems destabilized the emulsion, except for one in 0.5M ethanol at natural pH, where
the emulsion was much more stable than in lysine-free emulsion [30]. This amino acid
could be expected to increase the emulsion stability, but probably its molecular structure
with polar residues on both sides of the molecule hinders its adsorption on the apolar
alkane surface. On the other hand, hydrogen bonding between the adsorbed alcohol
molecules, which are weak electron donors, would be formed if the lysine molecule had
a high electron acceptor (proton donor) ability, which does not seem to be the case. The
behavior also suggests that the electrostatic mechanism of lysine adsorption does not play
any important role here either. At pH 4 and 6.8 the lysine molecule is positively charged
[43] and alkane droplets show a negative zeta potential in alcohol solution. This supports
the conclusion that the zeta potential of n-alkane droplets does not originate from excess
ionic charge adsorbed but rather oriented dipoles.

Finally, the temperature effect on the emulsion zeta potential in the presence of
lysozyme was investigated. The impact of both parameters, ethanol concentration (0.5
and 1M) and temperature at natural pH, on the zeta potentials of tetradecane are plotted
in Figs 30 and 31. In both solutions (0.5 and 1M) the temperature increase from 208 to
308C causes a reversal of zeta potential from negative to positive. Further temperature
increase does not practically affect the zeta-potential value. At these higher temperatures,
zeta potentials are practically the same in both ethanol solutions (0.5 and 1M) and
relatively stable. As was mentioned above, in one series positive zeta potentials were
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already observed at 208C and they were in the range of the values at 308 and 508C. High
oscillations of zeta potential (�10 to þ10mV) in 0.5M ethanol occurred together with
large changes in the droplet size of the emulsion (4–10 mm) (Fig. 32). This must be the
consequence of a coalescence process taking place in the emulsion and resulting in the
adsorption/desorption of lysozyme, thus leading to the observed zeta-potential sign rever-
sal. The temperature increase caused stabilization of the droplets at their drastically smal-
ler effective diameter 400–600 nm (Fig. 32). Obviously, the temperature increase affects the
protein adsorption kinetics and its structure (see above, e.g., the molten globule concept),
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FIG. 27 (a) Effective diameter and (b) zeta potential of n-tetradecane/n-propanol (0.1M)/lysozyme
(4mg/100mL) and n-tetradecane/water/n-propanol (0.1M) emulsions versus pH. (From Ref. 27.)



leading to its unfolding (denaturation ) [2, 52, 59] and finally a faster establishment of the
adsorption equilibrium.

IV. SUMMARY

Emulsion systems are very interesting for electrokinetic studies both for theoretical and
practical purposes. Although in true thermodynamic equilibrium conditions no electric
potential drop should be observed across the oil/aqueous solution interface, in most
emulsion systems including those in pure water or simple inorganic electrolyte solution,
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FIG. 28 (a) Effective diameter and (b) zeta potential of n-tetradecane/n-propanol/lysozyme (4mg/
100mL) emulsion at pH 6.8 (natural) versus n-propanol concentration in water. (From Ref. 27.)
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FIG. 29 Zeta potentials of n-tetradecane droplets in (0.5M ethanol and in 0.5M ethanol þ 1mM

lysine monohydrochloride) solutions in pH 4, 6.8 (natural), and 11 for different times after emulsion
preparation. (From Ref. 30.)

FIG. 30 Zeta potentials of n-tetradecane droplets in 0.5M ethanol þ 4mg/100mL lysozyme at
208, 308, and 508C as a function of time.



electrokinetic phenomena are observed. This is due to some metastable states inhibiting
thermodynamic equilibrium as well as to the nonionic origin of the interfacial potential,
which is most probably due to permanent dipoles, like water or alcohol, immobilized and
preferentially oriented with their negative poles towards the water phase. Therefore, prac-
tically all reported experimental results show negative zeta potentials of an oil droplet in
water or alcohol solution in a broad pH range, say 4–11. Small inorganic ions, especially
multivalent cations (La3þ or Al3þ), affect the zeta potential and even cause its reversal to
positive values at increasing concentration. The mechanism of the zeta-potential forma-
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FIG. 31 Zeta potentials of n-tetradecane droplets in 1M ethanol þ 4mg/100mL lysozyme at 208,
308, and 508C as a function of time.

FIG. 32 Effective diameter of n-tetradecane droplets in 0.5M ethanol þ 4mg/100mL lysozyme at

208, 308, and 508C as a function of time.



tion probably relies on ‘‘attachment’’ of ions to the first structured and immobilized layer
of water (alcohol) dipoles. In another concept, it is due to preferential (competitive)
‘‘solubility’’ of ions in the vicinal layer of water. The present authors believe that hydro-
gen-bonding interactions between water and alcohol dipoles play an important role in
stabilizing/destabilizing the emulsion systems. In fact, the model calculation showed that
this type of interaction predominates in comparison with the attractive London dispersion
and repuslive electrostatic interactions.

The intriguing electrokinetic behavior of oil droplets in alcohol solution in the pre-
sence of protein (lysozyme) needs more experiments to clarify the observed, sometimes
unexpected, results. It is believed that in such very complex systems, Lewis acid–base
interactions (electron donor and electron acceptor, hydrogen bonding) play an important
role. The mechanism of zeta-potential generation actually consists of two competing
processes, as in adsorption/desorption of alcohol and protein molecules, hydrogen bond
formation between the molecules, conformational changes in the adsorbed protein mole-
cules (unfolding, denaturation), ionization of amino and carboxyl residues, and others.
These processes, first of all depend on time, but also on the emulsion temperature, pH
(ionic strength), and the kind and concentration of alcohol solution. To obtain more
experimetnal evidence on the effect of protein on the electrokinetic behavior of emulsions
and their stability, experiments are under way in which other proteins (bovine serum
albumin, 
-lactalbumin, and �-casein) are used.
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Electrophoretic Studies of Liposomes
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I. INTRODUCTION

Liposomes or lipid vesicles are spherical, self-closed structures composed of curved lipid
bilayers, which entrap part of the solvent, in which they freely float, into their interior [1,
2]. As shown in Fig. 1, they may consist of one or several concentric membranes and hence
are referred to as either unilamellar or multilamellar vesicles. Their sizes range from 20 nm
for small unilamellar vesicles (SUV) up to several micrometers for large unilamellar vesi-
cles (LUV) or multilamellar vesicles (MLV). The thickness of a single lipid bilayer mem-
brane is about 4 nm.

Liposomes are interesting structures that have rapidly come into widespread use as
models of biological membranes on the one hand and as delivery systems, where encapsula-
tion and protection of hydrophilic and lipophilic substances are required, on the other [3–8].

In membrane research, it is known that electrostatic phenomena play a crucial role in
many biological processes taking place at the membrane surface. For example, they bring
about a change in the value of the pH at the surface, resulting in a modulation of the
enzyme activity near the membrane surface. Also, electrostatic interactions can lead to an
accumulation of charged species near the membrane surface, which then acts as a catalytic
site. In addition, the electrostatic potential is important for many, if not all, types of
interactions with membranes. For example, calcium ion binding to membranes has a
major role in the initiation of many processes including pharmacological action, exocy-
tosis, messengers, and the binding of substrates with receptors. Other examples relate to
the binding of charged drugs to membranes and interactions with surfaces occurring
during, for example, virus fusion or phagocytosis. Moreover, a change in the membrane
surface potential can affect adhesion between cells as well as fusion of cell membranes
through the contribution of the electrostatic force to the total adhesion process.

Investigating the applicability of liposomes as drug delivery systems, the control and
prediction of the liposomal stability are important since the dispersions have to be stored for
a long time after preparation. According to classical DLVO theory, the electrostatic poten-
tial is of paramount importance for the colloidal stability of these liposomal suspensions [9–
11]. Besides the stability, the electrostatic potential will also affect the interaction of the
liposomes with membranes, drugs, or other vesicles. Thus, in vivo methods have shown
that the surface charge density exerts an influence over the distribution of liposomes
[12,13]. As a further consequence, measuring and controlling the electrostatic properties of
lipid vesicles is crucial for the basic understanding and practical applications of liposomes.
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Historically, numerous electrophoretic studies on liposomal dispersions were done
by microelectrophoresis. Nowadays, laser Doppler velocimetry, based on dynamic laser
light scattering by the lipid suspensions, is probably the best tool for a fast and/or routine
determination of the electrostatic potential of liposomes.

This chapter will start with a thorough discussion of the effects of various electro-
lytes on the electrophoretic properties of liposomes. Whenever possible, mathematical
models will be presented, allowing us to describe experimental data. Hereby, the effect
of experimental conditions, such as temperature and particle size, will be highlighted.
Subsequently, it will be shown that electrophoretic experiments may provide useful infor-
mation on the encapsulation properties of small molecular weight organic molecules.
Finally, the interaction with polymeric substances will be reviewed. This interaction
may be due to electrostatic or hydrophobic forces, which applies for proteins and poly-
nucleotides, or may involve chemical bonding to the liposomal surface; polyethylenegly-
col-coated liposomes, which are also referred to as Stealth liposomes [14,15] are typical
examples of the latter category.

II. LIPOSOMES IN INDIFFERENT ELECTROLYTES

It is generally known that the zeta potential (�) of dispersed particles is not solely deter-
mined by the characteristics of the surface of the particles, but also depends on the
composition and content of the dispersion liquid. Thus, numerous authors have investi-
gated the effect of the electrolyte concentration on the zeta potential of liposomal disper-
sions. A typical example is shown in Fig. 2, which demonstrates the effect of the
concentration of NaCl, NaBr, and Na2SO4 on the zeta potential of liposomes containing
both zwitterionic phosphatidylcholine (PC)* and anionic phosphatidic acid (PA) at pH
7.2; the PC:PA molar ratio varied from 10:0 to 8:2. As expected from the classical elec-
trical double layer (EDL) theory developed by Gouy and Chapman, the absolute value of
the zeta potential decreases as the electrolyte concentration increases. This behavior can be
explained by assuming that either the surface potential  o or the surface charge density �o

remain constant.
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FIG. 1 Schematic representation of different types of liposomes; both multilamellar (MLV) and
large (LUV) as well as small unilamellar vesicles (SUV) are shown.

*The chemical structures of some phospholipids are shown in Fig. 3.



A. Constant Surface Potential Model

Assuming that the surface potential remains constant as the electrolyte concentration
increases, the absolute value of the zeta potential, i.e., the potential at a limited distance
from the surface, decreases because the thickness of the double layer decreases.
Mathematically, the zeta potential may be calculated from the Stern potential  S using
the Eversole and Boardman equation. The latter is based on the Gouy–Chapman theory,
which describes the variation of the electrostatic potential  in the aqueous phase as a
function of the distance x from the surface:

ln tanh
Ze�

4kT

� �� �
¼ ln tanh

Ze S

4kT

� �� �
� ��xsp ð1Þ

with

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e2CNAZ

2

"oDkT

s
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FIG. 2 Zeta potential of mixed PC:PA liposomes as a function of log concentration of either NaCl,
NaBr, or Na2SO4. (From Ref. 10.)



Here, Z is the valency of the ion (a symmetric Z-valent electrolyte is assumed as
dispersion medium). Equation (1) allows fitting of zeta-potential values at different
electrolyte concentrations, and hence at different values of the Debye–Hückel para-
meter, to a linear model: the thickness of the plane of shear �xsp follows from the
slope, and the surface potential may be deduced from the intercept. According to this
model, the surface potential remains constant when the electrolyte concentration is
changed.

The Gouy equation indicates the relationship between the overall charge density in
the Stern plane �S, the Stern potential  S, and the electrolyte concentration C. Here, the
overall charge density in the Stern plane, which will be referred to as the surface charge
density in further discussion, is the summation of the original surface charge density �o

(i.e., without adsorbed ions) and the charge density of adsorbed ions �ads.

sinh
Ze S

2kT

� �
¼

A�Sffiffiffiffi
C

p ð2Þ

with

A ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8NA"kT
p

From Eq. (2) it follows that the charge density is proportional to the square root of
the electrolyte concentration if the surface potential remains constant. Hence, a roughly
threefold increase in surface charge density is expected as the salt concentration is
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FIG. 3 Chemical structures of some phospholipids.



increased by a factor of 10. Carrión et al. [10] analyzed their experimental data (Fig. 2)
obtained for mixed PC/PA liposomes, and the parameters of the curve-fitting procedure
indicated that the plane of shear was located at least 0.36 and at most 2.1 nm from the
Stern layer. At 5% anionic lipid content, a (constant) surface potential of about �25 mV
was obtained for each of the three electrolytes studied. Based on the Gouy–Chapman
theory it follows that this surface potential corresponds to one exchange site per 85 nm2

at 1 mM electrolyte and to one negative charge per 7 nm2 at 150 mM. Based on the
composition, however, one negative charge should occupy 12 nm2 if the molecular pro-
jected areas of both PC and PA are assumed to be 0.6 nm2. Hence, the surface charge
density values derived from the curve-fitting procedure seem unrealistic. Similar deriva-
tions also apply for the estimation of the position of the plane of shear. Comparing
experimentally determined values of both the zeta potential and the surface potential
(obtained by fluorescent surface probes), Eisenberg et al. [16] found that the plane of
shear is located at about 0.2 nm from the Stern plane. Hence, the constant surface poten-
tial model seems to be physically unrealistic. Its main advantage is that the influence of the
electrolyte concentration on the zeta potential can be easily described using only two
parameters.

B. Constant Surface Charge Density

According to the double-layer theory, monovalent metal cations are electrostatically
attracted toward a negatively charged surface and thus reduce the membrane surface
potential of constant surface charge density colloidal particles. This so-called screening
effect is purely electrostatic in nature and hence not specific. It may be adequately
described by the Gouy–Chapman EDL theory.

1. Surface Charge Density

The net electrical charge density �o on a liposomal surface is a function of both the lipid
molecular projected area pa1 and degree of ionization �:

�o ¼ �
�e

pa1

¼ �eN�
bs ð3Þ

This is sometimes also referred to as the maximum surface charge density because no
counterion binding is taken into account.

The degree of dissociation is assumed to be 100% for acidic phospholipids such as
PA, phosphatidyglycerol (PG), phosphatidylserine (PS), and phosphatidylinositol (PI),
and zero for zwitterionic phospholipids such as PC and phosphatidylethanolamine (PE).
For the sake of completeness, it has to be mentioned that numerous authors have observed
nonzero potentials for PC liposomes over a wide range of ionic strengths, despite the fact
that PC is zwitterionic over a wide pH range. According to Cevc [17], the phospholipid
projected area is typically 0.40–0.55 nm2 in the gel phase and 0.60–0.80 nm2 in the liquid
crystalline phase. For vesicles made entirely of singly charged phospholipids the surface
charge density is thus expected to be between �0:29 and �0:40 C=m2 below the chain
melting phase transition temperature and between �0:20 and �0:27 C=m2 above the
phase-transition temperature. The overall charge density on a typical biological membrane
is not high, however: it seldom exceeds �0:05 C=m2. In modeling the electrokinetic beha-
vior of the liposomes, McLaughlin and coworkers [16,18–20] assumed that the projected
area of the dialkyl phospholipids used (PC and PS) was 0.7 nm2, whereas Egorova and
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coworkers [21–23] usually considered the molecular projected area of anionic phospholi-
pids, such as PS and PG, to be 0.6 nm2.

Considering mixed phospholipids, the degree of ionization is approximated by the
mass fraction of anionic phospholipids. Actually, this simplification assumes that both
acidic and neutral phospholipids have the same molar mass, as well as the same projected
area. In addition, this simple rule is only valid provided that the composition of the surface
layer is equal to the overall composition, i.e. preferential accumulation or depletion in the
surface layer is not taken into account. In liposomes containing PC and stearylamine
(STE), though, the latter seems to be preferentially located in the outer monolayer. In
addition, part of this monoalkyl surfactant exists in micellar form. It follows that, when a
predetermined percentage of positive charge is required, it is evident that STE containing
PC liposomes do not ensure the presence of the theoretical charge in the vesicle [24].
Incorporation of PA, on the other hand, seems to yield electrophoretic mobilities that
are in line with theoretical predictions.

2. Surface Potential and Zeta Potential

When the electrolyte ions do not adsorb on to the surface, the Gouy equation, Eq. (2),
adequately describes the surface potential as a function of the electrolyte concentration.

The zeta potential is related to the surface potential by the Eversole and Boardman
equation, Eq. (1), assuming a specified position of the plane of shear. Most researchers
assume that the plane of shear is at 0.2 nm from the surface. The latter assumption was
corroborated by independent measurements of the surface potential using fluorescent
probes [16]. According to Cevc [17], the uncertainty associated with the position of the
plane of shear is the main pitfall of surface-potential estimations from electrophoretic
studies. In fact, probably the actual location may change with the membrane or solvent
composition and with temperature. Combining Eqs (1), (2), and (3), Eisenberg et al. [16]
obtained very nice fits of the predicted zeta potentials to the experimentally determined
values considering vesicles formed from mixtures of zwitterionic PC and anionic PS in 3.1,
15, and 105 mM tetramethylammonium chloride (TMACl), respectively. In Fig. 4 the
PS:PC ratio is expressed as the number of PS molecules per unit surface area (N�

bs). In
the theoretical analysis, the molecular projected area of both phospholipids was assumed
to be 0.7 nm2, whereas the plane of shear was supposed to be located 0.2 nm from the
surface of the liposomes.

According to the Gouy equation, a linear relationship should be found between the
(hyperbolic sine function of the) surface potential and the inverse of the square root of the
electrolyte concentration. From the slope of this linearized equation the surface charge
density may be calculated.

III. COUNTERION BINDING

Biological membranes are usually exposed to alkaline and alkaline earth cations. In
numerous experiments, it was observed that the surface potential of a phospholipid bilayer
membrane exposed to sodium, potassium, calcium, or magnesium ions is not as negative
as predicted by Gouy–Chapman theory; the latter assumes that the surface charge density
ð�oÞ is solely determined by the surface concentration of negative lipids ðN�

bsÞ. The parsi-
monious interpretation is that the counterions are bound to the surface as well as exerting
a screening effect. Thus, calcium and other alkaline earth cations change the electrostatic
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potential adjacent to negatively charged bilayer membranes both by accumulating in the
aqueous diffuse double layer adjacent to the membrane (as described by Gouy–Chapman
theory) and by adsorbing to the phospholipids. Similarly, metal cations are found to
(partly) neutralize the negative surface potential of membranes formed from acidic lipids
by binding to the ionized phosphate groups and/or carboyxl groups of these lipids.

The Gouy–Chapman theory also predicts that all monovalent cations should exert
identical effects on the surface potential of bilayer membranes containing negative lipids.
However, Fig. 5 reveals that the magnitude of the zeta potential of multilamellar PS
liposomes in 0.1 M chloride solutions depends on the nature of the cation; the electrolyte
solutions were buffered to pH 7.5 with 3-(N-morpholino)propanesulfonic acid (MOPS)
with a molar concentration 100 times lower than that of the monovalent salt. Figure 5
demonstrates that the zeta potential of PS vesicles in 0.1 M NaCl and 0.1 M TMACl is
�62 and �91 mV, respectively. As the type of salt influences the value of the zeta potential,
the simple electrolyte screening effect, which is a purely physical effect, is not sufficient to
model the experimental data. Hence, the authors concluded that monovalent cations
adhere to the surface of negatively charged liposomes.

Ion binding evokes structural changes both at the level of single molecules and the
whole membranes, thus largely affecting membrane properties. Lipid headgroups with
bound ions, for example, may turn out of the surface plane if the complex is sufficiently
hydrophilic and charged, as observed by phosphorus nuclear magnetic resonance [25]. Ion
binding, furthermore, affects the membrane phase-transition temperature. The salt-
induced phase temperature shift is in most cases towards higher temperatures [26]. In
diluted electrolytes, the magnitude of the shift increases with the ion valency in the
sequence La3þ

� Ca2þ > Cd2þ > Co2þ
� Csþ > Rbþ > Kþ

� Naþ. Moreover, the per-
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FIG. 4 Zeta potentials of mixed PC:PS liposomes in either 3.1, 15, or 105 mM TMACl at 258C. The
15 and 105 mM TMACl electrolyte also included 1 mM MOPS buffer (pH 7.5) and 1 mM EDTA as
the TMAþ salt, whereas the 3.1 mM TMACl electrolyte also contained 0.1 mM MOPS and 0.5 mM

EDTA. Solid lines are the predictions of the Gouy–Chapman theory, assuming that the plane of
shear is 0.2 nm from the surface of the membrane. (From Ref. 16.)



meability of membranes with bound ions differs from the leakiness of the corresponding
virgin membranes in dilute salt solution. Polyvalent ions may induce severe membrane
perturbations and may even release the content of the membrane vesicles, probably by
inducing membrane dehydration and lateral phase separation [27].

A. Monovalent Ions

Eisenberg et al. [16] demonstrated that the electrostatic potential at the surface of a
membrane exposed to alkali metal cations could be satisfactorily described by assuming
that the simplest form of the diffuse double layer theory is valid and that some specific
adsorption of the alkali metal cations also occurs:

ðPL�
Þs þ ðMezþ

Þs ! ðPL � Me
ðz�1Þþ

Þs

Kint ¼
ðPL � Meðz�1Þþ

Þs

ðPL�Þs ðMezþÞs

ð4Þ

The equilibrium constant Kint of this adsorption reaction is referred to as the intrinsic
binding constant. Here, PL� denotes the phospholipid site, Mezþ is a cation of valency
þZ, and the subscript s refers to surface concentration. The concentration of counterions
of valency Z in the aqueous phase at the membrane solution interface Cs is related to the
bulk concentration C through the Boltzmann equation:
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FIG. 5 Zeta potential of PS liposomes in 100 mM chloride solutions of Liþ, Naþ, NHþ
4 , Kþ, Rbþ,

Csþ, tetraethylamine (TEAþ), and tetramethylamine (TMAþ) at 258C. The solutions also contained

0.1 mM EDTA as well as 1 mM Tris buffer (pH 7.5). Values for the intrinsic binding constant K
derived from Gouy–Chapman–Stern theory are included in the graph. (From Ref. 16.)



Cs ¼ C exp �
Ze S

kT

� �
ð5Þ

In general, counterions adsorb on the surface of liposomes giving rise to a Stern layer
so that the double layer must be described by an extended version of the Gouy–Chapman
theory, which is referred to as the Gouy–Chapman–Stern theory. Herein, ion adsorption
in the Stern layer is represented by a Langmuirian isotherm. Assuming a 1/1 binding
stoichiometry of monovalent cations to anionic lipids, it follows that the surface charge
will approach zero when all surface sites are occupied:

�S ¼ �o � eðPL � Me0þ
Þs ¼ �o � �o

KintCs

1 þ KintCs

¼
�o

1 þ KintCs

ð6Þ

In general, the change in surface charge density due to adsorption of an ion of
valency Z at a bulk concentration C is given by the Stern equation, which is an extension
of the classical Langmuir adsorption isotherm:

�s ¼ �o � ZeNbs

KappC

1 þ KappC
ð7Þ

with Nbs representing the number of binding sites per unit area and Kapp the apparent
binding constant of the cation–phospholipid complex. The latter constant depends on the
electrostatic potential in the aqueous phase adjacent to the surface of the membrane. The
intrinsic constant Kint takes this concentrating effect into account and should be indepen-
dent of the surface potential. As KappC equals KintCs, the relationship between the appar-
ent and the intrinsic binding constant may be deduced from Eq. (5):

Kint ¼ Kapp exp
Ze S

kT

� �
ð8Þ

In Fig. 5, the zeta potential of multilamellar PS vesicles, formed in 0.1 M chloride
solutions of various monovalent cations, is shown. Based on the Gouy–Chapman–Stern
theory, Eisenberg et al. [16] concluded from these data that, except for TMACl, cation
binding always occurs, thus leading to a smaller (absolute) value of the zeta potential than
expected based on the simple Gouy–Chapman theory. As indicated in Fig. 5, the intrinsic
association constants deduced for the adsorption of the alkali metal cations to PS
decreased in the lyotropic sequence Liþ > Naþ > Kþ > Rbþ > Csþ. Graham et al. [28]
derived similar values for the 1/1 binding constant of Naþ and TMAþ from surface
potential measurements on monolayers.

In a second series of experiments, the surface charge density was varied by mixing
anionic PS with zwitterionic PC in PC/PS ratios from 40/1 to 1/1. In this case too, a very
good fit of the Gouy–Chapman–Stern model to the experimental data obtained at differ-
ent concentrations of NaCl was observed, assuming the plane of shear to be at about
0.2 nm from the surface of the membrane. For the sake of completeness, it should be
mentioned that electrokinetic experiments as such do not allow the determination of the
value of the position of the plane of shear. In fact, Eisenberg et al. [16] mention that very
good fits to the experimental data of PC/PS liposomes in NaCl may be obtained by
different combinations of the intrinsic binding constant and the position of the plane of
shear, such as 0.6 M�1 and 0.2 nm, 1.5 M�1 and 0.1 nm, as well as 3 M�1 and 0.0 nm. Thus,
independent information is required, which may be obtained from measurements made
with a fluorescent probe such as 2-(p-toluidinyl)naphthalenesulfonate (TNS), which
responds to the potential at the membrane–solution interface.
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McLaughlin [20] demonstrated that the zeta potential of mixtures of the zwitterionic
PC with either anionic or cationic lipids in both 0.01 and 0.1 M NaCl containing 0–100%
of charged lipids could be very well described by the Gouy–Chapman–Stern theory if the
intrinsic association constant of counterions was assumed to be 1 M�1 (coions are assumed
not to bind) and the plane of shear was 0.2 nm from the liposomal surface.

For the sake of completeness, it has to be mentioned that Cevc [17], as well as
McLaughlin [20], stated that the Gouy–Chapman–Stern model is actually too simplistic.
Thus, the relative permittivity and polarity in the interfacial region are assumed to remain
constant and equal to the bulk characteristics. In reality, however, both characteristics
vary smoothly between the values for the membrane interior and for the bulk solution.
The effective dielectric constant can, therefore, vary between 2 and 78. Nevertheless, for
most liposomal dispersions, the Gouy–Chapman–Stern theory can describe the experi-
mental observations very accurately, despite the fact that it dramatically oversimplifies
the reality.

In the above-mentioned studies concerning the effects of the electrolyte concentra-
tion on the surface properties of (partly) anionic liposomes, only cation adsorption was
taken into account. For purely zwitterionic PC dispersions, it is generally accepted that
inorganic monovalent cations normally do not bind to the liposomal surface, with the
exception of Liþ. On the other hand, Tatulian [29] observed large differences in the effect
of a range of potassium salts on the electrophoretic mobility of dimyristoyl-PC liposomes,
which was explained from differences in the affinity of the anions for the liposomal sur-
face. From his experimental results, as represented in Fig. 6, Tatulian [29] deduced that
the affinity for the PC liposomal surface seemed to follow the sequence:
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FIG. 6 Electrophoretic mobility of DMPC liposomes in 10 mM potassium salt solution (& KBr;

* KCl; * KNO3; & KSCN; 
 KI; ~ KClO4; ~ K2SO4) and 5 mM Tris–HCl buffer (pH 7.4) as
a function of the temperature. (From Ref. 29.)



ClO�
4 > I� > SCN� > Br� > NO�

3 > Cl� � SO2�
4 . This statement was supported by

Akeson et al. [30]; comparing the electrophoretic mobility of PC liposomes in both 0.12
M KNO3 and 0.12 M KCl, he also observed that NO�

3 ions were binding more strongly
than Cl� ions to PC vesicles and hence gave rise to a more negative zeta potential.

B. Divalent Ions

Many fundamental studies have investigated the properties of PS liposomes in the pre-
sence of Ca2þ ions. In these model studies, PS is preferred as it is the most abundant
anionic phospholipid in natural membranes. The huge interest in the effects of Ca2þ ions
originates from the fact that this divalent ion is known to be important in many physio-
logical processes. Besides, calcium can induce phase transitions and separation of the lipid
components or aggregation and fusion of membranes.

Divalent transition elements always bind better than alkali earth elements: divalent
ions normally bind to charged membranes, whereas monovalent ions can but need not
always do so. For divalent ions, surface charge neutralization as well as charge reversal are
frequently observed.

As opposed to all inorganic divalent cations, ethane-bis(trimethylammonium), a
divalent organic cation, does not adsorb specifically to negatively charged bilayer mem-
branes. A possible explanation may be found in the fact that this compound actually
consists of two separate monovalent quaternary ammonium sites: one single dimethonium
ion is hence very similar to two individual tetramethylammonium ions.

The intrinsic 1/1 binding constant of inorganic divalent cations with anionic phos-
pholipid dispersions may be determined from the concentration at which the vesicles
reverse charge and become positive. Two approaches have been proposed using either
the charge reversal concentration as such or the slope of the zeta potential versus electro-
lyte concentration at the charge reversal concentration.

1. Charge Reversal Concentration

In the first approach, the intrinsic association constant is equal to the reciprocal of the
divalent cation concentration at which the mobility of anionic phospholipid containing
liposomes reverses sign. This follows from the definition of the intrinsic binding constant,
Eq. (4), for divalent counterions:

Kint ¼
ðPL � MeþÞs
ðPL�ÞsðMe2þÞs

ð4aÞ

At the charge reversal concentration, the number of (negatively charged) free bind-
ing sites is exactly equal to the number of (positively charged) occupied binding sites.
Moreover, the electrolyte concentration at the surface is exactly equal to the bulk con-
centration because electrostatic effects are absent. Hence, in this special case, the intrinsic
binding constant is equal to the apparent binding constant.

Although the binding constant of divalent cation–anionic phospholipid complexes
may be deduced from the zeta potential at any divalent cation concentration, still the
charge reversal concentration is by far preferable, since some uncertainties in the above-
described Gouy–Chapman–Stern model disappear at this particular concentration. First,
1/1 complexes of monovalent cations, as well as electroneutral 1/2 complexes of divalent
cations with acidic surface groups do not interfere as they do not impose any charge effects
on the surface. In addition, the location of the plane of shear becomes irrelevant, as both
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the surface and the zeta potential are equal to zero. Moreover, the molecular projected
area pa1 is not incorporated. On the other hand, the fit at any other electrolyte concentra-
tion depends on the 1/1 association constant for monovalent ions, on the number of 2/1
complexes with divalent cations, on the location of the plane of shear, and on the esti-
mated value of the molecular projected area.

The major limitation of the charge-reversal concentration approach is that it is
strictly limited to liposomal dispersions containing only anionic phospholipids. Figure 7
reveals that the zeta potential of PS vesicles reverses sign at 0.08 M Ca2þ, which implies
that the intrinsic association constant for the 1/1 complex is 12 M�1. Similarly, the intrin-
sic 1/1 association constants of Ni2þ, Co2þ, Mn2þ, Ba2þ, Sr2þ, and Mg2þ with PS were
found to be 40, 28, 25, 20, 14, and 8 M�1, respectively. These data were supported by
Minami et al. [11] based on an experimental study of the effect of external addition of
Mg2þ, Ca2þ, Sr2þ, and Ba2þ salts on the initial aggregation kinetics of dimyristoylphos-
phatidylglycerol (DMPG) liposomes. Graham et al. [28] provided additional support for
the values of 1/1 binding constant of Ca2þ and Mg2þ, based on fitting a theoretical model
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FIG. 7 Zeta potential of PS liposomes in 0.1 M NaCl containing 1 mM MOPS (pH 7.4) and either

0.1 mM EDTA (filled symbols) or the indicated concentration of divalent cation (~ Ni2þ; * Ca2þ;
& Mn2þ; ^ Mg2þ). Errors bars of the experimental points were derived from measurements on at
least 20 liposomes. The lines represent the best fit of the Gouy–Chapman–Stern model with a PS–

Naþ intrinsic binding constant of 0.6 M�1 and a distance between the plane of shear and the Stern
plane of 0.2 nm. (From Ref. 18.)



for surface-potential measurements on monolayers. Under identical conditions, the selec-
tivity sequence for PC is Mn2þ > Ca2þ

� Co2þ
� Mg2þ

� Ni2þ > Sr2þ > Ba2þ.
Additional proof for the above-mentioned value of the intrinsic association constant

of the Ca2þ–PS complex follows from the fact that all the microelectrophoretic data are
consistent with the simple Gouy–Chapman–Stern model, assuming that calcium forms
mainly 1/1 complexes with PS and that the intrinsic association constant is about
10 M�1. In this analysis, though, several assumptions are included. First, the plane of
shear is assumed to be at 0.2 nm from the liposomal surface. Also, it is assumed that
monovalent cations form 1/1 complexes with anionic, but not with zwitterionic lipids.
For divalent counterions, on the other hand, 1/1 complexes with both anionic and zwit-
terionic lipids are considered, albeit with a different intrinsic association constant; thus,
adsorption to mixed PS/PC liposomes is accurately described, assuming the binding con-
stant of Ca2þ and Mg2þ to zwitterionic PC to be 3 and 2 M�1, respectively. Moreover,
adsorption of anions is completely ignored. The molecular projected area of each phos-
pholipid is assumed to be 0.7 nm2 in the membrane. Finally, it is assumed that phase
separation does not occur. Figure 7 reveals that a good fit may be obtained over the
whole concentration range studied. In order to allow evaluation of the effect of divalent
cation adsorption, the dotted line in Fig. 7 represents the hypothetical zeta potential that
would be obtained if sodium ions adsorbed to the PS liposomes (with an intrinsic association
constant of 0.6 M�1), whereas the divalent ions do not adsorb. It follows that even very small
amounts of divalent cations highly influence the zeta potential of negatively charged lipo-
somes. As a further consequence, trace amounts of divalent cationic impurities may largely
affect the zeta potential in a monovalent electrolyte.

Eisenberg et al. [16] observed that the addition of small amounts of EDTA some-
times led to a largely increased electrophoretic mobility. According to the authors, this
behavior is most probably due to the presence of divalent or trivalent cationic contami-
nants, which are known to be very efficiently bound by EDTA. Indeed, in a separate
experiment they demonstrated that EDTA (both in 0.1 and 1 mM concentration) itself
had no significant effect on the electrophoretic mobility of vesicles formed from specially
purified PS in 0.1 M monovalent cation chloride and 1 mM Tris at pH 7.5. Hence, trace
amounts of multivalent ions may be responsible for differences in electrophoretic mobility
of phospholipids in monovalent electrolytes observed by various authors.

In order to overcome this possible effect of multivalent ions, McLaughlin and
coworkers [16,18,19] suggested including small amounts of EDTA in the liquid phase as
this compound is known to have a very strong binding capacity for di- and multi-valent
ions. As Fig. 7 indicates that EDTA addition does not affect the zeta potential of PS
liposomes in the absence of divalent cations, it may be deduced that no multivalent
cationic contaminants prevailed in the lipid sample used. In the absence of divalent
cations, the zeta potential of the PS liposomes in 0.1 M NaCl at pH 7.4 (which was
fixed by incorporation of 1 mM MOPS buffer) was about �62:5 mV (Fig. 7). This value
corresponds to the Gouy–Chapman–Stern prediction if the association constant KNa is
assumed to be 0.6 M�1, whereas the plane of shear is supposed to be located 0.2 nm from
the liposomal surface.

In a more extended set of experiments, both PS and PC/PS (5/1) liposomes were used
in 10 and 100 mM of both NaCl and CsCl with varying concentrations of Ca2þ. The
intrinsic association constants of Naþ and Csþ with PS were assumed to be 0.6 and
0.1 M�1, whereas the 1:1 association constant of Ca2þ with PS and PC was 12 and
3 M�1, respectively, except at the lowest salt concentration studied (i.e., 10 mM), whereby
the Ca2þ–PS and Ca2þ–PC binding constants of 36 and 5 M�1 seemed to give better fits.
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According to the authors, this apparent concentration effect is most probably not realistic
and might be due to the fact that concentrations, rather than activities, are used in their
model. According to Akeson et al. [30], the activity coefficients of divalent and mono-
valent ions in 0.12 M monovalent electrolyte are 0.36 and 0.77, based on the Davies
equation.

Independent studies of Ca2þ and Mg2þ adsorption were done by Reboiras [31] using
ion-exchange membrane electrodes to investigate the residual concentration of cations.
These experiments yielded a 1/1 association constant PS/Ca2þ of 11:4 � 2:7 M�1, with no
significant variation between pH 6.5 and 7.5. Hence, the results agreed with zeta-potential
data. Also, these experiments clearly demonstrated the higher affinity of Ca2þ, compared
with that of Mg2þ, to the surface of mixed dipalmitoyl-PC:PI sonicated liposomes.

Ermakov et al. [32] also found a very good fit of the Gouy–Chapman–Stern theory
to experimental data for dipalmitoylphosphatidylcholine (DPPC) liposomes in 0.1 M KCl
and 20 mM Tris–HCl (pH 7.4) in the presence of differrent BeSO4 concentrations, assum-
ing an intrinsic association constant of 400 M�1. Hence, Be2þ is about 100 times more
effective in comparison with other divalent cations. The high affinity of Be2þ as compared
to Ca2þ or Mg2þ is proved by differential scanning calorimetry measurements, indicating
that the phase-transition temperature is shifted by cation adsorption [33]. This effect is
much more pronounced for Be2þ and it is observed at about 100 times lower concentration
as compared to that for Ca2þ or Mg2þ.

2. Change in Zeta Potential at Charge Reversal Concentration

An alternative approach was described by Reboiras and Jones [34]. They performed
electrophoretic mobility measurements on pure PC, pure PI, and mixed PC/PI liposomal
dispersions in a pH 6.6 buffer prepared from 20 mM imidazole (pKa ¼ 6:953Þ plus hydro-
chloric acid, giving an ionic strength of 0.0138 M of 1/1 electrolyte. The authors assumed
that the surface potential was equal to the zeta potential, that the molecular area of both
phospholipids was 60 A

� 2
, and that no specific adsorption of the buffer ions occurred.

However, these assumptions led to the conclusion that the degree of ionization of PI
was only 23% for pure PI vesicles, which seems to indicate that buffer ion adsorption
was actually taking place. The theoretical analysis proposed by Reboiras and Jones [34] is
based on the linear relationship between the surface charge density and the surface poten-
tial, which is valid at low values of the surface potential. However, this simplified formula
will produce a highly underestimated value for the surface charge density at higher surface
potential values. For a spherical particle this relationship corresponds to

��S ¼
"oDð1 þ �aÞ S

a
if j Sj < 25 mV ð9Þ

where D is the dielectric constant of the medium. Assuming that the zeta potential is nearly
the same as the Stern potential and that �a is much larger than unity, it follows from Eqs
(7) and (9) that

� �  S ¼
��S

"oD�
¼

��o

"oD�
þ
ZeNbs

"oD�

KintCs

1 þ KintCs

ð10Þ

As long as Eqs (9) and (10) are only applied close to the isoelectric region, this approach is
justified. Thus, differentiation yields the slope of the zeta potential versus logðCÞ curve at
the charge reversal concentration:
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d�

d logCs

� �
�¼0

¼ 2:303
ZeNbs

"oD�

KintCs

ð1 þ KintCsÞ
2

� �
ð11Þ

This equation may be used to derive an average intrinsic association constant for mixed
anionic–zwitterionic phospholipid liposomes. However, in their theoretical analysis,
Reboiras and Jones [34] extended the use of the linear relationship between surface poten-
tial and surface charge density to the zeta (which is assumed to be the same as the surface)
potential �0 in the absence of adsorbing ions, from which they deduced an alternative
expression for the electrolyte concentration at which the liposomes become electrically
neutral:

� ¼ �o þ
ZeNbs

"oD�

KintCs

1 þ KintCs

ð12Þ

1

C�¼0

¼ Kint

ZeNbs

"oD��o

� 1

� �
ð12aÞ

Using Eq. (12a), Eq. (11) may be rewritten as a function of the zeta potential in the
absence of adsorbing ions:

d�

d logCs

� �
�¼0

¼ 2:303�o

"oD��o

ZeNbs

� 1

� �
ð13Þ

According to the authors [34], both the number of binding sites Nbs and the intrinsic
binding constant Kint can be determined by solving Eqs (12a) and (13) simultaneously. The
use of this set of equations is, however, not justified at all, as Eq. (9) has been used outside
the isoelectric region in replacing the contribution ��o=ð"oD�Þ in Eq. (10) by �o in Eq. (12).
As a further consequence, unrealistic values for the intrinsic binding constant, i.e., 1:14 


106 M�1 and 3:28 
 105 M�1 for Ca2þ and Mg2þ adsorption to mixed DPPC/PI (75/25)
liposomes at pH 6.6, are obtained. This is clearly an unrealistic result as the Langmuir
equation indicates that in this special case more than 99% of the binding sites would be
occupied at the charge reversal concentration. This is in contradiction with the experi-
mental data shown in Fig. 8, since an additional large increase in zeta potential is observed
following charge neutralization. On the other hand, an intrinsic binding constant of
3.0 M�1 is found by applying Eq. (11) to the experimental results in Fig. 8, assuming
the number of binding sites per unit surface area (Nbs) to be equal to the number of
phospholipid molecules per unit surface area. The latter value of the intrinsic binding
constant is very similar to the results obtained by McLaughlin et al. (15): they found an
intrinsic binding constant of 3 M�1 for zwitterionic and 12 M�1 for anionic phospholipids.
Similarly, Akeson et al. [30] found a Ca2þ–PC intrinsic association constant of about
3 M�1 from the slope of the zeta potential versus electrolyte concentration behavior by
applying Eq. (11).

Besides the binding constant, Reboiras and Jones [34] claim to deduce information
about the number of binding sites. According to the parameters of their model, the
number of divalent cation binding sites is 6:55 
 1016 m�2 and 14:8 
 1016 m�2 for Ca2þ

and Mg2þ, respectively, which is less than half the number of anionic phospholipids
present per unit surface area. According to these data, the surface should remain nega-
tively charged even at complete coverage of all binding sites. This result is clearly in
contradiction with the experimentally determined charge reversal, which is an additional
proof of the incorrect use of the EDL theory.
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C. Trivalent Ions

In general, metal ions bind to the phosphate group in phospholipids with stability con-
stants ranked as trivalent > divalent > monovalent metals. Akeson et al. [30] studied
Al3þ adsorption in both 0.12 M KNO3 and 0.12 M KCl. The 1/1 binding constant of the
trivalent ion to PC was estimated from the change in zeta potential with electrolyte con-
centration in the isoelectric region. It follows that the Al–PC binding constant is about
1500 M�1. The authors conclude that the affinity of Al3þ is about 500 times larger as
compared to that of Ca2þ. According to Akeson et al. [30], the Stern model underestimates
surface bound Al3þ when the shear plane is at the liposomal surface or at 0.2 nm from the
surface: the predicted adsorbed amount is only half the experimentally determined value.
According to the authors, this may be due to an underestimation of the distance between
the plane of shear and the lipid membrane surface.

Ermakov et al. [32] observed that the adsorption of Gd3þ at the membranes made
from both PC and PS is suitable for quantitative description by the Gouy–Chapman–Stern
theory. The binding constant was 1000 and 50,000 M�1 for PC and PS, respectively.

IV. PHASE TRANSITION

Tatulian [29] demonstrated that the electrophoretic mobility of zwitterionic DMPC vesi-
cles depended on temperature with a discontinuous behavior at the phase-transition
temperature (Fig. 6). Similarly, Ermakov et al. [32] observed that the zeta potential of
positively charged Be2þ-coated DPPC liposomes was about 10–15 mV higher below the
phase-transition temperature. In general, a downward shift of about 10 mV is observed at
temperatures above the phase-transition temperature (Tg) both for positively charged,
zwitterionic and anionic phospholipid liposomes. According to Ermakov et al. [32], the
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FIG. 8 Zeta potential of mixed DPPC:PI (75:25 wt%) liposomes in either CaCl2 or MgCl2 solution
at 258C. (From Ref. 35.)



lower zeta potential of positively charged Be2þ-coated DPPC liposomes above the phase-
transition temperature could be accurately described by the Gouy–Chapman–Stern theory
if the parameters of adsorption were chosen to be about 20 times higher for lipids in the
solid state. McLaughlin et al. [18] also reported increased binding constants in the gel as
compared to the liquid crystalline state; in the latter case, describing Ca2þ and Mg2þ

adsorption to PS liposomes, the difference was, however, only 40%. Similarly, the affinity
of PS bilayers for Mg2þ has been reported to decrease with the degree of chain unsatura-
tion and fluidity. Thus, more negative values of the zeta potential above the phase-transi-
tion temperature may be due to a partial release of bound cations.

However, this cannot explain that the same phenomenon is also observed in the
absence of strongly adsorbing divalent cations. In this respect, Ermakov et al. [32] state
that additional factors might be of importance, such as changed dielectric properties of the
surface. The latter effect is completely ignored in the Gouy–Chapman theory, which
assumes that the dielectric constant remains constant and equal to the dielectric constant
of bulk water throughout the whole EDL. Alternatively, Cevc [17] suggests that the
different electrokinetic behavior might be explained from the existence of an additional
hydration potential in addition to the electrostatic potential. The experimentally observed
increase in the membrane hydration at the lipid chain melting phase transition thus offers
a possible explanation for the decrease in zeta potential.

Moreover, it is important to stress that the three parameters of the Gouy–Chapman–
Stern theory, i.e., the maximum surface charge density, the binding constant, and the
position of the slipping plane, are not independent of the fitting procedure. Very similar
results may be obtained by either increasing the number of binding sites at constant
binding affinity or by increasing the binding affinity at constant binding site density.
The increased number of binding sites below the transition temperature could be a logical
consequence of the decreased molecular projected area.

V. RELAXATION EFFECT

As illustrated by Fig. 7, as well as by Fig. 9, the classical Gouy–Chapman–Stern model is
quite successful in predicting the zeta potential as a function of the (logarithm of the)
electrolyte concentration for acidic lipid dispersions in monovalent electrolyte solutions at
relatively high salt concentrations, i.e., above 20–50 mM. It follows that the three para-
meters of this model, i.e., the maximum surface charge density (which was assumed to be
one negative charge per 0.6 nm2), the cation binding constant Kint, and the location of the
plane of shear, may be estimated from the best fit of the Gouy–Chapman–Stern theory to
the experimental data obtained at high electrolyte concentration.

In the 1–50 mM range, though, the experimentally determined values of the zeta
potential as a function of ionic strength are significantly less pronounced than the predic-
tions of Gouy–Chapman–Stern theory. This is shown in Fig. 9 where the dashed line
represents the calculated zeta potential based on the Gouy–Chapman–Stern theory,
whereas the circles show the experimentally determined zeta potential for PS liposomes
in KCl electrolyte. These anomalies are mainly because all commercial equipment used to
determine the zeta potential of colloidal dispersions actually determines the electrophore-
tic mobility and calculates the corresponding zeta-potential value using the Helmholtz–
Smoluchowski equation. This also holds for the experimental points included in Fig. 9,
which were indeed derived from the electrophoretic mobility, using the Helmholtz–
Smoluchowski equation. Hence, a poor fit of the Gouy–Chapman–Stern model to experi-
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mentally determined zeta-potential values is obtained if the use of the Smoluchowski
equation is not justified. This may be because the Smoluchowski equation ignores the
effect of both surface conductivity and double-layer relaxation. The latter arises from the
fact that the center of the ionic atmosphere lags slightly behind the center of the particle
and hence slows down the electrophoretic mobility.

This effect has been taken into account in more advanced theories for the electro-
phoretic mobility as developed by Wiersema et al. [36], O’Brien and White [37], and
Dukhin and Deryaguin [38]. All these models yield very similar results: the thicker and
more mobile an interfacial region is, the more important is the relaxation effect.
Decreasing vesicle size also increases the significance of this effect appreciably.
According to Egorova and coworkers [21,22], this information may be expressed in a
quantitative way in the following relaxation effect criterion.

Relaxation is negligible provided that:

exp
ej Sj

2kT

� �
�a

< 0:02 ð14Þ
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FIG. 9 Comparison of the experimentally determined values of zeta potential (*) of PS liposomes
in KCl, as derived from their electrophoretic mobility using the Helmholtz–Smoluchowski equation,
and theoretical (real) zeta-potential values (dashed line) calculated by the Gouy–Chapman–Stern

model with �xsp ¼ 0:2 nm, Kint ¼ 0:25 M�1, and �o ¼ �267 mC=m2. The solid curves represent the
apparent zeta potential that follows from the theoretical electrophoretic mobility using the
Helmholtz–Smoluchowski equation. Hereby, the mobility was derived from the theoretical zeta

potential using the Dukhin–Deryaguin model assuming the particle radius to be 250 nm (1),
500 nm (2), 1 mm (3), and 5 mm (4). (From Ref. 21.)



From this relation, it follows that �a should be larger than 50 if the Stern potential
is negligibly small, whereas a limiting value of 350 is obtained at a Stern potential of
100 mV. In quasiphysiological solutions, i.e., 100 mM of a 1/1 electrolyte, the thickness
of the double layer is of the order of 1 nm, and hence the relationship between the
mobility and the zeta potential according to the Dukhin–Deryaguin theory is nearly
equal to the prediction of the simple Helmholtz–Smoluchowski equation provided that
the particle diameter is at least 100 nm. Hence, the relaxation effect is negligible at salt
concentrations of at least 0.1 M. At lower salt concentrations, on the other hand, the
relaxation phenomenon gives rise to a much lower electrophoretic mobility than
expected from the Helmholtz–Smoluchowski equation. As a further consequence, the
experimentally determined zeta potential (which is actually a rescaled mobility using the
Helmholtz–Smoluchowski equation) is much less than the effective zeta potential. This
effect was clearly demonstrated by Roy et al. [39] who studied the influence of size on
the electrokinetic behavior of mixed PC/PS liposomes in 1 mM phosphate buffer (pH
7.4) with 1 mM NaCl. The liposomes were prepared by extrusion through polycarbonate
membrane filters, by sonication or by hydrating a thin film of phospholipids. Here, the
size of the liposomes increased in the sequence from extrusion over sonication to MLV
production by hydrating a thin phospholipid film. Roy et al. [39] observed that the
experimentally determined zeta potential was not only affected by the percentage of
PS present, but also by the preparation method, i.e., the particle size. This behavior
could be ascribed to the small value of the Debye–Hückel parameter � (i.e., 0.329 nm�1),
causing the relaxation criterion to be larger than 0.02, especially for the smaller lipo-
somes that were prepared by extrusion. Although Roy et al. [39] introduced the Henry
coefficient into the Smoluchowski equation in order to take account of this relaxation
effect, a lower zeta potential was still found for smaller particles, thus indicating that the
Henry correction could not solve the relaxation problem.

From a scientific point of view, the most logical procedure may seem to use a more
complicated model to convert the experimentally determined electrophoretic mobility to a
zeta potential. However, this process may give rise to severe errors since large changes in
zeta potential may produce small changes in electrophoretic mobility. Besides, the calcula-
tions of O’Brien and White [37] revealed that the electrophoretic mobility as a function of
the zeta potential has a maximum value in 1.2 mM 1/1 electrolyte when �a exceeds 3. In
this case, two widely different zeta-potential values may give rise to the same mobility. It
follows that mobility to potential transformation is not straightforward. Therefore, a
different approach is mostly used (Fig. 10): following the calculation of the real zeta
potential by the Gouy–Chapman–Stern model, the (real) electrophoretic mobility may
be obtained by the Dukhin–Deryaguin model, from which the apparent zeta potential
according to the Helmholtz–Smoluchowski equation may be obtained. Although the latter
has no real physical meaning, it still allows direct comparison of the theoretical prediction
with the experimental data. Thus, the continuous lines in Fig. 9 represent the apparent zeta
potential as a function of the electrolyte concentration at four different values of the
particle radius. Figure 9 indicates that the apparent zeta potential, which is basically a
rescaled electrophoretic mobility, becomes less than the real zeta potential from the Gouy–
Chapman–Stern theory, at electrolyte concentrations below 0.1 M. The smaller the parti-
cle, the larger the difference. As indicated by line 4 in Fig. 9, even for 10-mm particles, the
difference becomes quite noticeable below 10 mM of 1/1 electrolyte. Hence, even for very
large liposomes, a significant difference may be expected between the effective zeta poten-
tial and the Smoluchowski prediction based on the electrophoretic mobility in dilute
electrolyte solutions.
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As the experimental data are reasonably well described by the Dukhin–Deryaguin
theory, it is concluded that the observed deviation of the experimentally determined zeta
potential from the true zeta potential (as indicated by the dashed line in Fig. 9) is likely to
be (at least partly) the result of the relaxation effect. Egorova et al. [22] found a very
reasonable fit of the Dukhin–Deryaguin theory for cardiolipin in NaCl. For cardiolipin in
KCl or PS in NaCl, however, the Dukhin–Deryaguin approach was by far superior, but
nevertheless, systematic deviations between theory and experiment were observed. They
concluded that although the relaxation effect is undoubtedly present at low salt concen-
tration, it could hardly be regarded as the only reason for deviation between experiment
and Smoluchowski theory.

For the sake of completeness, it should be mentioned that in all hitherto described
experiments, the relaxation effect could be neglected thanks to the well-selected experi-
mental conditions used. First, most studies were performed in quite concentrated electro-
lyte, such as 0.1 M of monovalent electrolyte. Even when studying the effect of low
concentrations of divalent or trivalent cations, typically 0.1 M monovalent electrolyte
was added, so that the Debye–Hückel parameter was quite large. In addition, microelec-
trophoresis was mostly used. As a further consequence of the need to monitor individual
liposomes, the size of the studied particles was typically above 1mm. Besides, the larger
particles within the field of view can be selected for electrophoretic observations. Thus,
Eisenberg et al. [16] mention that especially when the salt concentration was low and the
surface potential high, measurements were made on large vesicles of at least 10 mm in
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FIG. 10 Schematic representation of the calculation procedure used to obtain the real and appar-
ent values (also referred to as the Helmholtz–Smoluchowski approximations) of electrophoretic
mobility and zeta potential, based on theoretical analyses on the one hand and experiments on

the other. G–C–S ¼ Gouy–Chapman–Stern theory; E–B ¼ Eversole–Boardman equation; H–
S ¼ Helmholtz–Smoluchowski equation; D–D ¼ Dukhin–Deryaguin theory.



diameter in order to circumvent the relaxation effect. Both the high electrolyte concentra-
tion and the large particle size contributed to a large value of �a, so that retardation effects
were negligible. On the other hand, most recent studies prefer electrophoretic light scatter-
ing as this technique is much less labor intensive. In this technique, it is not required to
visualize individual vesicles, and hence the size is generally much smaller. Considering a
typical diameter of 100 nm in a 10 mM electrolyte, relaxation effects are very likely to
occur.

VI. SURFACE DISSOCIATION

Since protons, just as any kind of counterions, are electrostatically attracted towards
negatively charged surfaces, it follows that the surface pH will be lower than the bulk
pH. As a further consequence, the negative logarithm of the apparent dissociation
constant for any structural membrane residue, the so-called pKapp, is higher than the
pKa value for the same group in the bulk solution, provided that the membrane surface
is negatively charged. Thus, Table 1 shows that the pKa values for the carboxyl and
amino groups of the water-soluble phosphorylserine are 2.65 and 9.9, respectively,
whereas the corresponding pKapp values for these groups in PS liposomes in 100 mM
of a monovalent electrolyte are shifted upward to 5.5 and 11.5. Similarly, the pKa of
water-soluble butyric acid is 4.8, whereas the apparent pKapp of long-chain carboxylic
acids incorporated into PC liposomes is 7.3. Hence, the pKapp values for phospholipids
and long-chain carboxylic acids inserted into PC liposomes in the presence of 100 mM of
a monovalent electrolyte may be shifted by 1–3 units as compared to the pKa values for
simple water-soluble organic compounds. In general, the shift is larger for the more
charged membranes.

As the electrolyte concentration largely affects the coulombic membrane potential, it
follows that the pKapp value for surface-bound groups will be influenced by the presence of
salts: at lower electrolyte concentrations, the difference between the pKa value for dis-
solved groups and the pKapp value for membrane-bound groups will become more pro-
nounced, whereas at higher salt concentrations this difference will tend to become zero. It
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TABLE 1 Apparent Dissociation Constants, in 0.1 M of a Monovalent Salt, of the Ionizable
Groups of Common Phospholipids and Long-Chain Fatty Acids Imbedded in a Liposomal
Membranea

Compound Medium pKPO�
4

pKPO2�
4

pKCOO� pKNHþ

3

PS
phosphorylserine
PI

PG
PA
Glycerophosphoric acid

R–COOH in PC
Butyric acid

Liposome
Water
Liposome

Liposome
Liposome
Water

Liposome
Water

� 1
� 1

2.7

2.9
3.5
1.4

5.8

9.5
6.2

5.5
2.65

7.3
4.8

11.5
9.9

aTo allow comparison, the dissociation constants of some similar water-soluble compounds are included.

Source: Ref. 40.



has to be stressed that, according to this discussion, it is the apparent, but not the intrinsic
dissociation constant of surface-bound groups that is affected by the bulk electrolyte
concentration.

In recent years, Egorova [23] presented some experimental data suggesting that the
electrolyte concentration affects the degree of dissociation of surface-bound groups not
only by affecting the pH at the surface of the membrane, and hence affecting the
apparent dissociation constant, but also by changing the intrinsic pKa value for the
dissociating group itself. This hypothesis was derived from electrophoretic experiments
using both dioleoyl PG and PS bilayer membranes: the intrinsinc dissociation constants
of the phosphate group of dioleoyl-PG and of the carboxyl group of PS were found by
fitting a theoretical model to the experimental dependencies of electrophoretic mobilities
on ionic strength in solutions of monovalent salts. The model is based on a simple
dissociation reaction for the acidic ionizable group. Assuming that specific ion binding
is described by the Langmuir adsorption isotherm and expressing the surface ion con-
centrations through the Boltzmann relation, Eq. (5), the surface charge density for
dioleoyl-PG and PS membranes in 1/1 electrolyte may be written as a function of the
surface potential:

�S ¼
�o

1 þ
½Hþ

�

Kd

þ Kint½C�

� �
exp �

Ze S

kT

� � ð15Þ

In Eq. (15), Kd and Kint are the intrinsic surface dissociation constant of the ionizable
group and the intrinsic binding constant of the cation, respectively. The latter was
0.13 M�1 for dioleoyl-PG in KCl and 1 M�1 for PS in NaCl. Assuming the molecular
projected area pa1 to be 0.6 nm2, Eq. [3] reveals that �o amounted to 0.27 C/m2. In order to
obtain �S and  S values as a function of the electrolyte concentration, Eq. (15) is com-
bined with the Gouy equation (2) and the solution is searched by means of an optimization
program.

Figure 11a shows that fitting with due regard for cation adsorption was successful
using a fixed value of the intrinsic dissociation constant at intermediate to high salt
concentrations for dioleoyl-PG in KCl at pH 7. The same behavior was also observed
for PS in NaCl at pH 7. In the 1–20 mM range, however, a nearly constant value for
the electrophoretic mobility was obtained. In this low concentration region, changes in
intrinsic dissociation constant pKa had to be introduced in order to obtain a good fit
of theory to experiment (Fig. 11b). Thus, the experimental data for the electrophoretic
mobility of dioleoyl-PG in KCl at pH 7 could be described nicely assuming that the
intrinsic dissociation constant of the phosphate group increased from 1.54 in 1 M salt
up to 5.75 in the presence of only 1 mM of KCl (Fig. 11c). From these values, it
follows that dioleoyl-PG is completely dissociated at pH 7 in 0.1 up to 1 M KCl,
whereas only 9% of dissociation would occur in 1 mM KCl. Although the highly
improved fit to the experimental data provides a strong indication that the pKa of
charge-forming ionizable groups suffers changes at low ionic strength, Egorova [23] still
mentions that it should be kept in mind that other sources of changes in charge
density, such as changes in the molecular projected area or cation-binding constant,
could not be rejected. Hence, additional experiments are needed to prove the effect of
both the salt concentration and the pH on the intrinsic dissociation constant of sur-
face-bound dissociating groups.
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VII. INTERACTIONS WITH LOW MOLECULAR WEIGHT ORGANIC
MOLECULES

Organic ions, such as pharmacologically significant molecules, hydrophobically adsorb on
to or into the phospholipid membranes and decrease or increase the net membrane surface
charge density [41]. Thus, Bermudez et al. [42] observed that the tuberculostatics ofloxacin
and rifampicin both modify the surface charge of long-circulating and thermosensitive
liposomes; the extent of drug–liposome interaction depended on the nature of both the
bilayer constituents and the tuberculostatics. Similar phenomena were observed in the
interaction of liposomes with some antibiotics, anesthetics and calcium-channel
antagonists.
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FIG. 11 Zeta potential of dioleoyl-PG liposomes in KCl solution at pH 7: (a) experimental values
of zeta potential derived from Helmholtz–Smoluchowski, real theoretical values (cf. � in Fig. 10),
and apparent theoretical values (indicated as �H�S in Fig. 10) assuming pKa ¼ 1:654,

Kint ¼ 0:13 M�1, �o ¼ �267 mC=m2, and �xsp ¼ 0:2 nm; (b) experimental values of zeta potential
(*), real theoretical values, and apparent theoretical values taking the same values for the para-
meters as described in (a), except for pKa, which was assumed to be dependent on KCl concentra-

tion; (c) pKint versus KCl concentration profile that yields the best fit of apparent zeta potential to
experimentally determined values, as shown in (b). (From Ref. 23.)



Whereas the antimitotics ethidium bromide, adriamycin, and celiptium were shown
to be able to form specific stable complexes with the phospholipids by localized adsorption
on to the membrane, others penetrate the membranes in a nonspecific manner. Thus,
cholesterol is incorporated into liposomes as evidenced by the reduction in electrophoretic
mobility observed in distilled water from �5:4 
 10�8 m2/V/s for pure PS to
�3:0 
 10�8 m2/V/s for 25%PS/75% cholesterol [43].

In the latter case, the lipidic membrane will be considered as a separate phase, the
hydrophobic phase, and a partition coefficient can be determined to characterize the
passing of the drug from the aqueous phase to the lipidic phase. For imipramine, a
tricyclic molecule having a neuroleptic activity, the partition coefficient was calculated
through electrophoretic mobility measurements on liposomes using both anionic and
neutral lipids. As the pKa of the drug’s amino group is near 8.6, it follows that the
molecule is (at least partly) protonated at acidic to neutral pH conditions. Hence, drug
incorporation into either anionic or zwitterionic liposomes induces a more positive value
for the electrophoretic mobility. This effect is illustrated in Fig. 12 [44], which represents
the electrophoretic mobility of egg PC MLV at pH 4.5 as a function of the logarithm of the
imipramine concentration in 10 mM NaCl; at this particular pH condition, the drug may
be assumed to be completely in its protonated form, which is represented as DHþ. From
the change in zeta potential, the drug concentration in the lipid phase X

ðþÞ

abs (in mole
fraction) may be deduced by using Eqs (1) and (2). The partition coefficient of the drug
in the liposomes can then be calculated:

KDH ¼
ðPL � DHþ

Þs

ðPLÞsðDHþÞs
¼

X
ðþÞ

abs

ðDHþÞs
ð16Þ

In Eq. (16), (DHþ
Þs represents the concentration of the (protonated form of the) drug in

the close neighborhood of the surface of the liposomes, whereas ðPL � DHþ
Þs represents

the concentration of drug molecules incorporated into the liposomal surface. At pH 4.5,
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FIG. 12 Electrophoretic mobility of egg PC multilamellar liposomes in 10 mM NaCl at pH 4.5 as a
function of log imipramine concentration. The solid line represents the theoretical profile if the

partition coefficient of the drug is 2000 M�1. (From Ref. 44.)



the interaction between egg PC and imipramine was nicely modeled by assuming a parti-
tion coefficient KDH of 2000 M�1 and an anion-binding constant KCl of 0.5 M�1 (Fig. 12,
Ref. 44). The latter parameter takes account of the adsorption of chloride anions to
adsorbed positively charged drug molecules. In the case of PA at pH 4.5, the electro-
phoretic data corresponded to a KDH of 600 M�1 and a KNa of 0.5 M�1.

At pH 8, the concentrations of the protonated (DHþ) and deprotonated (D) form of
the imipramine drug must be calculated using the acidic dissociation constant in water.
The parameters of the best-fitting model revealed that the partition coefficients of the
protonated and the deprotonated drug were very similar. Also, similar values for the
intrinsic partition coefficient were obtained for both zwitterionic and anionic phospholipid
liposomes.

Independent determinations of the partition coefficient were also performed by
measuring the increase in the area of a phospholipid film maintained at a constant surface
pressure of 20 mN/m as drug molecules were penetrating into the film. For all lipids
concerned, the partition coefficients derived from surface-pressure experiments were in
close agreement with the values derived from electrophoretic mobility measurements.

In contrast to the intrinsic value, the apparent partition coefficient is largely affected
by the state of ionization of both the membrane lipids and the drug, as shown by Kraemer
et al. [45] who studied the interaction between oleic acid-containing PC membranes and
propanolol, a �-receptor blocker. The highest values for the apparent partition coefficients
were observed in the pH range from 7.5 to 9.5, i.e., in between the intrinsic pKa of the fatty
acid and the drug, respectively. In this region, electrostatic interactions highly favor the
drug–liposome interaction. Similarly, Pohl et al. [46] observed an enhanced binding of
both verapamil and propanolol in the presence of negatively charged phospholipids such
as PS; as both drugs are positively charged at physiological pH values, it follows that
drug–membrane interactions are not only affected by hydrophobic interactions, but also
by electrostatic forces. On the other hand, the apparent partition coefficient in zwitterionic
liposomes of the protonated form is about 10 times less than that of the neutral form of
these drugs. In the former case, electrostatic repulsion between the drug-loaded membrane
and free drug molecules hinders incorporation into the membrane.

VIII. PROTEIN–LIPOSOME INTERACTIONS

Protein–liposome interactions are mainly important in two types of investigations. If
phospholipid vesicles are considered, protein–liposome interactions are studied in order
to elucidate the in vivo interactions between proteins or enzyme and biological membranes
(see, e.g., Ref. 47). If cationic liposomes, containing positively charged synthetic lipids, are
considered, the main goal of these studies is to understand the relationship between the
clearance behavior in vivo of these vesicles and the interaction between liposomes and
proteins or cells [48].

Of course this section will not deal specifically with these topics. Only the use of zeta-
potential measurements in these studies and their importance will be highlighted.

A. Phospholipid–Protein Interactions

Amino acids, the basic building blocks of proteins, only induce a pH variation in the
solution, influencing the acid–base dissociation equilibra of the PC phospholipid mem-
brane upon addition of lysine and glutamic acid [49].

Electrophoretic Studies of Liposomes 957



Polypeptides, on the other hand, like poly(L-lysine) or poly(L-glutamic acid), were
adsorbed to the PC liposomal surface, causing a significant change in electrophoretic
mobility towards more positive values for poly(L-lysine). Addition of poly(L-glutamic
acid) resulted in slightly negative values [49]. These observations are in correspondence
with those obtained by Kim et al. [50] using negatively charged PS and PG vesicles. A
poly(L-lysine)-dependent decrease in the absolute value of the zeta potential was observed
for both kinds of vesicles. Increasing the polymerization degree of the polypeptide resulted
in a similar decrease due to the larger number of positive charges per molecule.
Consequently, charge neutralization occurred at higher lipid/polypeptide molar ratios
for longer poly(L-lysine) molecules compared to the shorter ones.

Binding of proteins to phospholipid vesicles does not occur if both carry similar
charges. De Meulenaer et al. [51] observed no change in electrophoretic mobility of soy-
bean PC upon addition of positively charged cytochrome c. Bergers et al. [47] revealed, in
a systematic study, that protein adsorption to negatively charged phospholipid liposomes
was only observed at pH values where the number of positive charge moieties exceeded the
number of negative charge moieties of the protein by at least 3 charge units. If binding
occurs, this is reflected in a change of electrophoretic mobility or zeta potential. Bergers et
al. [47] studied the binding of trypsin inhibitor, myoglobin, ribonuclease, and lysozyme to
PC/PG vesicles. The electrophoretic mobility became less negative after absorption of
positively charged proteins. Similar observations were made by Matsumura and
Dimitrova [52] for serum albumin and cytochrome c.

With increasing protein-to-phospholipid ratios, the drop in the electrophoretic
mobility leveled off, reaching a plateau. Protein adsorption profiles showed a similar
shape [47]. De Meulenaer et al. [51] observed similar phenomena studying the interac-
tion of cytochrome c with mixed dimyristoylphosphatidylcholine (DMPC)–dimyristoyl-
phosphatidylglycerol (DMPG) vesicles, as shown in Fig. 13. The cytochrome c/
phospholipid ratio at which the plateau was reached seemed to be dependent on the
content of the negatively charged DMPG. Similarly, charge neutralization occurred at
a fairly constant cytochrome c/DMPG molar ratio for all DMPG–DMPC vesicles
studied.
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FIG. 13 Electrophoretic mobility of pure DMPG (&), 80:20 (w/w) DMPG:DMPC (þ), and 60/40
(w/w) DMPG:DMPC (^) dispersions in 5 mM TES buffer (pH 7.0) containing 2.5 mg phospholi-

pids/ml as a function of cyctochrome c-to-phospholipid ratio (w/v). (From Ref. 51.)



All these data confirm that protein–phospholipid vesicle interactions are largely
influenced by electrostatic interactions. However, other types of interaction forces, such
as hydrophobic interactions, control the protein–phospholipid association as well. Thus,
proteins such as immunoglobulin G (IgG) and albumin have a strong affinity for hydro-
phobic domains and consequently can interact hydrophobically with membrane lipids as
well [48,52].

B. Cationic Lipid–Protein Interaction

Synthetic cationic lipids have been developed to complex negatively charged nucleic acids
and deliver them to cells. The variability of in vivo gene delivery efficiency suggests the
possibility of interaction between the cationic lipid–nucleic acid complex and blood com-
ponents [48].

The identification of blood proteins that interact with cationic vesicles has been the
subject of a recent study by Zelphati et al. [53]. The addition of such proteins as heparin,
IgG, bovine serum albumin (BSA), and high-density lipoprotein (HDL) to cationic lipid–
nucleic acid vesicle complexes induced a decrease in the number of positive charges on the
complex. A more detailed study comparing the behavior of IgG and BSA revealed that
BSA induced charge reversal and even formation of highly negative complexes, while IgG
could only induce charge neutralization.

Zelphati et al. [53] demonstrated that serum-mediated inhibition of vesicle take up
in vivo systems is coincident with changes in complex charge and size. Thus, interactions
with the cell membrane are not solely based on electrostatic interactions, and interna-
lization becomes limited with increasing complex size. Moreover, the presence of pro-
teins such as BSA on the complex surface may act as a steric barrier to prevent
endosomal destabilization in the cell, which is necessary for the gene therapeutic use
of these complexes.

As a conclusion, it seems that serum components interact with cationic lipid nucleic
acid complexes. Thus, interactions with the cell membrane (due to charge neutralization),
internalization within the cell (due to size), and gene release in the target (due to steric
hindrance) are altered. In these cases too, zeta-potential measurements can be a useful tool
for studying some of these interactions.

IX. POLYNUCLEOTIDE–LIPOSOME INTERACTION

A large variety of cationic lipids have been selected to prepare positively charged
liposomes in order to study their interaction with nucleotides and evaluate them
with respect to their pharmaceutical use. It is not the intention of the authors to
fully review the interaction of cationic liposomes with nucleotides and their use,
because this will fall outside the scope of this book. However, for the sake of
completeness and understanding, some basics will be discussed as a kind of introduc-
tion to this subject. Basically, the importance of zeta-potential measurements will be
illustrated.

A. Cationic Liposomes and Their Use in Gene Therapy

Liposomes increasingly take an important place in gene therapy research, because they
can act as a carrier for antisense oligodeoxynucleotides, plasmid DNA, or other
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nucleotides. Various liposomes are being investigated with regard to this objective:
anionic, fusogenic, pH sensitive, immuno-, and cationic. In particular, the last are
reported markedly to prevent nuclease degradation and enhance the rate of oligonu-
cleotide uptake [54].

These positively charged liposomes consist of cationic lipids. The latter may
contain a single or double lipid chain and a positively charged polar head. The
first two important lipids used are the synthetic DODAB (dioctadecyl dimethylammo-
nium bromide) and DOTAP (1,2-dioleolyl-3-trimethylammonium propane), both quar-
ternary ammonium salts (Fig. 14). Following the success of these compounds in genes
transfection, many other lipids have been synthesized. Cationic liposomes are mainly
composed of (binary) mixtures of a cationic lipid and a neutral component, especially
DOPE (dioeoyl phosphatidyl ethanolamine), which is known to be a strong destabi-
lizer of lipid bilayers [55]. This destabilizing effect seems to be necessary to order to
release the complexed nucleotides once the liposomes entered the target cell.
Commercial kits for the preparation of cationic liposomes for gene transfer are avail-
able [56].

Cationic liposomes have intrinsic properties which make them attractive as a vehi-
cle for gene delivery. First, they are not immunogenic and they are easy to standardize,
because of their synthetic character. Due to their positive charge they are, moreover,
likely to interact strongly with negatively charged nucleotides [57]. As natural nucleo-
tides are rapidly degraded in biological fluids and cellular uptake is inefficient because of
the restricted permeability characteristics of the cell membrane towards nucleotides,
association with a carrier, giving rise to a so-called ‘‘lipoplex’’ is needed to resolve
these problems [58].

A serious disadvantage of cationic liposomes is their intrinsic toxic and detergent
character, excluding high-dose applications [59]. Therefore new, nontoxic cationic surfac-
tants have been developed (e.g., Ref. 60). Apart from their possible toxicity, a high number
of nonspecific interactions with serum components or cell surfaces may give rise to a lower
efficiency of these gene carriers when applied to in vivo conditions [59,61], as briefly
discussed in the preceding paragraph.

For more complete information about the use of cationic liposomes in gene transfer,
we would like to recommend some excellent reviews [54,55,56,61].
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FIG. 14 Chemical formulas of some cationic lipids: DODAB/DODAC and DOTAP.



B. Role of Zeta-Potential Measurements in Research on Cationic
Liposomes’ Interaction with Nucleotides

Although charge interactions seem to play a very important role in the complex formation
between cationic liposomes and nucleotides, it is only recently that zeta-potential
measurements were involved.

As could be expected, cationic liposomes exhibit a highly positive zeta potential. By
incorporation of zwitterionic surfactants such as PE or PC, a reduction in zeta potential
can be observed. In these mixed zwitterionic–cationic liposomes the zeta potential remains
positive if the cationic surfactant is present. Thus, Fig. 15 illustrates that the zeta potential
of DOTAP is significantly higher than that of a DOTAP/PE (1/1) mixture [62]. By addi-
tion of the negatively charged nucleotides, a decrease in the zeta potential can be observed
giving rise to neutral complexes, which exhibit charge reversal on further addition of
nucleotides, as can be observed from Fig. 15. Similar observations have been made by
other researchers for other lipoplex systems [57–59,63]. This decrease in zeta potential can
be explained by the electrostatic attraction between the negatively charged nucleotides and
the cationic liposomes. However, even after charge reversal, zeta potentials become
increasingly more negative on addition of more nucleotides (Fig. 15). Similarly, Arima
et al. [58] observed a decrease in the zeta potential of PC vesicles on addition of oligonu-
cleotides down to �30 mV at an oligonucleotide/lipid ratio of 0.5. In the same study a less
impressive but significant reduction in the zeta potential of negatively charged PS vesicles
was observed. Hence, nucleotides bind to the vesicles, resulting in a reduction in the zeta
potential, even if they are electrically neutral or negatively charged.

As can be observed from Fig. 15, charge inversion is observed at a 1/1 positive/
negative charge ratio. In other studies, however, even at a charge ratio equal to �0:9
highly positive lipoplexes could be observed [57]. This seems to depend on the kind of
lipids and nucleotides used, as well on the characteristics of the liposome, such as lamel-
larity.

Through a more in-depth investigation of the nature of the lipoplexes by other
techniques, some remarkable observations were made, which help us to understand the
kind of complexes between cationic liposomes and nucleotides are formed. At low nucleo-
tide loads, lipids are supposed to enclose totally the negatively charged nucleotides [57].
According to Pires et al. [62], the neutralization of the positive charges results in a decrease
in the effective size of the lipid polar headgroup. Consequently, the ability of the lipids to
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FIG. 15 Effect of DNA on zeta potential of DOTAP containing liposomes. Total lipid concentra-
tion 4.1 mM in a 10 mM HEPES, 150 mM NaCl, pH 7.4 buffer. (From Ref. 62.)



form a lipid bilayer is reduced. The fact that the nucleotides seem to be completely con-
densed with the lipid matrix, even at a positive/negative charge ratio equal to one (Fig. 15),
indicates that the final structure of the lipoplexes is not spherical, but rather planar where
the particle charges of both leaflets of the bilayer become available to interact with the
nucleotides [62]. These observations seem to be in correspondence with those obtained by
Gershon et al. [64] who proposed a model according to which cationic liposomes bind
initially to nucleotides to form clusters of aggregated vesicles along the nucleic acids. At a
critical liposome concentration, nucleotide-induced membrane fusion and liposome-
induced nucleotide collapse would occur, giving rise to the formation of condensed struc-
tures. Zelphati and Szoka [61] mention as well that the lipoplexes cannot really be called
liposomes because after their complexation with nucleotides they do not necessarily retain
the classic bilayer form surrounding an aqueous layer. According to Koltover et al. [65],
these synthetic cationic amphiphilic structures would be an inverted hexagonal phase.

Most researchers link the zeta-potential data to stability studies of these lipoplexes,
by combining the electrophoretic data with particle size measurements. Generally, as could
be expected, minimum stability of the complexes is observed when charge neutralization
occurs. Due to the lack of charge repulsion, extensive aggregation or fusion can be
observed [58,59,62].

Many recent investigations still assume an important relationship between the
charge of the lipoplex and its encapsulation efficiency or its transfection efficiency, without
confirming the observations with zeta-potential measurements (e.g., Refs 60 and 66). The
relevance of such measurements is related to the large influence of electric charges in the
deposition of macromolecules after intravenous injections [62]. Thus, it is observed that
the charge ratio of a lipoplex is one of the parameters influencing the efficiency of nucleo-
tide uptake. Moreover, it seems that the optimal charge ratio decreases due to the incor-
poration of neutral lipids. Positive zeta potentials are necessary for effective delivery of the
nucleotides according to Zelphati and Szoka [54].

C. Conclusion

From this restricted review it can be concluded that zeta-potential measurements are an
essential and convenient tool in studying the interaction of cationic liposomes and nucleo-
tides. As the final charge of the lipoplex is of utmost importance with regard to its inter-
action with serum components, it is clear that zeta-potential measurements offer a quick
and easy tool for partially predicting the efficiency of the nucleotide transfection.

X. POLYMER–LIPOSOME INTERACTIONS (BINDING + DEPLETION)

The Gouy–Chapman–Stern theory has been shown to describe successfully the electostatic
potential of many bilayer model systems. Through combination with the Helmholz–
Smoluchowski equation, the experimentally assessed electrophoretic mobility, �, can be
related to zeta potential [20,40]. However, several observations indicate that, for some
systems such as red blood cells or phospholipid vesicles containing gangliosides [67], large
discrepancies were found between the experimentally determined � values (or zeta poten-
tial) and the actual surface potential. For vesicles containing terminally grafted hydro-
philic polymers, similar observations were reported. The huge interest in this type of
liposomes originates from the substantial increase in therapeutic activity of these systems
as drug carriers. An example of such a sterically modified phospholipid is shown in Fig. 16.
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Typically these modifications have been achieved by incorporation of poly-(ethylenegly-
col) (PEG) that is chemically bound to the polar headgroup of PE, which is also referred
to as pegylated PE [68]. By incorporation of these sterically modified phospholipids,
polymer-grafted liposomes can be produced as presented in Fig. 17.

Since it is only the intention of the authors to point out the importance of studying
the zeta potential of sterically modified liposomes, reference is made to some excellent
reviews for additional information on sterically stabilized liposomes and their applications
[14,69–71].

A. ‘‘Reduction in Electrophoretic Mobility but not in Surface Potential’’ [72]

The first systematic study on the discrepancy between the electrophoretic mobility and the
electrostatic surface potential of pegylated liposomes has been presented by Arnold et al.
[73]. Actually, similar effects for bilayer membranes containing the ganglioside GM1 were
previously reported by McDaniel et al. [67].
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FIG. 16 Chemical structure of a sterically modified distearoyl-PE.

FIG. 17 Schematic representation of sterically stabilized liposomes with covalently attached PEG.
(From Ref. 14.)



Woodle et al. [72] compared the zeta potential, calculated from the electrophoretic
mobility using the Helmholz–Smolukowski equation, with the surface potential, as deter-
mined by a fluorescent probe, of various phospholipid vesicles as indicated in Table 2. As
could be expected, zwitterionic PC vesicles were characterized by an electrophoretic mobi-
lity and zeta potential approaching zero. By incorporation of the negatively charged PG, a
drastic increase in the absolute value of the � and surface potential is observed. If the
pegylated PE is included in the bilayer structure of the PC vesicles in the same amounts as
PG, a parallel increase in surface potential is observed. This is in correspondence with the
anionic character of the pegylated PE. However, the change in surface potential is not
reflected in a comparable increase in zeta potential or electrophoretic mobility, despite the
fact that the pegylated PE carries a similar negative charge as PG.

Table 2 also reveals that, by decreasing the amount of polymer-grafted phospholi-
pids in the PC vesicles, a less negative surface potential is observed, while this is again not
reflected in the experimentally determined zeta potential. Sadzuka and Hirota [74]
obtained similar results using pegylated PG containing DMPC/cholesterol/DMPG vesi-
cles. Nonpegylated vesicles attained zeta potentials of �57:2 mV in a sucrose-containing
lactate buffer, while incorporation of the sterically modified phosphatide decreased the
zeta potential to values of �16:4 mV. Varying concentrations of pegylated PG in the range
3.7 up to 5.4 mol % did not significantly influence the experimentally determined zeta
potential. At a high concentration of 7 mol % pegylated surfactant, a further decrease in
the zeta potential could be observed.

Kostarelos et al. [75] performed experiments with soybean vesicles to which an
A–B–A copolymer of polyoxyethylene (99 units) and polyxoypropylene (67 units) was
added. The block copolymer in this was not chemically bound to a phospholipid, but
due to the presence of the hydrophobic polyoxypropylene moiety an interaction with the
hydrophobic tails of the soybean phospholipids was possible, thus fixing the polymer in
the membrane. Kostarelos et al. [75] observed a significant reduction in zeta potential:
�56:7 mV to �20 mV after a 0.04 wt % addition of the polymer. In contrast to the
previous observations of Woodle et al. [72] and Sadzuka and Hirota [74], a clear concen-
tration dependence of the zeta potential could be observed up to a 0.04 wt % presence of
the block copolymer. From the study of Kuhl et al. [76], the concentration dependence can
be explained by the arrangement of the polymer at the vesicles surface as a function of
polymer concentration, as shown in Fig. 18.

Even more sophisticated vesicles were designed recently by Kono et al. [77] by
incorporation of temperature-sensitive hydrophilic polymers such as poly(N-acryloylpyr-
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TABLE 2 Zeta Potential and Surface Potential for Various
Phospholipid Vesicles

Lipid compositiona Zeta potential (mV) Surface potential (mV)

PC

PG:PC (7.5, 92.5)
PEG:PC (7.5, 92.5)
PEG:PC (5, 95)

1:3 � 0:2
�21:2 � 0:8
�5:4 � 0:4
�7:5 � 2:6

0b

�25:4 � 5:8
�24:8 � 4:7
�14:4 � 2:4

a PC ¼ phosphatidylcholine; PG ¼ phosphatidylglycerol; PEG ¼ poly(ethylenegly-

col) linked to distearoylphosphatidylethanolamine (mol %).
b By definition.

Source: Ref. 71.



rolidine) and its derivatives. These polymers exhibit a so-called lower critical solution
temperature (LCST). At temperatures below this LCST the water-soluble polymer, present
as a hydrated coil, changes to a dehydrated globule and becomes water insoluble. The
effects of temperature change are outlined in Fig. 19, indicating that as soon as the LCST
is reached, polymers become hydrated, which results in a decrease in zeta potential.

Meyer et al. [59] used polymer-grafted surfactants in cationic liposomes and a similar
drop in the zeta potential could be observed. For the effectiveness of sterically modified
surfactants, the presence of a hydrophobic moiety, enabling the fixation of the molecule in
the liposomal bilayer, is indispensable, as illustrated by Virden and Berg [78]. They
observed no steric stabilization by addition of polyoxyethylene [47] to phospholipid vesi-

Electrophoretic Studies of Liposomes 965

FIG. 18 Schematic representation of change in polymer layer thickness and density as a function of
concentration in the exposed outer monolayer of the bilayer. (From Ref. 76.)

FIG. 19 Zeta potential of unmodified (*), poly(N-acryloylpyrrolidine)–2C12 modified (^), and
poly(N-acryloylpyrrolidine-co-N,N-didodecylacrylamide)–2C12 modified (~) 3�-[N-(N 0,N 0-

dimethylaminoethane)carbamoyl]cholesterol DOPE (1:1 mol) liposomes as a function of tempera-
ture. (From Ref. 75.)



cles, while the addition of nonylphenol polyoxyethylene [52] to the same vesicles improved
their stability significantly. Arnold et al. [73] observed similar phenomena for PEG added
to PC-phosphatidic acid mixed vesicles. Krabi and Donath [79] observed an even higher
than expected electrophoretic mobility by the addition of PEG and dextran to a liposomal
solution. This was explained by an apparently reduced viscosity in the EDL region due to
depletion and a subsequently decreased polymer-segment density near the interface. From
electrophoretic measurements, the apparent thickness of this depletion layer could be
calculated.

Arnold et al. [73] proposed that the decreased zeta potential was due to an increased
friction at the liposome surface due to the presence of the hairy polymer tails. Similarly,
Janzen et al. [80] postulated a model in which the polymer forms a surface layer subjected
to a viscous drag.

Another approach to explain the observed reduction in � but not in surface potential
is to assume a shift of the hydrodynamic plane of shear away from the charge-bearing
vesicle surface caused by the hydrophilic polymer chains which are present in a brush-like
formation (Fig. 18). This theory has already been presented by McDaniel et al. [67] but in
their study using membranes containing ganglioside, the observed phenomena could also
be explained by the fact that the charge of the ganglioside moiety was located in a plane at
a definite distance from the vesicle surface. Woodle et al. [72] proved by using synthetic
vesicles, in which all charges were present at the vesicle surface, that the shift in the
hydrodynamic plane due to the presence of the polymer chains is indeed the reason for
the observed discrepancies between the zeta potential and surface potential.

From the relationship:

 x ¼  0eð��xÞ ð17Þ

where  x is the surface potential at a distance x from the vesicle surface,  0 is the surface
potential at the surface, and ��1 is the Debye length, a realistic estimation of the PEG
coating thickness was obtained: a shift from 21 to 5 mV corresponded to an increase in the
hydrodynamic radius from 0.52 to 4.8 nm, which is very similar to other estimates of 6 nm
for the extended length of the PEG from the surface by independent methods. Sadzuka
and Hirota [74] obtained comparable results by comparing the zeta potentials at different
salt concentrations. By linear regression of the obtained zeta potentials with respect to the
Debye length, the position of the slipping plane or the thickness of the fixed aqueous layer
around the vesicle could be calculated.

B. Consequences of Steric Stabilization of Liposomes

Due to the presence of polymer brushes at the liposomal surface, liposomes become
sterically stabilized. Various examples illustrate this improved stability. Thus,
Kostarelos et al. [75] observed an improvement in the vesicle stability towards aggregation
caused by the cation-associated collapse of the surface electrostatic double layer. Similarly,
an increased stabilizing effect was observed at higher molar PEG ratios for calcium-
induced fusion of pegylated PE/PS liposomes in a study by Holland et al. [81]. At high
electrolyte concentrations, however, the polymer chains may become insufficiently
hydrated, resulting in an inadequate solubility. Consequently, the hairy vesicles’ surface
will acquire a less extended configuration, and the effectiveness of the steric barrier against
flocculation will decrease with increasing electrolyte concentrations [75]. Similar observa-
tions were made by Virden and Berg [78] for nonylphenol polyoxyethylene [52] sterically
stabilized phospholipid vesicles.
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The main feature of these sterically stabilized liposomes is the improved blood
circulation time, allowing the use of liposomes as an efficient drug delivery system. Due
to the presence of the polymer brushes at the vesicle surface their approach to blood
components and cellular surfaces in the body, is prevented [82]. The interaction with
blood components and cellular surfaces is supposed to stimulate adhesion, fusion, lysis,
or destruction by the immune system of the liposomes, which in turn results in their rapid
removal from the vein system and their restricted efficiency. Due to a longer blood circu-
lation time, an increased therapeutic efficiency of liposomal drug carrier systems is
observed.

NOMENCLATURE

a particle radius (m)
BSA bovine serum albumin
C bulk electrolyte concentration (mol/m3)
Cs electrolyte concentration at the surface (mol/m3)
D dielectric constant (�)
DHþ protonated form of a drug
DMPC dimyristoylphosphatidylcholine
DMPG dimyristoylphosphatidylglycerol
DODAB dioctadecyl dimethylammonium bromide
DOPE dioleoyl phosphatidylethanolamine
DOTAP 1,2-dioleolyl-3-trimethylammonium propane
DPPC dipalmitoylphosphatidylcholine
e elementary charge unit (1:6 
 10�19 C/charge)
EDL electrical double layer
HDL high-density lipoproteins
IgG immunoglobulin G
IP imipramine
k Boltzmann constant ð1:38 
 10�23 J/K)
Kapp apparent binding constant (m3/mol)
Kint intrinsic binding constant (m3/mol)
LCST lower critical solution temperature
LUV large unilamellar vesicles
Me metal
MLV multilamellar vesicles
MOPS 3-(N-morpholino)propanesulfonic acid
NA Avogadro’s number ð6:02 
 1023 /mol)
Nbs number of binding sites per unit surface area (1/m2)
N�

bs number of negatively charged binding sites per unit surface area (1/m2)
pa1 molecular projected area (m2)
PA phosphatidic acid
PC phosphatidylcholine
PE phosphatidylethanolamine
PEG poly(ethyleneglycol)
PG phosphatidylglycerol
PI phosphatidylinositol
pKa � log (dissociation constant of acidic groups)
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pKapp � log (apparent dissociation constant)
PL phospholipid
PS phosphatidylserine
STE stearylamine
SUV small unilamellar vesicles
T Kelvin temperature (K)
TMACl tetramethylammonium chloride
TNS 2-(p-toluidinyl)naphthalenesulfonate
X

ðþÞ

abs drug concentration in the lipid phase
Z valency

�xsp distance between Stern plane and plane of shear (m)
"o permittivity in vacuum (8:85 
 10�12 C2=N=m2)
� zeta potential [V]
�0 zeta potential with no ion adsorption [V]
� Debye–Hückel parameter (1/m)
� electrophoretic mobility (m2/V/s)
�H�S apparent electrophoretic mobility as derived from the real zeta potential

using the Helmholtz–Smoluchowski equation (m2/V/s)
�ads charge density of adsorbed species in the Stern plane (C/m2)
�o charge density at the surface of particle (without adsorbed ions) (C/m2)
�S charge density at the surface of the Stern plane (C/m2)
 o surface potential (without adsorbed ions) [V]
 S Stern potential [V]
 x surface potential at distance x from surface [V]
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Aggregation of Liposomes and Effects of
Electric Field on It
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I. INTRODUCTION

In biological worlds, many types of supermolecular systems have characteristic organized
structures: cell membrane, protein assembly such as muscles, etc. The origins of forces to
construct such organized structures are due to some specific interactions and/or non-
specific ones. So far, many studies have been conducted in various fields of biology
concerning the interactions between biological molecules. However, even nonspecific inter-
actions between biological supermolecular systems have not yet been understood.
Elucidating such nonspecific interactions requires building the scientific foundation of
self-organization of biological systems. This chapter shows one example of organization
of model cell systems (liposome particles) by nonspecific internal interactions and also that
under external electric fields.

II. LIPOSOME

A liposome is a spherical particle consisting of bilayer membranes of phospholipid mole-
cules and dispersed in an aqueous solution. Because of its vesicular structure of membrane
organization, it is sometimes called an ‘‘artificial cell.’’ Lipid molecules consist of a hydro-
philic head group and lipophilic hydrocarbon chains. Acidic lipids bear negative charges
on the head group at neutral pH because of dissociation of Hþ. Amphoteric lipids have a
positive and a negative charge on the head groups. The outer surface of the liposome,
consisting of natural lipids, usually bears negative charges on it because of the presence of
acidic lipids. Even the liposomes of amphoteric lipids from nature bear negative charges,
which can be easily seen by electrophoresis of the liposomes. The origin of these negative
charges is not clear but acidic impurities and/or specific adsorption of anions (including
OH�) are typical candidates. The chemical structures of several phospholipids and the
shape of a liposome are shown in Fig. 1. Further information on the chemical structure of
lipids and the methods of preparation of liposomes can be found in Ref. 1.
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III. AGGREGATION OF LIPOSOMES

A. Electrophoresis of Liposomes

Whether liposomes undergo aggregation or not depends on the interparticle interaction
between them. The barrier in the interaction potential usually comes from the combina-
tion of electrostatic repulsion and van der Waals’ attraction potentials. If the thermal
fluctuation energy which liposome particles have is much larger than the potential
barrier, the aggregation begins easily. To facilitate aggregation, we usually reduce the
electrostatic repulsive force between liposomes by adding some ionic compounds such as
metal salts to the medium of liposome dispersion. The general features of the change in
the interfacial electrical potentials in relation to ion binding have been reported [2, 3].
Figure 2 shows zeta potentials of liposomes for each type of phospholipid: phosphati-
dylcholine (PC) from egg yolk, phosphatidylethanolamine (PE) from bovine braine, and
phosphatidylglycerol (PG) from egg yolk, dispersed in various concentrations of CaCl2
aqueous solution [4]. Even liposomes of PC and PE bear negative charges. The surface
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FIG. 1 Chemical structures for several kinds of phospholipids and diagram of a liposome.

FIG. 2 Zeta potentials of liposomes made of each phospholipid (PG: phosphatidylglycerol; PE:
phosphatidylethanolamine; PC: phosphatidylcholine) immersed in various concentrations of CaCl2.



charges of liposomes of PC can be neutralized by the binding of Ca2þ ions (the iso-
electric point of a PC liposome is around 1 � 10�3 M Ca2þ concentration), but the
neutralization does not occur in the case of PE and PG in the experimental concentra-
tion range analyzed.

B. Coagulation Rate of Liposomes

The reduction of electrical repulsive forces causes an instability in liposome dispersion
resulting in aggregation; in some cases the aggregation by Naþ ions is reversible [5–7].
The coagulation behavior depends on the kinds of lipids and metal ions. The coagula-
tion rate of liposomes (averaged diameter 200 nm) from each phospholipid (PC, PE, or
PG) in 1 � 10�3 M CaCl2 aqueous solution is shown in Fig. 3 [4]. It shows the change in
the intensity of transmitted light through the dispersion sample after mixing with CaCl2
solution (final concentration of Ca 1 � 10�3 M). DLVO theory suggests that the iso-
electric point induces the rapid coagulation of colloid particles. This Ca concentration is
the isoelectric point for PC liposomes (Fig. 2), but no change in the light signal occurs
for these liposomes (curve a). On the other hand, PE and PG liposomes undergo coa-
gulation at this Ca concentration even though they have some negative zeta potentials.
This phenomenon is contrary to the concept of the theory. That is, the electrostatic
repulsive potentials observed in PE and PG cases are not enough to prevent the
Brownian coagulation, but the zero electrostatic potential in the PC case appears to
prevent the coagulation. This means that some additional repulsive forces must exist
between PC liposomes.

The van der Waals and electrostatic forces have a particle-size dependence,
whereas the so-called structural forces such as the hydration force are short ranged
and we can consider them as particle-size independent. So by conducting aggregation
experiments with liposomes of different particles sizes, we can obtain some information
on the mechanism of aggregation. The size dependence of PC liposome aggregation
shows interesting behavior; the larger size liposomes produce an aggregation easily.
Figure 4 shows the change in the intensity of transmitted light through the dispersion
sample after mixing with CaCl2 solution (final concentration of Ca 1 � 10�3 M) for each
size of PC liposome.
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FIG. 3 Change in light transmittance of liposome dispersion (a: PC; b: PG; c: PE) after mixing with
CaCl2 aqueous solution. The final concentration of Ca2þ ions is 1 � 10�3 M.



At this Ca2þ concentration, the electrostatic repulsion is negligible but the van der
Waals attractive force increases with the increase in liposome size. The experimental
results suggest that the interaction potential between PC liposomes consists of a short-
range structural repulsive force and the van der Waals’ attractive one. From the hygro-
scopic nature of the PC molecule, the short-range attractive force can be hydrophilic
hydration. The combination of the van der Waals attractive potential and the short-
range hydration potential has a potential minimum somewhat away from the particle
surface [8, 9]; it is similar to the secondary minimum in the interaction potential between
larger sized particles with larger Hamaker constant. In this case, aggregated flocs have a
thin liquid layer between particles so that they are likely to be influenced by the change in
the condition of surrounding medium. Furthermore, contrary to the case of coagulation in
the primary minimum of the potential, the flocculated particles do not need to overcome
any potential barrier to be redispersed into primary units. In fact, when one reduces the Ca
concentration, PC liposomes easily separate into single particles (Fig. 5).

In the high ion concentration range, the thickness of the electrical double layer
(EDL) on the particle surface is rather small and hence the aggregation is induced because
of the near absence of repulsive forces. However, the repulsive forces from short-ranged
hydration and electric ones prevent the coagulation at the deep primary potential mini-
mum and only the flocculation at a shallow well of potential minimum somewhat away
from the surface is possible. In the range of Ca concentration from 0.01 to 0.1 M, only
doublets or triplets of PC liposomes are observable. This suggests that reversible floccula-
tion prevails in these salt conditions. In the range of Ca concentration above 0.1 M, flocs
consisting of several primary particles are observable and they grow to a dendritic struc-
ture (Fig. 6), which is similar to the structure formed by Brownian coagulation [10]. It
means that the depth of the potential well increases with salt concentration and hence
backward reaction to the separation decreases. However, those flocs are rather easily
separated to form the primary particles by the dilution of salt concentration. It means
that the liposome particles gather together somewhat away from the particle surface, as
described before.
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FIG. 4 Change in light transmittance after mixing with aqueous CaCl2 solution (final concentra-

tion, 110�3 M) for various diameters of the PC liposomes: (a) 100 nm; (b) 200 nm; (c) 320 nm; (d)
2000 nm.



IV. EFFECTS OF ELECTRIC FIELD ON FLOCCULATION

A. Electrical Phenomena in Dispersion Samples

When we apply external electric fields to dispersion samples, various types of electrokinetic
phenomena will occur, such as electro-osmosis, electrophoresis, ionic conduction, electric
polarization, etc. These depend on the electrical properties of dispersion particles and they
can affect the aggregation behavior of particles through the change in interparticle inter-
action.

Within the low-frequency range of electric fields (<1 MHz), the size of colloidal
particles is much smaller than the wavelength of the alternating electric fields. In this
range we can handle the electric field separately from the magnetic one and the usual
electric-circuit treatment can be applied to understand the phenomena. In a homogeneous
electrolyte solution, we can treat the sample as a combination of conductor and capacitor.
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FIG. 5 Microsope images: (a) flocculated larger PC liposomes (d ¼ 1000�2000 nm) under the con-

dition of CaCl2 ¼ 1 � 10�3 M, 5 h after mixing; (b) redispersed liposomes obtained by dilution of
CaCl2 with pure water.
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FIG. 6 Microscope image of liposome dispersion for different times elapsed after mixing with

CaCl2 aqueous solution (final concentration, 0.55 M): (a) 30 min; (b) 45 min; (c) 1 h; (d) 1 h
15 min; (e) 2 h; (f) 2 h 15 min; (g) 2 h 30 min; (h) 2 h 45 min.



However, in a heterogeneous sample like a colloidal dispersion, we must consider the
interfacial polarization effect at the particle/solution interface [11, 12]. Therefore, the
properties of the EDL at the interface are an important factor for electrical properties
of the dispersion samples. We can express the electrical polarization by the difference in
conductivity between the double layer and the bulk solution in the case of nonconducting
particles. The quantity that expresses the ratio between the surface conductivity and bulk
conductivity is the dominating factor for the surface polarization. It is called the Dukhin
number: Du ¼ kS=akb, where kS is the surface conductivity, kb is the conductivity in the
bulk, and a is the radius of the particle [13]. The electrical polarization at the surface of a
particle is expressed by an induced dipole moment (d) on the particle. It is described by
using the Du number. Similarly, the ratio between the conductance of the dispersion
sample (K�) and that of the pure medium (K) is described by using Du. These are math-
ematically expressed as [12–14]:

d ¼ "a3
½�1=2 þ ð3=2ÞDu=ðDu þ 1Þ	E ð1Þ

K�=K ¼ 1 þ ð3=2Þpð2Du � 1Þ=ðDu þ 1Þ ð2Þ

where " is the permitivity of the medium, E is the electric field strength, and p is the
volume fraction of particles. Here, the relaxation phenomenon of electrical polarization
by relaxation of concentration polarization through the diffusion mechanism is ignored.
These values decrease when the relaxation occurs in the low-frequency range (< D=a2

where D is the diffusivity of the counterion in the bulk); K�=K is an experimentally
determined quantity, so we can calculate the Du number if the volume fraction of the
particles is known [Eq. (2)]. Hence, the induced dipole moment is estimated from Eq.
(1).

Figure 7 shows K�=K for PC liposome dispersions at various concentrations of Ca2þ

ions [15]. The induced dipole moments on PC liposomes can be calculated using these
values with the volume fraction of the samples (in these samples, p ¼ 0:1) as shown in Fig.
8 [15]. The induced dipole moment has a similar tendency to that of K�=K .

B. Aggregation of PC Liposomes by Induced Dipoles

When we apply electric fields to the dispersion sample in unstable conditions of the
system, the aggregation behavior can be changed. As described in the preceding sec-
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FIG. 7 Conductance ratio of liposome dispersion to medium versus concentration of CaCl2 at
frequency of 1 kHz.



tion, PC liposomes have their isoelectric point around 1 � 10�3 M CaCl2 aqueous
solution. When we apply an electric field to the PC liposome sample around the iso-
electric point, the formation of linear chains of liposome can be observed. Figure 9
shows linear aggregation of PC liposomes near a needle electrode induced by an
alternating electric field of 15 V between two electrodes located 5 mm apart (an asym-
metric ‘‘T’’ letter configuration of electrodes) in the salt condition of 3:6 � 10�3 M
CaCl2 [15]. As can be seen in the figure, the formtion of a linear chain of PC liposome
has a frequency dependence. Electric fields of low frequency have low potentiality for
inducing linear aggregations. At 10 and 100 kHz, we can see good linear alignment of
the liposomes, but we see insufficient alignment of them at 100 Hz and 1 kHz. This
feature may be explained by the magnitude of the induced dipole moment on the PC
liposomes, which is described in the preceding section. That is, in the lower frequency
range, the relaxation mechanism of concentration polarization provokes insufficient
electric polarization around the liposomes.

Since the induced dipole moment is attributed to the nature of the EDL on the
particle surface, it changes with the ion concentration in the solution. Figure 10 shows
the Ca2þ ion concentration dependence of the linear alignment of PC liposomes in the
concentration range containing the isoelectric point [15]. In the lower concentration
range of Ca2þ ions, the linear alignment of the PC liposome is perfect, but in the
higher concentration range, it cannot be observed. We can imagine it is caused by the
induced dipole–induced dipole interaction, and it is truly attributable to the nature of
the double layer. As is described in the preceding section, the induced dipole moment
depends on the conductance difference between that in the double layer and that in the
bulk solution. We can see in Fig. 9 that the magnitude of the dipole is larger in the
lower concentration and decreases with increasing Ca2þ ion concentration. Around the
isoelectric point ð1 � 10�3 M), the aggregates formed are somewhat thicker, due to the
additional contribution from the intrinsic liposome–liposome interaction. This aggrega-
tion does not break to the original single liposome particles, whereas the linear aggre-
gates in the lower concentration range separate into single particles when the electric
field is switched off (Fig. 11). At a Ca concentration of 8 � 10�4 M, once the structure
is obtained, it maintains its shape after switching off the applied electric fields. In this
case, the intrinsic interparticle attractive interaction is dominant. On the other hand, at
a Ca concentration of 4 � 10�4 M, after switching off the electric fields, each liposome
particle begins Brownian motion as a single particle. In this case, the attractive force is
mainly from induced dipole moments.

978 Matsumura and Furusawa

FIG. 8 Reduced induced dipole moments versus concentration of CaCl2 at frequency of 1 kHz.



Effects of Electric Field on Liposome Aggregation 979

FIG. 9 Microscope images of liposome clusters near a Pt electrode in electric fields of various
frequencies: (a) 100 Hz; (b) 1 kHz; (c) 10 kHz; (d) 100 kHz. Vpp ¼ 15 V/5 mm; CaCl2,
3:6 � 10�3 M. The frequency dependency of the induced dipole moments calculated by the equation

in Ref. 13 (p 4.118) is also shown. In this figure, the relaxation time for concentration polarization is
1 ms.
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FIG. 10 Microscope images of liposome clusters in electric fields (Vpp ¼ 15 V/3 mm; f ¼ 10 kHz) for various concentration of

CaCl2. In the photos, the concentration of CaCl2 is shown.



The Ca2þ mobility in the surface region of the PC liposome is rather high [16, 17],
which gives rise to a high Du number and hence a rather large induced dipole moment.
This may be a specific character of PC liposomes. Thus, there remain interesting features
to be clarified on the surface of liposome particles.
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Index

AC conductivity, 334
AC electrokinetics (see also Electrokinetic

phenomena)

experimental, 380–385
methods, 372–374
microchambers for, 385–387

Adsorption
potential, 112
specific (see Surface charge)

Aluminum (hydrous) oxides, 208
Angular electrophoretic velocity, 147

Barite, 805

Biological cells
electrokinetic characterization (see also

Dielectric dispersion)

dielectrophoresis, 380
electrophoresis, 671–672
electrorotation, 380

membrane charging, 320
Boltzmann distribution, 449, 705

Cassiterite, 804

Charge reversal, 802
Clausius–Mossotti factor, 375, 393
Clay minerals

adsorption of humic substances on, 790
cation exchange capacity, 778
effect of milling on, 784–785

comparison with model oxides, 787–789
decontamination of, 819

[Clay minerals]
electrical double layer of, 779
electrophoretic mobility, 780–781

and humic substances, 785–786
pH effect on, 782–785
role of divalent cations, 793

in sea-water, 792–794
kaolinite

isoelectric point, 818

rheology, 818–819
stability, 819

structure, 773–776
surface charge, 776–777, 783

Coagulation
DLVO theory, 637
effect of gravity, 635

of protein-coated polystyrene
effect of protein charge, 651
role of surface hydrophobicity, 652–654

steric effects in, 652
role of surface roughness, 637

Coion adsorption (see also Electrophoresis and

coion adsorption), 632–634
Colloid
vibration current

corrections for attenuation, 511

coupled-phase model, 497
definition, 47, 493
experimental determination, 506–509

expression, 500
Kuwabara cell model, 500
low-frequency limit, 503

in polydisperse suspensions, 501–502
principles, 504–506
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[Colloid]
and sedimentation current, 498–500

zeta potential from, 512–514
vibration potential
definition, 9, 47, 493

dynamic mobility and, 49, 495
theory, 49

Complex conductivity (see also AC

conductivity; Dielectric permittivity)
of cells, 288
definition, 42–44, 278, 330
of electrolyte solutions, 285

high-frequency dispersion of, 334
increment, 334
of single particles, 287

Concentrated systems, 67, 130–133, 687–688
Concentration polarization, 41, 57, 242
diffusion layer in, 242

high electric field and, 243
in ion-exchange spheres, 246
space charge layer, 246

in membranes, 586
Conductivity of suspensions (see also Complex

conductivity; Polyelectrolyte-coated
particles), 446–447

Conductivity tensor (see Porous plugs)
Core/shell particles (see also Dipole moment),

803

Current density in a suspension, 42, 451–453

Debye length, 3, 699
Debye relaxation (see also Dielectric

dispersion), 408

Dielectric
constant (see Dielectric permittivity)
dispersion

alpha (see Low-frequency)
amplitude (see Dielectric permittivity
increment)

beta (see also Dipole moment), 370
in biological cells, 288–290, 369, 370
Debye type, 283–285
definition, 9

delta (see Dipole moment)
of electrolyte solutions, 285–287
full frequency spectrum, 315–316, 322,

333, 347–348
gamma (see also Dipole moment), 370
high frequency, 331

low-frequency (LFDD), 39, 57, 65–67,
307–310, 331, 333, 370

[Dielectric]
Maxwell–Wagner, 333

surface diffusion mechanism of, 44, 66,
358

theory, 44

thin-double layer approximation, 65,
310–313

time-domain description, 292–300,

307–310
volume diffusion mechanism of, 41, 66

permittivity (see also Dielectric dispersion),
42, 277–278, 279–282, 329

increment, 42, 44, 313, 334
measurement, 45–47

relaxation (see Dielectric dispersion)

spectroscopy, 277
Dielectrophoresis

definition, 8, 26, 372

induced dipole moment and, 27
measurements, 28, 379, 387, 389
traveling wave, 379, 384

Diffuse layer (see also Double layer), 3
Diffuse potential, 109

comparison with zeta potential, 6
effect of pH and ionic strength on, 110–112

Diffusiophoresis
definition, 8, 29
theory, 30–32

Dipole coefficient (see Dipole moment)
Dipole moment, 282, 290–292

alpha relaxation (see Dielectric dispersion)

beta relaxation, 306
calculation for thin double layers, 339–347
of core/shell particles, 352
delta relaxation, 304–306

and electric potential distribution, 318, 330,
405

gamma relaxation, 300–304

induced, 21, 40–41, 56, 64–65, 279, 318–320,
330, 339–347, 374, 977

and AC electrokinetics, 394

low-frequency
fast and slow parts, 310
for spheres, 420–422

for spheroids, 423
relation to conductivity and permittivity,

281, 330
relaxation in particles and cells, 291

sedimentation potential and, 21
surface diffusion model, 350–358
wide frequency range calculation, 347

Donnan potential, 139
Dorn effect (see Sedimentation potential)
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Double layer (see also Interfacial layer)
capacitance, 2

around deformed sphere, 180–181
electrical, 2, 103, 124, 556–558, 620, 752–754
secondary, 241

and flow in microchannels, 558
at mineral/water interfaces (see also Mineral

particles), 799

nonequilibrium, 55
macroscopic manifestations of, 59–60

polarization, 55, 128, 621, 674–676
Drug delivery devices, 718

Dukhin number (see also Relaxation effect),
40, 61, 68, 90

Dynamic Stern layer (see also Stagnant layer),

63–64, 91

Electric birefringence
comparison between theory and experiments
high frequency, 433–436

low frequency, 437–439
definition, 9, 402
and dielectric constant, 424–426

experimental determination, 427
extended Maxwell–Wagner model
spheres, 408–411

spheroids, 412–419
frequency resolved (FREB), 402
typical frequency spectra, 429–433

Electric conductivity (see also Dielectric

permittivity), 42, 446–447, 469
Electrical double layer (see Double layer)
Electrical interfacial layer (see Double layer)

Electroacoustic phenomena (see also Colloid
vibration potential/current;
Electrokinetic sonic amplitude)

applications, 513–518
basic principles, 493–497
definition, 9, 47

dynamic mobility and, 48, 495
qualitative explanation, 504–506

Electrochemical potential, 448
Electrokinetic

charge, 55
consistency, 69–70
effects (see Electrokinetic phenomena)

equations, 673–676
models: standard and nonstandard, 62–63,

68, 401

phenomena
AC, 369–371, 377–380

[Electrokinetic]
comparison of experimental methods,

612, 873
definitions, 8–9, 588–589, 799–800
geophysical applications, 550–553

high electric field and (see Concentration
polarization)

interpretation of, 199–200

nonlinear (see of second kind)
in open systems, 555
of second kind, 241
and surface conductance, 60–62

plane, 7, 62, 620
position, 108, 758–760

potential (see Zeta potential)

sonic amplitude (ESA)
definition, 9, 47, 493
dynamic mobility and, 49, 495

measurement, 49
Electro-orientation, 73, 378
Electroosmosis

arbitrary double-layer thickness and, 34
in cylindrical channels, 529
definition, 8, 32, 610
in flat channels, 529

fluid flow rate in, 34
measurements, 35, 610–612
in membranes (see Membranes)

of second kind, 248
applications of, 272
determinant factors of, 270

electric potential distribution in, 251
experimental determinations of, 252
high electric current and, 263

Onsager’s reciprocity relationships, 522

Smoluchowski theory, 33
surface conductance and, 35

Electroosmotic

tensor (see Porous media)
velocity (see Electroosmosis; Porous media)

Electrophoresis

of coated particles (see also of soft particles),
212–214

and coion adsorption, 628–629

of composite particles, 211
of concentrated suspensions, 130–133
definition, 8
of drops, 133–134

of gas bubbles (see Gas bubbles)
and hairy layer, 626–627, 704–709
Henry formula, 13, 125–127

Hückel theory, 9–10, 801
impurity effects on, 200–202
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[Electrophoresis]
of interacting spheres, 157–162

measurements
for colloidal doublets, 168
electrophoretic light scattering (ELS),

19
experimental methods, 222, 237–238,
694–695

mass transport, 14–16
microelectrophoresis, 16–19
moving boundary, 14
phase analysis light scattering, PALS,

19
reproducibility, 200
stationary level, 17

medical applications, 697
altered cells, 710

of non-spherical particles, 174

clay platelets (see also Clay minerals),
153–155

deformed spheres, 184–188

doublets, 155–166, 168–169
general theory, 174–180
particle networks, 165–166
slender bodies, 162–165

slightly deformed sphere, 180–186
spheroids, 152, 188–195
trajectories, 186–188, 193–195

of nonuniformly charged spheres, 149–152
O’Brien and White theory, 13, 127–130
of porous particles, 688–689

of second kind, 256
in fibers, 258
in ion-exchange particles, 256
large Reynolds numbers and, 272

in metals and semiconductors, 260
and sedimentation potential, 136
of soft particles, 137–142, 724–725,

732–735
of structured interfaces (see also Polystyrene

particles), 679–681

reference samples for, 221, 223, 227–230,
232–233, 238

role of inner-layer conductance in, 623–626

Smoluchowski theory, 9–13, 123–125, 147,
801

theoretical models, 621–622, 661
Electrophoretic deposition, 167

Electrophoretic fingerprinting, 696
of polystyrene particles, 707–709
of red blood cells, 703–704, 710

Electrophoretic mobility (see also
Electrophoresis)

[Electrophoretic mobility]
apparent, 224

dynamic, 48–49, 143–144
profile of, 226, 231

Electrophoretic retardation, 621

Electrorotation
definition, 8, 24, 335, 372
and electro-osmotic slip, 29, 337–339

frequency spectrum, 348–351
induced dipole moment and, 24, 336
measurements
in microchambers, 385

light scattering techniques (ERLS),
388–389

and nonspherical particles, 73

surface diffusion model, 358–362
wide frequency range theory, 348

Electroviscous effects (see alsoMicrochannels),

9, 558–559
Ellipsoidal particles

AC electrokinetic spectra of, 380

polarizability, 374–377, 396, 399
Emulsification, 871
Emulsions (see also Liquid–liquid interfaces;

Protein adsorption)

n-alkane/alcohol
droplet size, 904
effect of alcohol type and concentration,

925
lysine adsorption, 921
lysozyme adsorption, 921

pH effects, 924
temperature effects, 925

pH effects, 909
stability, 914, 917–919

zeta potential, 904
breakdown, 882, 893
classification, 871

definitions, 870
electrostatic repulsion, 883
hydrocarbon/water

H+ and OH� ions in, 902
zeta potential, 896–904

interfacial potential

effect of surfactants, 874–880, 886–889
measurements, 872
origin (see also hydrocarbon/water),
874–878

role on stability, 882, 884–886
Ostwald rippening, 882, 890
stability and DLVO theory, 882

stability and HLB, 886
Extended DLVO theory, 914–917
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Extended electrokinetic models (see
Electrokinetic models: standard and

nonstandard)

Flotation, 804, 805, 808, 810

Flotation potential (see also Sedimentation
potential), 483

inorganic electrolyte effect on, 491

measurement, 485–489, 828
surfactant effect on, 489

Fractures

definition, 532–534
electroosmosis in, 549

Gas bubbles (see also Flotation potential)
electrophoretic mobility of, 826
horizontal electrophoresis, 828

spinning bubble method, 826–828
vertical electrophoresis, 829

general, 825
zeta potential of

effect of ionic radii, 830
effect of ionic surfactants, 832–833
effect of nonionic surfactants, 831

in electrolyte solutions, 830
in pure water, 829
in surfactant mixtures, 833–834

Goethite standard particles, 233–237
Gouy–Chapman model, 3, 105, 108, 698, 758,

935
planar interface, 4

spherical interface, 5

Helmholtz planes, 4, 104
Hematite, 489, 802–804
Hydrogel microspheres

electrophoretic mobility, 720–723

particle size, 727
preparation, 718–720
structure, 725–728

Hydrophile/lypophile balance (HLB), 869,
871

role in the stability of emulsions, 886

Impedance of suspensions, 371–372
Indifferent electrolyte, 800

Inks (see Pigment dispersions; Lithographic
printing)

Interfacial layer (see also Double layer)
structure, 103

triple-layer model, 104–106
Ion-penetrable interface, 678–679
Iron oxides, 205–207

Isoelectric point (see also under the names
of specific materials), 106, 800

of oxides, 211

Kerr constant (see also Electric birefringence),

402, 403
and electric polarizability, 405–407

Kerr effect (see Electric birefringence)

Kuwabara cell model, 500–501

Layer (see also Double layer)
diffuse, 3
Stern, 3

Lipid vesicles (see Liposomes)
Liposomes
aggregation (see stability)

charge reversal, 943–948
counterion binding to, 938

binding constant, 940, 941, 953

divalent ions, 943
monovalent ions, 940–943
trivalent ions, 948

definitions, 933, 971

drug adsorption (see organic molecule
adsorption)

electrokinetics of, 76–78, 934, 973

and gene therapy, 959–960
organic molecule adsorption, 955–957
polypeptide adsorption, 958

protein adsorption, 958–959
stability

calcium ions and, 973–974, 978

coagulation, 973
role of induced dipoles, 977

steric stabilization (see also Polymer
adsorption), 963

and drug delivery, 967
zeta potential

calculations, 949–953

and interaction with nucleotides, 961
and phase transition, 948

Liquid–liquid interfaces (see also Emulsions)

elasticity, 849, 885
electroviscosity, 846
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[Liquid–liquid interfaces]
electroviscoelasticity, 846

constitutive equations, 849–851
resonant frequency, 855
theory, 853–856

and emulsion breaking, 862
formation, 840
general aspects, 837

instabilities in, 837–839
Marangoni, 844–846

interfacial potential
analogy to interfacial tension, 839–840

measurement, 858–861
interfacial tension, 851
rupture, 840, 843–844

stability, 841–843, 871
Lithographic printing
definitions, 766

electrokinetics and performance of, 767

Marangoni instability (see Liquid–liquid
interfaces)

Maxwell formula, 282–283

Membranes
ceramic, 583
comparison of electrokinetic phenomena in,

612–613
definitions, 583
electroosmosis in, 610
measurement procedure, 612

filtration, 584
ion-selective, 242, 584
and convective diffusion layer, 243

and space charge layer, 244, 600
microfiltration, 583
multilayer

definitions, 603
selectivity, 606–610
streaming potential, 603–606

nanofiltration, 583
permeability, 585
pore size, 585
retention, 586

selectivity, 606
surface charge effects, 607

solute transfer through, 587

solvent transfer through, 586
streaming potential characterization, 589
ionic strength effects, 597–598

pH effects, 595–597
surface charge, 730

[Membranes]
ultrafiltration, 583

Microcapsules (see also Red blood cells)
electric potential distribution, 736
electrophoretic mobility, 730–732

preparation, 728–729
structure and electrophoresis, 737–740

surface charge, 730

Microchannels, 555
rectangular, 565
electric potential distribution, 566–569
electrokinetics, 572–574

electroviscosity, 576–581
fluid velocity distribution, 569–572, 574

slit channels

electrokinetics, 559–564
electroviscosity, 564–565
streaming potential, 562–564

streaming potential/current, 558
Microelectromechanical systems (MEMS), 555
Microfluidic devices, 555

Mobility
of adsorbed ions, 77
electrophoretic (see Electrophoresis)

Multilayer membranes (see Membranes)

Multi-site complexation model (MUSIC), 99

Navier–Stokes equation, 176, 673

Nonequilibrium electric surface phenomena
(see Double layer)

Nonideal surfaces (see also Electrophoresis of

structured interfaces), 699–703
Nonspherical particles (see also

Electrophoresis), 73

electric field around, 405

Onsager reciprocity relations, 136, 502–504,

522, 704–705
Oxides

adsorption of hydrolyzable ions on, 801–802

potential-determining ions for, 113
survey of electrokinetic data on, 203–204
zeta potential, 788–789

Pigment dispersions (see also Toners)
electrokinetics of, 762–764

examples, 761
stability, 761
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Point of zero charge (see also Charge reversal),
106–107, 800

comparison with other ‘‘zero’’ points, 120,
800

and specific adsorption, 120

Poisson equation, 176, 448, 524, 673
Poisson–Boltzmann equation, 178–179, 557,

559–561

solution of the non-linear, 568–569, 706–707
two-dimensional, 567

Polarizability (see also Dipole moment), 330
Maxwell–Wagner, 331

optical, 404
of spheres, 408, 421
of spheroids, 413, 416, 423

Polarization
of the double layer (see Concentration

polarization)

Maxwell–Wagner, 64, 408
Polyelectrolyte-coated particles

basic electrokinetic equations, 447

conductivity of suspensions, 465–473
electric potential distribution around, 454
electrophoresis, 142
neutral, 464, 470

sedimentation potential, 457–459
sedimentation velocity, 455–457

Polymer adsorption, 73–76, 820, 963–966

Polystyrene particles, 221–222, 619, 641
antibody-coated, 641
hairy layer in (see also Electrophoresis and

hairy layer), 626
and immunoassays, 641, 647–648
protein-coated
bovine serum albumin (BSA), 642, 648,

650
colloidal stability (see Coagulation)
degree of coverage, 642

electrophoretic mobility and zeta
potential, 654–668

human serum albumin (HSA), 657–658

immunoglobulin-G (IgG), 642–644, 648,
657–658

isoelectric point, 644–647

sequential adsorption, 648
surface charge, 630
surface roughness, 620
unusual electrokinetics in, 619

Porous media (see also Fractures)
classification, 530–532, 539–541
conductivity tensor, 528–529

correlated, 545
electroosmotic tensor, 529

[Porous media]
electroosmotic velocity, 528

equilibrium properties, 525–526
fractured, 549

La Fournaise volcano, 549–553

laminated, 545
stratified, 546

Porous particles

electric conductivity, 470
electrophoretic mobility, 460
sedimentation velocity, 460

Potential-determining ions, 800

Protein
adsorption (see also Emulsions; Polystyrene

particles)

adsorbed layer thickness, 667
and electrokinetics, 660
mechanism of, 666

role of ions in solution, 649–651
surface charge density and, 667

standard for electrophoresis, 238

Red blood cells (see also Electrophoresis of

biological cells), 740
AC electrokinetics of, 382–384
interaction with microcapsules, 740–746

Relaxation effect (see also Double layer
polarization), 950

Relaxation number (Rel) (see Surface

conductance)
Relaxation time
Debye, 284
for delta relaxation, 305

of electrolyte solutions, 331
for gamma dispersions, 303

Salt-type minerals

apatite
bacterial adhesion to, 814
oxidation, 814
point of zero charge, 814

calcite
flotation, 816
isoelectric point, 815

zeta potential, 816
fluorite, 816–817

Sedimentation

potential (see also Polyelectrolyte-coated
particles)
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[Sedimentation]
in concentrated suspensions, 483

definition, 8, 444, 453
experimental, 23, 483–485
Onsager’s relationships and, 136, 458

Smoluchowski theory, 20–22
theory, 20, 137, 459, 481–483

velocity (see Polyelectrolyte coated

particles)
Shear plane (see Electrokinetic plane)
Silica particles, 210
colloid vibration current and, 509–515

electrokinetic properties, 821
isoelectric point, 820

Slip plane (see Electrokinetic plane)

Smoluchowski equation (see also
Electrokinetic phenomena), 598,
950–953

Solvophoresis (see Diffusiophoresis)
Space charge (see also Membranes), 600–603
Specific adsorption, 102–103

Stagnant layer, 64, 89, 94–95
conductance (see also Dynamic Stern layer),

90–92
molecular dynamics simulation of, 95–96

Stern layer
charge, 941
dependence on surface charge, 630–631

in polystyrene, 630–634
conductance (see also Double layer), 59, 64,

70

Stokes equation, 448, 524
Streaming current (see also Streaming

potential)
definition, 9, 558

Smoluchowski theory, 37
Streaming potential (see also Membranes;

Microchannels)

definition, 9, 35, 590–591
effect of capillary radius on, 38
measurements, 39, 591–593

surface conductance and, 37, 600–603
theory, 36–38
validity of Smoluchowski equation,

558–600
Stress tensor
electric (Maxwell), 405
hydrodynamic, 405

Sulfide minerals
adsorption of hydrolyzable cations, 806–807
chalcocite, 812

chalcopyrite
flotation, 812

[Sulfide minerals]
oxidation, 811–812

galena
colloidal stability, 809
flotation, 808–809

isoelectric point, 807
oxidation, 807–808
sample preparation, 807

pyrite, 813
sphalerite
charge reversal points, 810
flotation, 809–810

isoelectric point, 809
zeta potential, 809

Surface

charge (see also Clay minerals)
amphoteric groups and, 100
Bjerrum theory, 101

counterion association and (see also
Liposomes), 100

electrokinetic, 55

mobile, 55, 71–72
origin of, 2, 588, 619, 749–751
in nonaqueous media, 751–752

relation with surface potential, 134–136

site-dissociation models (see Surface
complexation models)

specific adsorption and, 102

and surfactant adsorption, 427
titratable, 2

complexation models, 99, 677–678, 699,

753–758
counterion association, 100
ionization constants, 754
multisite, 99

conductance, 60, 705–706
Bikerman equation, 60, 88
and colloid vibration current, 501–502

definitions, 87
determination, 90, 92–94
Dukhin number and, 61, 706

and equivalent particle conductivity, 333,
409

spheroids, 415

diffusion, 44
potential, 2, 113–116, 799
measurements on metal oxide electrodes,
116

measurements using field-effect
transistors, 118

roughness (see also Zeta potential), 6, 78

Surfactants (see also Gas bubbles)
adsorption, 804
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[Surfactants]
classification, 870

effect on surface charge, 427–428
effect on zeta potential (see Emulsions)
and flotation potential, 489–491

Titanium dioxide, 204–206, 221

colloid vibration current of, 509–515
Toners

charging, 764–766

composition, 764
Triple layer model, 104

Volume diffusion (see Dielectric dispersion)

Wolframite, 804–805‘

Zero zeta potential particles, 227

Zeta potential
comparison with diffuse potential, 108–109
definition, 5, 107

of micelles, 881
and stability, 884
and Stern potential, 70–71
and surface roughness, 78–80

Zirconia, 515
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